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Dispersive sum rules, of which the Drell-Hearn-Gerasimov sum rule is a special
example, are a consequence of rather general principles. On the one hand, they
can be used to make tests of these fundamental principles, allowing to probe deep
mysteries of nature. On the other hand, they can be used to access experimental
observables that are otherwise impossible to measure, and thus providing excellent
opportunities to learn about the physics of strongly interacting systems, such as
nucleons and nuclei. I will use examples to illustrate these points.

1. Introduction

The Drell-Hearn-Gerasimov (DHG) sum rule ! belongs to a class of sum
rules that are derived from dispersion relations, and thus is called a dis-
persive sum rule. There are other sum rules that can be derived from an
algebra. For example, the famous Thomas-Reiche-Kuhn sum rule is derived
from the Heisenberg algebra [z, p] = ih.

Dispersion relations are derived from analyticity, which in turn is a
consequence of causality, of scattering amplitudes. Analyticity implies
Cauchy’s theorem

!

f) = [ ar 1)
where we have assumed that the only singularities are along the real axis
of w. At low energies, f(w) can be calculated in low-energy effective the-
ories as a power series in w. For example, the leading-order terms might
be determined by low-energy theorems, and/or calculable in chiral pertur-
bation theory for the nucleon system and in nuclear effective field theory
for a nucleus. On the other hand, unitarity relates the imaginary part
of a forward scattering amplitude to a physical cross section. Together,
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a dispersion relation connects a physical cross section to a corresponding
forward amplitude at low energies.

The above is the physical content of dispersive sum rules. What are
possible uses of those sum rules? Here are some of the possibilities:

e They can be used to check fundamental assumptions going into the
derivation of the sum rules. These include, for instance, causality
and analyticity, low-energy effective theories, and asymptotic be-
havior of scattering amplitudes.

e They can be used to understand the physical content of the low-
energy constants. For example, the deep-inelastic momentum sum
rule tells us how the fraction of the nucleon momentum carried by
quarks is distributed in Feynman momentum z.

e They can be used to determine the low-energy scattering ampli-
tudes, some of which may not be available from direct scattering
processes.

In this talk, I will mainly focus on the second and third points.

2. DHG sum rule for a target with an arbitrary spin

Let us consider the DHG sum rule for a target with an arbitrary spin S.
The forward Compton amplitude can be expanded in terms of ¢-channel
tensor structures,

f=foe* e+ frie* xe- S+ fok@k)® (S 8Per e+ ..., (2)
where ¢ and k are the photon polarization and momentum, respectively, S
is the angular momentum operator of the target, and ® indicates tensor

coupling. The vector amplitude f; is related to the amplitude f("™+) with
the target in a good m-state by

3 1
3 1 (m2) | 3
h 5(5+1)25+1;m5f 3)
The low-energy expansion of the vector amplitude goes like
2
_ QemK 9
fl——mw‘*‘Q’YW ) (4)
where M is the mass, and the anomalous magnetic moment is 2
k=pu—28, (5)

where p is the total magnetic moment in units of ehi/2Mc. The above
relation implies that a point-like particle has pipoing = ehS/Mec.
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There has been much discussion in the literature about the magnetic
moment of a point-like particle. In a paper by Belinfante in 1953, he con-
jectured that a point-like spin-S particle has a spin-independent magnetic
moment p = eh/2Mc. There are many “proofs” of the Belinfante con-
jecture in the literature. It is known, however, that once interactions are
introduced, there is no renormalizable field theory for massive particles with
spin greater than 1/2. Therefore, those “proofs” are based on a special ver-
sion of interacting theories, which has no special significance if the theory is
non-renormalizable. Quite often, additional ingredients must be introduced
to form a physically sensible theory. For example, in the standard model,
the TW-boson has a magnetic moment puw = eh/Me, consistent with the
above low-energy theorem.

Let us now consider the dispersion relation for the J = 1 amplitude,

2 [ Imfi(v')
=— dw' =———= .
hle) = 2o [ s ©)
Using the optical theorem, one has
W * 1 01 (wl)
filw) = 22 |, W02 w2 (7)

Substituting the low-energy expansion f; into Eq. (7), the first term yields
the DHG sum rule, now extended to a target of any spin S,

o~ 1 [ oW
45202~ onz J, T ®
where o1 = [3/S(S +1)(2S +1)]>_,, MmsOms.

