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Abstract

The coherent photoproduction of pseudoscalar mesons is studied in a relativistic im-
pulse approximation approach. We show—on the basis of very general arguments—that
the coherent reaction from J™ = 0 nuclei is characterized by a single Lorentz invariant
form factor. We evaluate this nuclear form factor without recourse to a nonrelativistic
reduction. We show that the nuclear structure information is fully contained in the
ground-state tensor density. The tensor density—which is essentially unconstrained by
experiment—is evaluated in a mean-field approximation to the Walecka model.

The coherent photoproduction of pseudoscalar mesons (such as 7%, 7, and ') offers a
unique opportunity for the investigation of nucleon-resonance formation and propagation
through the nuclear medium. The advent of more powerful and sophisticated machines—
such as TINAF and MAMI—will challenge, now more than ever, our theoretical under-
standing of this fundamental process. The coherent reaction offers numerous advantages.
Because the nucleus remains in its ground state, all nucleons participate coherently in the
reaction. Theoretically, the coherent process acts as a spin-isospin filter by selecting a par-
ticular (scalar-isoscalar) component of the elementary photoproduction amplitude. In this
way the reaction can be used to discriminate between various theoretical models that pro-
vide an equally good description of the elementary process. Moreover, all nuclear structure
information is contained in, at most, a few ground-state densities. Indeed, nonrelativistic
plane-wave-impulse-approximation analyses suggest that the photonuclear amplitude is di-
rectly proportional to the isoscalar (or matter) density [1, 2, 3, 4, 5]. Finally, because the
coherent process is sensitive to the whole nuclear volume, one can place stringent limits on
the form of the meson-nucleus optical potential.

Most theoretical analyses of the elementary process start with a model-independent
parameterization of the photoproduction amplitude in terms of four Lorentz- and gauge-
invariant amplitudes [6]. It is then customary to evaluate this amplitude between on-shell
nucleon spinors, thereby leading to the well known CGLN form for the photoproduction
operator in terms of Pauli—rather than Dirac—spinors [6]. For the calculation of the pho-
tonuclear reaction one usually adopts the impulse approximation [1, 2, 3, 4, 5]; one assumes
that the elementary {on-shell) amplitude is not modified in the many-body environment. For
closed-shell (spin-saturated) nuclei the photonuclear process then becomes, in the plane-wave
limit, a simple product of the elementary scalar-isoscalar amplitude times the Fourier trans-
form of the ground-state matter density. One then improves on the plane-wave description
by incorporating distortions into the propagation of the outgoing meson. In this contribution
we report on a similar theoretical program—without recourse to a nonrelativistic reduction
of the elementary amplitude. The main difference relative to the standard nonrelativistic
approach stems from the fact that in the present framework the lower components of the



nucleon spinors will be determined dynamically, rather than from the free-space relation.
The nuclear structure information will be contained in a few ground-state densities that will
be computed using a mean-field approximation to the Walecka model [7].

The most general form for the amplitude for the coherent photoproduction reaction from
(J™=0%;T=0) nuclei can be written in the following way:

(AQ); meson (T, | A(p); 9(B) = e+ Pe, b, upsn Fo(s, 1) (1)

Here €, is the polarization vector of the photon, p(p' = p+k —¢q) is the four momentum
of the initial(final) nucleus and e#*®# is the relativistic Levi-Civita symbol. Note that all
the dynamical information about the coherent process is contained in a single Lorentz-
invariant form factor Fy(s,t), which depends on the Mandelstam variables s = (k + p)? and
t = (k — g)%. One can now carry out the appropriate algebraic manipulations to obtain the
following—model-independent—form for the coherent photoproduction cross section in the
center-of-momentum (c.m.) frame:
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Here My is the mass of the target nucleus, 0., is the scattering angle and W is the total
energy in the c.m.-frame, while k., and g.m. are the three-momentum of the photon and
meson, respectively.

