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Talk outlineTalk outline

 Hall A polarized 3He target: capabilities and limitations of in situ pumping
 Xemed’s large volume helium polarizer and associated technologies
 Data
 Optimization of an ex situ JLab polarized 3He target
 Predicted performance
 Outlook
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Hall A polarized Hall A polarized 33He targetHe target

 In situ spin exchange optical pumping (SEOP)
 Pumping cell and target cell are combined
 Helium diffusively coupled from pumping to target cell

 Best in world performance!
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Best in world performanceBest in world performance

 Luminosity L assumes 15 µA beam, 40 cm target at 10 amagat

Target thickness ~1.07E+22

Electrons in beam ~0.94E+14

Luminosity ~1.0E36
 Polarization calculations assume cell “Eva”

bench polarization 53%

beam-on polarization 47% (hybrid pumped)
 Figure of merit p2L=0.22E+36
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Recent improvementsRecent improvements

 Performance improvements
 Hybrid pumping
 Pol.from ~40% to ~50% 

gives 60% improvement!

 Operational improvements

transverse coils, laser path

 3He target is a dynamic system, 
its infrastructure is continually 
upgraded, high level of user 
involvement
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Intrinsic limitationsIntrinsic limitations

 Pumping cell pressure (optimal)
 Target cell pressure (not optimal, limits luminosity)
 Pumping cell material (optimal)
 Target cell material (not optimal, limits luminosity)
 Target cell geometry (optimal)
 Pumping cell geometry (not optimal, must fit in beam line, uniform field)

Linkage between pumping cell and target cell limits performance
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Spin-up vs spin-downSpin-up vs spin-down
 At 225°C and K:Rb vapor ratio 17, spin-up time = 7.1 hours

(3He pump cell density 7.6 amagat and pump cell volume ~ 124 
cm3 yields 6 millimoles/hour) 

 Loss of polarization depends on four factors:

Dipole-dipole = 1/770 hours  * pressure

Cold cell wall relaxation rate ~ 1/33 hours

Warm cell relaxation rate correction: X ~ 0.3

Beam induced depolarization ~ beam current /622 hours 
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Beam depolarization (closer look)Beam depolarization (closer look)

 Loss rate of (622 hours)-1 per microamp = (41 hours)-1 for 15 microamps
 Scales linearly with target cell length, inversely with affected volume
 Causes ~ 6% drop in polarization
 Limits figure of merit p2L at high luminosity
 In practice beam current is presently limited by target cell material

A high luminosity target will have losses dominated by beam 
depolarization, requiring very high production of polarized 3He
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How to increase How to increase 33He polarization rate?He polarization rate?

 Increase pump cell pressure (increase number of atoms, factor x2)
 Increase pump cell temperature (increase spin-up rate, factor x2)
 Increase pump cell volume (big opportunity here, factor ~70)

End of introduction



  March 7, 2008March 7, 2008   Xemed LLCXemed LLC 1010

Xemed’s large volume Xemed’s large volume 33He polarizationHe polarization

 Cell dimension (4” dia x 48” length) = 8.3 Liters
 Theoretical simulation

 Optimal temperature
 Optimal alkali mix
 Required laser power
 Optimal pressure

 Implementation
 Pressure vessel
 Aluminosilicate cell
 Heat exchanger
 Laser
 Magnetic subsystems

 Data
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Theoretical simulation-temperatureTheoretical simulation-temperature

K/Rb ratio, polarization, and spin-up rate as a function of laser power for a 
broad 4nm laser into a 4”x48” diameter cell with X-factor of 0.3, 
temperature dependent wall relaxation (assume 37 hr to 18 hr) and cell 
temperature 

Selected K:Rb metal ratio of 10, 220°-250 °C, laser power 1.5 kW, for the 
first prototype, anticipating 4 hour spin-up towards 60% polarization.
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Theoretical simulation-pressureTheoretical simulation-pressure

 Polarization vs laser power for different cell pressure show optimum at 4 
bar, but pressure independence at high laser power.

 We suggest 15 amaget for nuclear physics e- beam target applications
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Design of a large-scale Design of a large-scale 
polarizer of polarizer of 33HeHe

 Equalize pressure inside and outside glass 
optical pumping cell by surrounding the 
cell inside with a pressure vessel

 Cell temperature is stabilized by a flowing 
silicone oil heat exchanger

 Heat is delivered to cell initially to establish 
alkali vapor density; removed from cell 
after 1.5kW laser is turned on
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Aluminosilicate cell and heat exchangerAluminosilicate cell and heat exchanger

 Cell volume 8300cc (compare 
with “Eva” 125cc)

 Cell body of 4” Corning 1720 
with 1723 windows

 Two-zone copper jacket with 
two aluminum end-heaters

 Closed-loop silicone oil thermal 
fluid capable of ~300°C
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Diode laser arraysDiode laser arrays
 During early 1988-1992 infrared 795 nm 

optical pumping required solid state titanium 
sapphire lasers pumped by argon-ion lasers 
(approximately 6W for $120k = $20,000/W)

 Inexpensive diode arrays became available 
around 1995, now achieving high-power at 
low cost (40W for $40k = $1000/W)

 Broad spectral line ~4 nm exceeds 
absorption width, not all light falls within 
useful range

 Although convenient, fiber coupling mixes 
polarization states and spreads beam

 Repolarizing results in two wide beams at 
different angles
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Scalable laser powerScalable laser power

 Xemed uses laser bar output 
directly; incremental cost $16/W

 Simple low-cost methods for laser 
transport

 Beam spread (etendue) reduced to 
6 milliradians along both angles

 We plan for three 12 bar stacks, 
3.6kW (square) 2.8kW (circle) 
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Magnetic environment and NMRMagnetic environment and NMR

 Solenoid 38 cm diameter x 133 cm 
with two rings each end surrounded 
by soft iron and capped with mu-
metal

 Flush mounted spiral NMR coil 
calibrated with identical water-filled 
system mock-up. 