3. GDH sum rule for the nucleon and deuteron

How is the low-energy theorem for the spin-1/2 nucleon reproduced in effec-
tive field theory? The amplitude of interest is of O(p?®) in power counting
in chiral perturbation theory. There is a spin-dependent magnetic photon
coupling at order O(p?), which has an interaction vertex

2(Z + k)
2m
where k is the photon momentum, and Z is the charge. There is also a

seagull interaction coming from the spin-orbit type of relativistic corrections
at O(p*),

Ntg. (kx &N, (9)

62

27+ 26)N1G - (A x E)N | (10)
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where E is the electric field. The low-energy theorem is reproduced by the
Feynman diagrams shown in Fig. 1

- W

Figure 1. Feynman diagrams for the spin-dependent nucleon Compton scattering, which
reproduce the low-energy theorem.

Consider the nucleon DHG sum rule in the large N, limit. The isoscalar
part of the left-hand side is proportional to x%/M?, which scales like N2.
On the right-hand side, the only contribution which scales like N? comes
from the delta resonance. Therefore, the isoscalar part of the DHG sum
rule is entirely saturated by the photoproduction of the A resonance in the
large N, limit 3.

The low-energy theorem for the deuteron is slightly more involved. First
of all, there is the contribution from individual nucleons, as shown in Fig.
2a. The contribution from the interference in Fig. 2b is crucial to un-
derstanding the small anomalous magnetic moment of the deuteron. The
spin-orbit type relativistic corrections is needed to obtain the correct low-
energy theorem.

(a) (b) ;
(c)

Figure 2. Feynman diagrams for spin-dependent Compton scattering on the deuteron.

The deuteron has a magnetic moment 0.8574uy. A point-like deuteron
would have a magnetic moment close to pux. Therefore, the anomalous
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part is 0.143un, which contributes to the DHG integral I = 0.65ub. On
the other hand, for a loosely-bound deuteron, its magnetic moment is

tp + pin, = 0.880unN . (11)

Therefore the small anomalous magnetic moment does not reflect that the
deuteron is close to a point-like particle. Rather it reflects a delicate can-
cellation of the physical effects at different scales, accurate to 0.1 to 0.2%!

How is the deuteron’s DHG sum rule saturated? Arenhével has made
an estimate of various contributions to the integral up to 900 MeV for
photodisintegration and 1.5 GeV for meson production 4. According to
him, the photodisintegration v + d — p 4+ n contribution is about —383ub;
the coherent pion production y+d — d+m about 99ub; the quasielastic pion
production contribution about 200ub; the two-pion production about 82ub,
and the eta production about —12ub. The total sum is about —13.7ub.
Although this is still more than an order-of-magnitude larger than the left-
hand side, the strong cancellation is manifest in this estimate.

4. Nucleon Compton scattering and polarizabilities

Real Compton scattering on the nucleon can be described by nucleon polar-
izabilities, such as the electric polarizability «, the magnetic polarizability
B, and various spin polarizabilities ;. Besides direct extractions of these
polarizabilities from Compton cross sections, they can also be determined
from photoabsorption data through dispersive sum rules. Sometimes the
latter is the only way to obtain these quantities.

What can we learn about the nucleon physics from the polarizabilities?
The nucleon structure in the low-energy processes is dominated by chiral
dynamics. Indeed, because of the small pion mass, the pion cloud physics
is separated from the physics at the hadron mass scale. One can calculate
the non-analytic dependence on the pion mass. Moreover, the A resonance
plays an important role, from which, one can learn some important features
of the large N, expansion.

The electric polarizability o measures the deformation of the nucleon in
the presence of a static external field. It is related to the dipole excitation
strength,

|(n|d-10)" nld 0)?
0 = 200, 0 KDL (12)
n#0 - EO

The dominant contribution comes from the p-wave pion-nucleon scattering
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states,

5aemgi

:7:1 174f4- ]-
a 6(4n f,) 2. 3.6 x 107 % fm (13)

Other theoretical calculations can be found in a recent review article °.
The forward spin polarizability can be determined by GDH-like disper-
sion relation: 7y = —1.01 £ 0.08 £ 0.10 x 10~* fm*. Tt goes like 1/m?2 at
leading order 5. The complete order 1/m, contribution has been obtained
by Kao et al., and others 7. Partial contribution at O(Inm,) has been
obtained by Bernard et. al 8. There is a question of convergence of the

perturbation expansion. In fact, the first few orders appear as
v’ =4.5—-8.3+ 6.0 (partial) + O (A contribtuion) . (14)

There is a large contribution from the A resonance which is analytic in pion
mass. A similar problem exists for the magnetic polarizability 5.