We now proceed to compute the Lorentz invariant form factor in a relativistic impulse
approximation. For the elementary yN — 7N amplitude we use a model-independent
parameterization given in terms of four Lorentz- and gauge-invariant amplitudes [6]. Here,
we cast the elementary amplitude so that the parity and Lorentz transformation properties
of the various bilinear covariants become manifest:

T(yN = 1N) = (FfP0as + Fpys + Fivas) - (3)

Note that tensor, pseudoscalar, and axial-vector amplitudes have been introduced; these
are written in terms of the four elementary amplitudes for the photoproduction process [8].
Moreover, for this particular form of the elementary amplitude no scalar nor vector invari-
ants appear. For closed-shell nuclei an enormous simplification ensues, as a result of the
pseudoscalar and axial-vector ground-state densities being identically zero. This implies
that the coherent reaction is sensitive to only one component (the so-called A; amplitude) of
the elementary amplitude. Further, all the nuclear-structure information is contained in the
ground-state tensor density [7]. This is in contrast to nonrelativistic approaches in which the
coherent amplitude is proportional to the conserved vector density (1, 2, 3, 4, 5]. Thus, in a
relativistic plane-wave impulse approximation, the Lorentz-invariant form factor acquires a
remarkable simple form:

57 (s,t) = 141(5,8)p,(Q)/Q . (4)

Note that § represents the effective (or optimal) value of the Mandelstam variable s at
which the elementary amplitude should be evaluated [2] and Q = |k, — Qe | = V1.



The ground-state tensor density is evaluated in a mean-field approximation to the Walecka
model. For spin-saturated nuclei only three ground-state densities do not vanish [7]; these
are the scalar and timelike-vector densities—used to compute the mean-field ground state—
and the tensor density. For the coherent reaction it is only the Fourier transform of the
latter that is needed. The tensor density is linear in the lower (or small) component of the
single-particle wave function. Thus, the tensor density is interesting because it is sensitive
to the relativistic components of the wave function. Indeed, the mean-field approximation
to the Walecka model is characterized by the existence of large Lorentz scalar and vector
potentials that are responsible for a substantial enhancement of the lower components of the
single-particle wave functions.

We illustrate our formalism by calculating the coherent photoproduction of 7 mesons
from *°Ca. The elementary n-production amplitude used here is constructed in an effec-
tive Lagrangian approach as detailed in references [9, 10]. As is well known, the S;;(1535)
resonance clearly dominates the elementary reaction. However, when embedded into the
coherent reaction from closed-shell nuclei, intermediate Si;(1535) excitation is suppressed
due to spin-isospin considerations. Indeed, it is just this suppression of the dominant s-wave
term—allowing enhancement of the non-dominant contributions—which initially provoked
interest in this coherent reaction [3]. Finally, distortion effects are incorporated through an
n-nucleus optical potential that is computed in a simple “tp” approximation [3]. In Fig. 1
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Figure 1: The coherent 7-photoproduction cross section from *°Ca at E, = 625 MeV.

we display the coherent n-photoproduction cross section from “°Ca at a photon laboratory
energy of E, = 625 MeV. The dotted line represents a plane-wave calculation in which the
lower components of the single-particle wave functions were determined from the free-space
relation; this represents our best attempt at reproducing standard nonrelativistic calcula-
tions. Indeed, in this “nonrelativistic” limit there is a simple relation between the tensor



and vector densities of closed-shell nuclei:

Pl = 50, (@), )

where My is the free nucleon mass and p,,(Q) is the Fourier transform of the ground-state
vector density. This picture, however, changes dramatically once the lower components of
the wave functions are determined dynamically, rather than from the free-space relation. In
the particular case of the Walecka model the lower components are enhanced substantially
in the medium as a consequence of the large scalar and vector mean-field potentials. Since
the coherent cross section becomes dominated by the tensor density, we obtain a relativistic
plane-wave cross section (dot-dashed line) that is, at least, twice as large as its nonrelativistic
counterpart. Note that the distortions effects are relatively small at this low energy for both
calculations.

To conclude, we address several possible complications to the simple picture presented
here. First, in the impulse approximation one assumes that the elementary amplitude—
which only contains on-shell information—can be used without modification in the nuclear
medium. However, the formation, propagation, and decay of intermediate resonances—an
important component of all microscopic models—are likely to be modified in the many-body
environment. Thus, it is important to have a reliable microscopic model in which to test
the validity of the impulse approximation. A microscopic model can also provide guidance
on how to take the elementary amplitude off-shell. The form of the elementary amplitude
used here, although standard, is not unique. Many other choices—all of them equivalent
on shell—are possible. While all these choices are guaranteed to give identical results for
on-shell observables, they can yield vastly different predictions off-shell. Without theoretical
guidance, there is no hope of resolving the off-shell ambiguity. Indeed, much work remains to
be done—on both theoretical and experimental fronts—before a clear picture of the coherent
process can emerge.
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