 Field uniformity 2x10-4 within NMR 
coil
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NMR polarization NMR polarization 
measurementmeasurement

 Signal strength computed 
using Lorentzian fit.

 Water signals with 64 
averages

 3He polarization computed 
from ratio of signal strengths. 

 Corrections for helium number 
density, flip angle, and 
changes in coil Q. 

 Remaining uncertainty ~8%
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Test dataTest data

 High-pressure tests

Confirmed that vessel 
pressure consistently 
tracks cell pressure

 Low-pressure tests

Confirmed polarization 
increases as predicted 
with half laser power

 3.1% per hour spin-up at 
200°C

 next tests: higher temperature, 
higher pressure, higher laser 
power
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Target loopTarget loop

 Compress polarized 3He and deliver to 40cm long titanium target cell
 Commercial compressors achieve >3500 psi (238 bar)
 Requires compression ratio ~16, immersion in magnetic field, rubidium-

free gas leaving polarizer, entrance and exit, <3% polarization loss

15 Bar 238 Bar

Recirculating at 1.0 scfm
1 cm x 40 cm titanium target cell

Requires two ports, 
entrance and exit

Getter purifier? RGA?
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Compressor considerationsCompressor considerations

 Multistage compressor with intercooler reduces temperature rise
 Motor must generate no spurious magnetic field or EMI
 Compressor materials must have little or no residual magnetism 
 Gas contact surfaces must have low relaxation rates
 3He flow path requires immersion in magnetic field
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Piston compressorPiston compressor

 Reciprocating pistons driven 
by an eccentric crankshaft

 Inherently compact design
 Modern designs use oil free 

piston rings
 Minimal blow-by and 

contamination
 RIX Industries (Benicia CA) is 

experienced in fabricating 
pumps with suitable non-
magnetic materials
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Diaphragm pumpDiaphragm pump

 Compression is accomplished by displacing an 
elastic diaphragm

 System is inherently sealed
 Hydraulic plumbing allows remote drive motor 
 Pressure Products Industries (Warminster,PA) 

is a potential partner

Intake/Exhaust Valves

Diaphragm

Hydraulic 
Fluid

Reciprocating 
Piston
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Alkali-vapor-free deliveryAlkali-vapor-free delivery
 Deposition of laser energy induces radial buoyancy gradients 

that induce circulation.
 In Vertical Configuration, flow rises in the center and falls 

along the walls.
 Dimensional arguments (and modeling) show that flow is 

turbulent.
 Modeling with FLUENTTM solves momentum, energy, and 

transport of alkali.
 Some Important Results

 Vertical velocities are very high  (+/- ~.5 m/s)
 Vertical two-zone flow is unstable.
 Tilting polarizer by 10o or more creates a stable 

asymmetric flow that rises along the upper side and falls 
along the lower side.

 Tilted configuration produces an alkali-depleted zone in 
cold region  that will allow continuous operation.
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Temperature 

V~-.7 m/s

T=573 K

V~.7 m/s

XAlkali=10-6

XAlkali=10-4

Alkali Mass Fraction 
Velocity Vectors

Result for 2 meter Polarizer, 600 W absorption, tilted 30o from vertical

T=350K
Cold Section

Hot Section

Shear Layer

Corner Vortex

•Tilted Buoyant flow induces asymmetric temperature, velocity and alkali distributions.
•Shear layer promotes heat and mass transfer between up- and downward streams.
•Circulating flow creates alkali-depleted cold region.
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Predicted performancePredicted performance

 Depolarization rate 30% higher: Current100 µA (x7) through 40cm scaled 
up by density (x24), reduced by increased total 3He content (÷ 130)

 Spin-up rate 75%  higher: Polarizer operation at higher temperature

AND…
 Beam depolarization time constant in target cell only is 6 minutes
 Compressor flow 1.0 SCFM yields 3He target residence time of 23 sec
 3He polarization difference at gas entrance and gas exit is 6% (rel.)

 Expected in-beam 3He polarization at gas entrance is 59% exit 55%
 Luminosity is 1.6e+38 with 100µA on 40cm at 3500psi
 Figure of merit p2L=0.55e+38 improvement over existing target x200
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OutlookOutlook

 Development is currently shared between DOE and Xemed reserves
 NIH announced last week a commitment of $750k Phase 2 SBIR, first 

allotment expected in May 2008
 An SBIR Phase 1 proposal to DOE for $100k, if approved, would allow 

polarization tests of two aluminosilicate vessels and engineering. If 
Phase 2 is awarded in January 2010 we will procure and test 
compressors, completion of R&D in January 2012

BUT…we could complete the project sooner with earlier funding

 We would welcome Jefferson Lab involvement in specifying and 
procuring a suitable compressor sooner than January 2010

 We would also welcome a purchase order for a helium polarizer!
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