The Nuclear Many-Body Problem
Lecture 3

» Shell structure in nuclei and the
phenomenological shell model approach to
nuclear structure

* Ab-initio approach to nuclear structure. Green's
function Monte-Carlo and No-Core Shell-Model.



Roadmap for Theory of Nuclei

Nuclear Landscape

Ab initio
Configuration Interaction
Density Functional Theory

stable nuclei
82

known nucler
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Main goal : To arrive at at
comprehensive description
of all nuclei and low-energy
reactions from the basic
interactions between the
constituent nucleons
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Shell structure in nuclei
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Neutron Mumber N
From W.D. Meyers and W.J. Swiatecki, Nucl. Phys. 81, 1 (1966).
Mass differences: Liquid drop — experiment. Minima at closed shells.

Neutron separation energies

[\/\/ Sn(N,Z)=BI(N,Z)-B(N-1,Z) ; :::n
N=Z=i
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Relatively expensive to remove a
neutron form a closed neutron
shell.

Bohr & Mottelson, Nuclear Structure.
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160

Shell structure cont’d

Nuclei with magic N

Relatively high-lying first 2+
exited state

Relatively low B(E2) transition
strength



1963 Nobel Prize in Physics

Maria Goeppert-Mayer J. Hans D. Jensen

“for their discoveries concerning nuclear shell structure”



Magic numbers
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Does shell structure change in neutron rich nuclei ?
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Oxygen isotope

FIG. 4 (color online). The experimental [25.26] (data points)
and theoretical [13—15] (lines) one- and two-neutron separation
energies for the N = 15-18 oxygen isotopes. The experimental
error 1s shown if it 1s larger than the symbol size.

Answer: Yes Indeed! Magic numbers fluctuate when one moves away from stability !!!

C.R. Hoffman PRL, 100, 152502 (2008)
Fridmann et al. Nature 435, 922 (2005)
(comment) Jansens, Nature 435, 207(2005)




How magic is the magic nucleus 68Ni ?

-low-lying 07z level

-higher energy of the 2% interpreted as evidence for magicity!
-small value of B(E2, 0%y -> 2%) , N
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Traditional shell model

Main idea: Use shell gaps as a truncation of the model
space.

* Nucleus (N,Z) = Double magic nucleus (N°, Z)
+ valence nucleons (N-N, Z-Z)

 Restrict excitation of valence nuclons to one oscillator
shell.

- Problematic: Intruder states and core excitations not
contained in model space. <

* Examples:

» pf-shell nuclei: “°Ca is doubly magic / 3
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 sd-shell nuclei: %O is doubly magic

« p-shell nuclei: “He is doubly magic \
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Shell model

Example: “°Ne

valence |\
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Shell-model Hamiltonian

Hamiltonian governs dynamics of valence nucleons; consists of one-body part
and two-body interaction:
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Single-particle energies

Two-body matrix elements (TBME
(SPE) Y (TBME)

coupled to good spin and isospin

Q: How does one determine the SPE and the TBME?



Empirical determination of SPE and TBME
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Determine SPE from neighbors
of closed shell nuclei having
mass

A = closed core +1

Determine TBME from nuclei
with mass

A = closed core + 2.

The results of such
Hamiltonians become
inaccurate for nuclei with a
larger number of valence
nucleons.

Thus: More theory needed.



Effective shell-model interaction: G-matrix

Start from a microscopic high-precision two-body potential
Include in-medium effects in G-matrix

Bethe-Goldstone equation

Pauli operator blocks
occupied states (core)

G=V+Vyh G

— \

microscopic bare interaction

Single-particle Hamiltonian
Formal solution: V4

G = 1vgy/(E=Hy)

Properties: in-medium effects renormalize hard core.

See, e.g. M. Hjorth-densen et al, Phys. Rep.261 (1995) 125.



Shell model calculations of Oxygen isotopes using v-lowk
and effective 2- and 3-body forces.
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From Maxim Kartamyshev



Shell-model results for neutron-rich pf-shell nuclei.