5. Deuteron photoproduction and polarizabilities

Denote the deuteron photoproduction cross section as (™) when the pho-
ton has helicity +1 and the deuteron target has polarization m. The scalar,
tensor, and vector polarizabilities of the deuteron are related to these cross
sections through the following dispersive sum rules,

1 s 0'(1) + O'(O) + 0'(71)
apo + Bumo = 6?/0 duw' e ; (15)
1 o0 0'(1) + 0'(_1) — 20‘(0)
= — dw' 1
apz +Bumz2 = 3 /0 w e ; (16)
1 o0 (1) — 5(=1)
B N AL )

872 J, RE
where 7y is a sum of four different spin polarizabilities, related to Faraday
rotation and optical activity.

The above polarizabilities can in principle be determined through elastic
scattering processes. One way is to scatter the deuteron off a heavy atom
in a static Coulomb field. For example, Rodning et al. determined the
scalar electric polarizability this way . The second is direct Compton
scattering. However, because the deuteron binding energy is about 2 MeV,
one needs a beam of photons with energy much less than that to measure
the polarizabilities. Finally, one can use the above dispersive sum rules
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by integrating over the relevant photoproduction data, just as in the case
of the DHG sum rule. Because of the energy weighting, the integral is
dominated by the coherent deuteron physics, and one expects much better
convergence here.

To understand the size of the deuteron polarizabilities, one needs a the-
ory to describe the deuteron structure physics. One such theory developed
in the past several years is a nuclear effective theory by Kaplan, Savage,
and Wise 0. In this theory, there are low-energy scales (generically de-
noted as @) determined by the binding energy of the deuteron. Because
we are dealing with a nonrelativistic system, the internal momentum scale
v = vBM is actually large. The high-energy scales involved (denoted as
A) include the pion mass, the parameters involved in the nucleon-nucleon
interactions such as the inverse of the effective range parameter r, and of
course, the nucleon mass. In an effective field theory expansion, the two
scales are assumed to be well separated, i.e., @/A < 1. This is certainly
true in the limit of loose binding. The physical observables then depend
mostly on the long-range tail of the deuteron wave function, and can be
calculated as Taylor expansions in powers of @/A.

Let us consider the scalar polarizability agg. This is a term in the
Compton amplitude proportional to w?. Since the Compton amplitude
itself is of order 1, the leading term in apg goes like aemM/y* by power
counting. This quantity has been calculated up to N3LO !

Qo My 292 Mpyvy?

Zg |1
300 23z T T

apo = DP ) (18)
where Z; = 1/(1 — ypq) = 1.69 is the deuteron wave function renormal-
ization; pg = 1.764 fm; D, = —1.51 fm3. Numerically ago = 0.6339 fm3.
Modern potential model calculation yields 0.6328 + 0.0017 fm?.

The deuteron has a small admixture of D wave which comes from one
pion exchange in the nucleon-nucleon force. In effective field theory, this
can be generated through a local interaction coupling the two channels.
The interaction strength can be determined by D/S ratio ns¢ = 0.0254.
The D-wave supports a tensor polarizability, which appears as a coefficient
of an w? term in the tensor amplitude. Therefore, it has the same leading
power as app. A straightforward calculation yields 2

3\/§aemM
32v4
Finally, let us consider the vector polarizability « which is the coefficient

of the w? (more precisely ¢>w) term in the spin-dependent Compton ampli-

aps = — ZaNsd = —2.Tnsq fm® . (19)
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tude. Thus the vector polarizability has the same @ counting as the scalar
one. However, since the intermediate state must be an isovector state, there
is a large enhancement from the isovector magnetic moment. The leading
order result is 12

(1)\2 1 1

0 S0 ML (1 M)
Qem (4pM) — 1)

128~4 ’
where A is the scattering amplitude. The numerical value of v at this order
is 3.762 fm*. The NLO correction is small after taking into account the
wave function renormalization Z.

(20)

6. Virtual Compton scattering on the nucleon and related
sum rules

How do we extend the above sum rules away from the real photon point,
Q? = 0?7 The starting point is the virtual-photon forward scattering am-
plitude. We denote the incoming and outgoing photon polarization indices
a and B, space-like virtual mass Q% and energy v, the nucleon momentum
P* and helicity h. The forward Compton tensor is defined as

T*%(h) =i / e Edte(Ph|TJ(€)JP(0)|Ph) . (21)

We are mainly interested in the forward scattering amplitude S;(Q?,v)
which is the difference between scattering of a photon of helicity +1 off the
nucleon target with helicities +1/2. From general principles (causality and
unitarity) as well as the assumption about the large-v behavior of S; (Q?, v),
we can write down a dispersion relation,

Simey=1 [ LA (22)

Q2/2M ve—v
where G (v, Q?) is the spin-dependent nucleon structure function entering
the deep-inelastic scattering cross section.

