QCD on the lattice - an introduction
Lecture 4

Mike Peardon

School of Mathematics, Trinity College Dublin
Currently on sabbatical leave at JLab

HUGS 2008 - Jefferson Lab, June 5, 2008

Mike Peardon (TCD) QCD on the lattice

HUGS 2008

1/15



Hadron spectroscopy (1)

e Masses of (colourless) QCD bound-states can be computed by
measuring two-point functions. The Euclidean two-point function is

C(t) = (0|®()®7(0)|0)

@ The time-dependence of the operator, ® is given by
(t) = ettde™1 5o

C(t) = (Ple”"|ol)

inserting a complete set of energy eigenstates gives

C(t) =) _(®le ™|k)(k|oT) = ZI k) |%e ke

k=0
o Then lim; . C(t) = Ze FEot
@ If the large-time exponential fall-off of the correlation function can be
observed, the energy of the state can be measured.
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Hadron spectroscopy (2)

@ The energies of excited states can be computed reliably too.

@ Tracking sub-leading exponential fall-off works sometimes but a more
efficient method is to use a matrix of correlators. With a set of N
operators {1, ®,, ...} (with the same quantum numbers), compute

all elements of
Cy(t) = (0|®;(1)1(0)/0)

@ Now solve the generalised eigenvalue problem
C(tl)v = )\C(to)v

for different tg and t7.

@ The method constructs an optimal linear combination to form a
ground-state, and then constructs a set of operators that are
orthogonal to it.

@ The second eigenvector can not have overlap with the ground-state at
large t, and will fall to the first excited energy.
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Hadron spectroscopy (3)

o Lattice practitioners like to show this in an “effective mass plot”.
The effective mass is

Meg(t) = *% log C(Ct(t)a)

and for times large enough such that C is dominated by the
ground-state, the effective mass should become independent of time;

“ ”
a “plateau”.
——————
16+ B
L o ground state ]
M - o 1% excited state
T4 *® 3 3 o Mexcited state| |

125 -

Teeeeni] } { e Radial (?) excitations of a

am

“static-light” meson.

0'856999@9@@@ §§%i
0.6 —

n n n n | n n n n 1
0 5 10
t/a

Mike Peardon (TCD) QCD on the lattice HUGS 2008 4/15




Spin on the lattice

o Eigenstates of the hamiltonian simultaneously form irreducible
representations of SO(3), the rotation group. Spin is a good quantum
number.

@ The lattice hamiltonian does not have SO(3) symmetry. It is
symmetric under the discrete sub-group of rotations of the cube,
Op. This group has 48 elements (once parity is included) and ten
irreducible representations.

@ The eigenstates of the lattice hamiltonian therefore have a good
“quantum letter”; A6, AyE E"€ T8 T,¢

@ Can we deduce the continuum spin of a state? With some caveats,
yes.

@ A pattern of degeneracies must be found and matched against the
representations of O} subduced from SO(3).

Mike Peardon (TCD) QCD on the lattice HUGS 2008 5/15



Spin on the lattice (2)

Example
The Yang-Mills glueball spectrum
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Creation operators: glueballs

@ To measure the correlation functions, we need to measure appropriate
creation operators on our ensemble.

@ The operators should be functions of the fields on a time-slice and
transform irreducibly according to an irrep of Oy, (as well as isospin,
charge conjugation etc.)

@ First example: the glueball. An appropriate operator would be a
gauge invariant function of the gluons alone: a closed loop trace.

@ Link smearing greatly improved ground-state overlap.

@ Apply smoothing filters to the links to extract just slowly varying
modes that then have better overlap with the lowest states.
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Creation operators: glueballs

@ What do operators that transform irreducibly under O, look like?
31 ) b3

e

@ Can make three operators by taking linear combinations of these
loops.

@ They form two irreducible representations (A and Eg).

Pps = Of] + P +  P3
o) = o, -

2

OF) = L(d1 + & — 203)
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Creation operators: glueballs

@ After running simulations at more than one lattice spacing, a

continuum extrapolation (a — 0) can be attempted.
@ The expansion of the action can suggest the appropriate choice of

extrapolating function.
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Isovector meson correlation functions

@ To create a meson, we need to build functions that couple to quarks.
@ In the simplest model, a meson would be created by a quark bilinear,
so the appropriate gauge invariant creation operator (for isospin
I = 1) would be

Dreson(t) = Y _ T(x, )T Ue(x, y; t)d(y, t)
X

where [ is some appropriate Dirac structure, and Ug a product of
(smeared) link variables.

@ As before, appropriate operators that transform irreducibly under the
lattice rotation group Oy are needed.

@ The complication here is that we do not have direct access to the
fermion integration variables in the computer.

o As with updating algorithms, the observation that the quark action is
bilinear saves us:

W2 (x, )DL (v, t)) = MU (x, try, )
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Isovector meson correlation functions (2)

@ Now the elementary component in the correlation function is

(o] (t)®"(0 )|0>
(Tr Mﬁl(;,O;g7 t)rle(x,y, t)M (y t;w, O)FTUC/(w./ z,0))

@ In general, this is still expensive to compute, since it requires knowing
many entries in the inverse of the fermion operator, M.

@ If the choice of operator at the source is restricted and no momentum
projection is made, only the bilinear at (eg) the origin on time-slice 0
is needed.

@ Quark propagation from a single site to any other site is computed by
solving My = e5"™ where ey are the 12 vectors that only has non-zero
components at the origin.

@ Getting away from this restriction by estimating “all-to-all”

propagators is an active research topic.
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Isovector meson correlation functions (3)

The most general operator.

A restricted correlation func-
tion accessible to one point-to-
all computation.
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Isoscalar meson correlation functions (1)

@ If we are interested in measuring isoscalar meson masses, extra
diagrams must be evaluated, since four-quark diagrams become
relevant. The Wick contraction yields extra terms, since

(Wijbrib) = Myt Mgt — My MG

o Now
(0]®)—o(t)P]_,(0)]0) =

(01®/=1(£)®]_(0)[0) — (0]Tr M~'T Ug(£)Tr M~'T Ug(0)[0)

A A
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Isoscalar meson correlation functions (1)
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Summary

@ Euclidean metric is useful for spectroscopy: isolate ground-state by
looking at large-time separation of correlation function

@ Analysis of matrices of correlation functions gives a robust way of
extracting excited states

@ Discretising space-time breaks the rotation symmetry. Lattice energy
eigenstates are irreducible representations of the discrete cubic point
group (or the little group at finite momentum).

@ Appropriate gauge invariant creation operators for many different
states can be defined and their correlation functions measured by
Monte Carlo.

@ For high precision, a continuum extrapolation of data is required.
@ Isovector mesons can be probed using point-to-all quark propagation

@ Isoscalar mesons need all-to-all methods.
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