2 —
1.5 =
1 -
0.5
0
Subshell closure at neutron number N=32 S =-
in neutron rich pf-shell nuclei (enhanced g 5.
energy of excited 2+ state). : . e
+ v !
No new N=34 subshell. % 0.5 - i
|
2 - % : Ca
. ¢ I
S. N. Liddick et al, PRL 92 (2004) 072502. 3 - !
2 : , ."I .
- X !
o b

26 25 36 32 54 38 58 46
Neutron Number

FIG. 3. E(2l+) values versus neutron number for the even-even
»4Cr, 5, Ti, and ,,Ca 1sotopes. Experimental values are denoted
by dashes. Shell model calculations using the GXPF1 [14] and
KB3G [22] interactions are shown as filled circles and crosses,
respectively.



Solving the ab-initio quantum many-body problem

Exact or virtually exact solutions available for:
* A=3: solution of Faddeev equation.
* A=4:solvable via Faddeev-Yakubowski approach.

* Light nuclei (up to A=12 at present): Green’s function Monte Carlo (GFMC);
virtually exact; limited to certain forms of interactions.

Highly accurate approximate solutions available for:
* Light nuclei (up to A=16 at present): No-core Shell model (NCSM); truncation
In model space.

* Light and medium mass region (A=4, 16, 40 at present): Coupled cluster
theory; truncation in model space and correlations.



1990s: High precision NN potential models

Phenomenological models based on meson exchange.
Contain about 40 parameters; determined by fit to phase shifts/deuteron.
Reproduce NN phase shifts with a x?/datum very close to 1.0.

“Nearly

perfect” two-body physics.
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A. Nogga et al, PRL 85 (2000) 944

Different two-body potential
models disagree on structure
of triton and alpha particle.

With additional three-nucleon
forces, agreement with
experiment is possible.

(Three-nucleon force differs
for different two-body
potentials.)

Four-body forces very small.
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Green’s Function Monte Carlo

Determine accurate approximate wave function via variation of the
energy (The high-dimensional integrals are done via Monte Carlo

iIntegration).
F — <WtriaI‘H|\Utrial>
(Wtrial| Wtrial)

Refine wave function and energy via projection with Green'’s function

lim _~(O_
W) = 7 =00 e TH=E) W)

Virtually exact method.

Limited to certain forms of Hamiltonians; computationally expensive
method.
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GFMC results for light nuclei
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1-2% calculations of A = 6 — 12 nuclear energies are possible
excited states with the same quantum numbers computed



GFMC calculations of n-a scattering
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FIG. 1: (Color online) Phase shifts for n-o scattering. Filled
symbols (with statistical errors smaller than the symbols) are
GFEFMC results: dashed curves are fits described in the text:
and solid curves are from an R-matrix fit to data [14].

p3/2 resonance : 0.83 - 0.35i (exp 0.798 - 0.324)
p1/2 resonance : 2.07 - 2.6i (exp 2.07 - 2.79i)

K. Nellott et al, Phys. Rev. Lett 99, 022502 ( 2007 )




No core shell model

|ldea: Solve the A-body problem in a harmonic oscillator basis.

2.

3.
4.
5

© ©

Take K single particle orbitals

Construct a basis of Slater determinants
Express Hamiltonian in this basis

Find low-lying states via diagonalization

Get eigenstates and energies
No restrictions regarding Hamiltonian

Number of configurations and resulting matrix very large: There are

(K ) _ K|
A) T (K=A)TAl
ways to distribute A nucleons over K single-particle orbitals.



The general idea behind effective interactions and the
Lee-Suzuki similarity transformation.

P-space defined
by N_ 1hQ

H_ has one-, two,
three-, ... A-body
terms

* Define a model space P

* Generate an effective interaction in P
* Solve the many-body problem
Induces many-body forces

Exact reproduction
of N eigenvalues

Two ways of converging to the bare

solution :

1. Increase model space P until
convergence

2. Include induced many-body forces,
reproduces bare solution




Working in a finite model space

NCSM and Coupled-cluster theory solve the Schroedinger equation in a model
space with a finite (albeit large) number of configurations or basis states.