While G (v, Q?) is difficult to calculate, it can be measured experimen-
tally. On the other hand, S (v, @?) is hard to measure experimentally, but
it can be calculated theoretically. The dispersion relation provides the miss-
ing link to test theoretical ideas against experimental data. If expanding
at small v,

S, Q)= Y vSQY (23)

n=0,2,4,...
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where Sf") (Q?) may be regarded as Q*>-dependent forward polarizabilities.

The above dispersion relation becomes '3,

S = 4/ %Gl(v, Q%) (n=0,2,4,..) (24)
Q*/2M V

Let us consider the n = 0 case. As Q% — 0, the low energy theorem,
51(0,0) — 2, where S; = S; — S¢! with the elastic intermediate state
removed and k is the anomalous magnetic moment of the nucleon. At
small but finite Q?, chiral perturbation theory provides a sound theoretical
method to calculate corrections to the low-energy theorem. Kao, Osborne
and I have done such a calculation to fourth order in chiral perturbation
theory, and we found '*

2

2
S.(0.0%) = _RE L 94 4 2(1 3NO? + - .-
1( 7Q ) M2 + 12(47rf7r)2Mm7r( + 3K’V + ( +3I€S)T )Q +

~ —k2 4+ 24Q%*(GeV?) + - -+ . (25)

The result shows a rapid Q2-dependence near Q> ~ 0 and expansion in
Q? may be convergent for ) < 0.1 GeV2. The chiral perturbation theory
prediction for S;(0,Q?) combining with the dispersion relation yields the
generalized DHG sum rule which can be tested at Jefferson Lab 5.

As Q? — oo, quarks inside the nucleon appear to be free and the single
quark scattering process dominates the Compton amplitude. In particular,
the current algebra method, originally motivated from the free quark model,
can be applied. Indeed, Bjorken found '8

51Q*0) g5 S eHPALIP) (20)

When plugged into the dispersion relation, the above result for the Compton
amplitude translates immediately into the Bjorken sum rule. How do we
extend this sum rule to large but finite Q2? Perturbative QCD introduces
two types of corrections. The first is the radiative corrections: gluons are
radiated and absorbed by active quarks, etc. The second type is the higher
twist corrections in which more than one parton from the target participate
in scattering. With these corrections, we modify Bjorken’s prediction for
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the Compton amplitude,
2 2 _ % Qs\? ) (A 98
025,(0,Q?) <1 = 3.58( ) ) (i + )

7 12 36
[eF) [eF) 2 9o
+ (1_0'33? ~0.55 (?) - ) 2
pa(Q”
+ 4222)+---, (27)

where «; is a strong interaction coupling constant evaluated at the scale
Q?; pa ~ (PS|pF™ ,1h|PS) ~ (0.4)> GeV? is a twist-four matrix element.
Since the scale that controls the twist expansion is on the order of 0.1 —
0.2 GeV?, we believe the pQCD prediction for S;(0,Q?) is good down to
Q? ~ 0.5 GeV2. Substituting this into the dispersion relation, we get
the generalized Bjorken sum rule. Since it is difficult to do an experiment
at Q2 = oo, it is the generalized Bjorken sum rule at finite Q2 that is
commonly tested experimentally. In the region Q> ~ 2 — 10 GeV?, the
generalized Bjorken sum rule has been checked at the level of 10% accuracy.
At moderate 2, the resonance contribution must be averaged to the parton
contribution because of the small scale of u4. This is what’s called parton-
hadron duality in the literature.
The best way to see the connection of the low and high Q? generalized
sum rules is to consider the Q? dependence of
2
rQ) = %50,
_ Q_2 IS oy, 1 2 2 2
=3 1(0,Q%) + 2F1(Q )(F1(Q7) + F2(Q7)) , (28)
where the second term is the elastic contribution which dominates at low
Q?13. T(Q?) starts with 1(0) + x/2 from the proton (neutron) at Q% = 0
and rapidly decreases to about 0.2 at Q2=0.7 GeV? and remains essentially
flat as Q? — oo. [In this definition, the DHG sum rule result affects only
the slope of I'(Q?) at the origin.] There is a nice and simple physical
interpretation for this Q? variation. The forward Compton amplitude is an
amplitude for photon scattering off a nucleon target and remaining in the
forward direction. This is very much like a diffraction process and I'(Q?) is
the “brightness” of the diffraction center. For low Q2 photons, scattering
from the different parts of the proton is coherent, and the scattered photons
produce a large diffraction peak at the center. As Q? becomes larger, the
photon sees some large scale fluctuations in the nucleon; the scattering
becomes less coherent. The large scale fluctuation can largely be understood
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in terms of the dissociation of the nucleon into virtual hadrons. When
Q? > 0.5 GeV?, the photons see parton fluctuations at the scale of 1/Q.
As > — oo, photons see individual quarks inside the nucleon and the
scattering is completely incoherent. The diffraction peak is just the sum
of diffractions from individual quarks. In short, the 2 variation of the
sum rules just reflects the change of the diffraction amplitude of the virtual
photons as the virtual mass is varied.