Problem: High-momentum components of high-precision NN interactions
require enormously large spaces.

-19F :

Solution: Get rid of the high-momentum -20F 4][“1 -+ bare
modes via a renormalization procedure. 2; I = \ —a— Vogg
(Vlow-k is an example) %‘ 2ok Idaho-A \ e Vg

=, 24p \ Vier
W 25 h0=36 MeV
Price tag: -26
Generation of 3, 4, ..., A-body forces 271
unavoidable. 2B
Observables other than the energy also R R R T T T N S SR SR
need to be transformed. U 2 4 6 8 10 12 14 16 18
Nmax
E. Ormand

http://www.phy.ornl.gov/npss03/ormand2.ppt



Theorists agree with each other

PHYSICAL REVIEW C, VOLUME 64. 044001

Benchmark test calculation of a four-nucleon bound state
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In the past, several efficient methods have been developed to solve the Schrodinger equation for four-
nucleon bound states accurately. These are the Faddeev-Yakubowsky, the coupled-rearrangement-channel
Gaussian-basis variational, the stochastic variational, the hyperspherical variational, the Green's function
Monte Carlo, the no-core shell model, and the effective interaction hyperspherical harmeonic methods. In this

W interaction. The results of all schemes agree very well showing the high accuracy of our present ability to

alculate the four-nucleon bound state.

TABLE 1. The expectation values (T} and (F) of kinetic and
potential energies, the binding energies E, in MeV, and the radius in

tm.

Method (T) (V) E, J{r)
FY 102.39(5) —128.33(10) —25.94(5) 1.485(3)
CRCGV  102.30 —128.20 —25.90 1.482
SVM 102.35 —128.27 —25.92 1.486
HH 102.44 —128.34 —25.90(1) 1.483
GFMC 102.3(1.0) —128.25(1.0) —25.93(2) 1.490(5)
NCSM 103.35 —129.45 —25.80(20) 1.485
EIHH 100.8(9) —126.7(9) —25.944(10) 1.486
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FIG. 1. Correlation functions in the different calculational
schemes: EIHH (dashed-dotted curves). FY. CRCGV. SVM. HH.

and NCSM (overlapping curves).
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Figure 6. Comparison of NCSM and GEMC energies for the AV8 and AVS'+TM' Hamil-

tonians.

Comparison between NCSM and GFMC
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Ab-initio calculations of charge radii of Li isotopes

E 3.5 |. Tanihata et al.
- Phys. Rev. Lett. 55, 2676 (1985)
4 x)
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FIG. 2 (color online). Experimental charge radii of lithium
isotopes (red, @) compared with theoretical predictions: A\:
GFMC calculations [4.22], V: SVMC model [27.28] (¥ assum-
ing a frozen ?Li core), ®: FMD [26]. O: DCM [19]. O and <:
ab initio NCSM [23.24].

R. Sanchez et al, PRL 96 (2006) 33002.



The N! catastrophe.
Specific example: 2 particles in 4 states

Scaling: Number of basis states

Ooops.. These are huge numbers

Problem : How to deal with such large
dimensions

n = number of particles;
N = number of single - particle states
N!

C(N.n)=

(N—n)n!
C(10.100) =1.7x10"

C(1000,100)= 6x10"°




Summary

Shell model a powerful tool for understanding of nuclear
structure.

Shell model calculations based on microscopic interactions
- Adjustments are needed
- Due to neglected three body forces (?!)

Effective interactions have reached maturity to make
predictions, and to help understanding experimental data

Green's function Monte-Carlo and No-core Shell-model capable
of ab-initio description of nuclei with A < 12

Due to factorial scaling of the method, very difficult to extend to
heavier systems.

Need accurate method with softer scaling in order to extend the
ab-initio program to heavier systems.