There has been interesting progress recently in calculating the @Q?2-
dependence of the forward spin polarizability v9 and d;7 and the dy matrix
t 1617 T will not discuss them here in detail but refer you to the
relevant talks at this conference.

elemen

Acknowledgments

This work was supported by the U. S. Department of Energy via grant
DE-FG02-93ER-4076.

References

1. S.D. Drell and A. C. Hearn, Phys. Rev. Lett. 16, 908 (1966); S. B. Gerasimov,
Sov. J. Nucl. Phys. 2, 430 (1966).

2. A. Pais, Phys. Rev. Lett. 19, 544 (1967); S. Weinberg, Lectures on Elementary

Particles and Quantum Field Theory, Brandeis Lecture in Quantum Field

Theory, Vol. 1, ed. S. Deser, M. Grisaru, and H. Pendleton (The MIT Press,

1970).

T. Cohen and X. Ji, Phys. Lett. B474, 251 (2000).

H. Arenhovel, see these proceedings.

D. Drechsel, B. Pasquini, M. Vanderhaeghen, Phys. Rept. 378, 99 (2003).

V. Bernard, N. Kaiser, J. Kambor, and Ulf-G. Meissner, Nucl. Phys. B388,

315 (1992).

7. X. Ji, C. W. Kao, and J. Osborne, Phys. Rev. D 61, 074003 (2000); K. B. V.
Kumar, J. A. McGovern, and M. C. Birse, Phys. Lett. B479, 167 (2000); G.
Gellas, T. R. Hemmert, and Ulf-G. Meissner, Phys. Rev. Lett. 85, 14 (2000).

8. V. Bernard, T. R. Hemmert, and Ulf-G. Meissner, Phys. Rev. D 67, 016001
(2003).

9. N. L. Rodning, L. D. Knutson, W. G. Lynch, M. B. Tsang, Phys. Rev. Lett.
49, 909 (1982).

10. D. B. Kaplan, M. J. Savage, and M. B. Wise, Phys. Lett. B424, 390 (1998);
Nucl. Phys. B534, 329 (1998).

11. J. W. Chen, G. Rupak, and M. J. Savage, Nucl. Phys. A653, 386 (1999); D.
R. Phillips, G. Rupak, and M. J. Savage, Phys. Lett. B473, 209 (2000).

12. X. Ji and Y. C. Li, Phys. Lett. B591, 76 (2004).

13. X. Ji and J. Osborne, J. Phys. G 27, 27 (2001).

o ot W



November 4, 2004 12:17 Proceedings Trim Size: 9in x 6in ji

12

14. X. Ji, C. W. Kao, and J. Osborne, Phys. Lett. B472, 1 (2000); V. Bernard,
T. R. Hemmert, and Ulf.-G. Meissner, Phys. Lett. B545, 105 (2002).

15. M. Amarian et al., Phys. Rev. Lett. 89, 242301 (2002); M. Amarian et al.,
Phys. Rev. Lett. 92, 022301 (2004); M. Amarian et al., hep-ph/0406005; A.
Deur et. al. hep-ex/0407007.

16. C. W. Kao, T. Spitzenberg, M. Vanderhaeghen, Phys. Rev. D 67, 016001
(2003); C. W. Kao, D. Drechsel, S. Kamalov, M. Vanderhaeghen, Phys. Rev.
D, 69, 056004 (2004).

17. V. Bernard, T. R. Hemmert, and Ulf-G. Meissner, Phys. Lett. B545, 105
(2002).

18. J. D. Bjorken, Phys. Rev. 148, 1467 (1966).



