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Inhibition of Phytoplankton

Photosynthesis is limited by low
iIrradiance (~ 1% incident)

Photosynthesis attains a
maximum, saturated rate at
moderate irradiance (~10%
Incident)

Photosynthesis decreases from a
maximum as irradiance nears
midday levels (50-100%)
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Near-Surface Photosynthesis iIs
Inhibited Iin Lago Titicaca
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Investigations of UV effects on
phytoplankton photosynthesis

1964 Comparison of 14C photosynthesis in quartz vs.
glass bottles shows that solar UV inhibits (Steeman-
Nielsen, J. Cons. Perm. Int. Explo. Mar)

1980 Initial work with spectral treatments, showed that
both UVA and UVB were important (e.g. Smith et
al, Photochemistry and Photobiology)

1990s Several groups define weighting functions for UV
Inhibition of phytoplankton in culture and natural
assemblages in Antarctica

From the beginning, the approach is based on combined
exposures to PAR and varying amounts of UV



Biological Weighting Functions quantify
wavelength-dependent effects
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A tool to assess the effect of wavelength dependent
changes in UV (climate change, O3 depletion)
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Production Model for the
Rhode River

Measured BWFs May-Jul (n=8)
Irradiance Spectra
28 d, June-July 1999
Measured with SR18 290-324 nm
*Extended with full RT 325-400 nm
sSpectra for range of Ozone using RT

Measured Attenuation Spectra (n=16)
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Describing the effects of solar UV
on phytoplankton photosynthesis

e Responses are a composite of effects at
multiple wavelengths (UV-B, UV-A, PAR)

* Near-surface residence times can vary
from minutes to hours
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Photoinhibitron Travelogue
1. A Temperate Estuary

The Rhode River: Shallow BWFs on monthly samples
Subestuary of Chesapeake Bay during 1995-1996 (n=23)

Baltimore, Maryland; -~ » ’I

Delaware Bay = |
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See: Banaszak and Neale,
Limnol. Oceanogr. 2001
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Photoinhibitron Travelogue
2. Antarctic
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Palmer Station

Field Seasons: October-December 1991, 1993, 1997-1999
About 40 BWFs in all



Our Research Platform: The RV Laurence M.




There are clear variations in the
S sensitivity of photosynthesis to UV
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Relative Activity

Photosynthetic response to UV
IS non-linear
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The BWF./P-I model
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Estimating a BWF -
Difference Method
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Another Approach:
Fit BWF to a general equation

-2
10 3 Boucher & Prézelin

As described by Rundel (1983)
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Irradiance Scaled to 390 nm

Estimating a BWF - PCA
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BWF/P-I model provides accurate
predictions of UV response

Photosynthesis is inversely related to UV weighted by estimated BWFs
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Sensitivity of Chesapeake Bay

Phytoplankton varies by an order

of magnitude
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But seasonal average sensitivity is less variable!
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Average Sensitivity Is Similar In
Temperate and Polar Environments
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Average Sensitivity Is Similar In
Temperate and Polar Environments
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UV-A Is more important than
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UV Effects on WSC (S.
Ocean) Productivity

Average range of integral daily

Factor water column production (+46%
overall)
Ozone Depletion (50%) -1to -8%
Mixed Layer Depth + 24%
Sensitivity (BWF) + 28%

(x is the half range of (max-min)/avQ)

See: Neale,Cullen, Davis, Nature 1998



What are the sources of
variation in BWFs?

e Inherent differences between taxa
 Nutrient availability

* Resource tradeoffs (survival vs.
defense)

Here's where culture studies are useful!



Natural Assemblages are
More Sensitive than Cultures
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Strong Exposure Does Result In

Resistant Assemblages
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What is contribution of Differential Survival vs. Acclimitization?



Can Aguatic Organisms
Modify their Sensitivity to UV ?

e Accumulation of sunscreens
(MAAS)

e Anti-oxidants

 Repalr capacity
— DNA
— Proteins, lipids, etc

Corals on Great Barrier Reef photo from Walt Dunlap, AIMS



Variation in Photoprotection

MAASs accumulation decreases sensitivity in wave band of absorbance
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Neale et al. (1998) J. Phycol.34:928
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dinoflagellate,
Akashiwo
sanguineum
grown in high vs
low PAR




Sensitivity to UV increases
under N-limitation
Gymnodinium

340
wavelength, nm

Litchman, Neale & Banaszak Limnol. Oceanogr. (2002) 47:86-94



Polychromatic vs
Monochromatic Experimental
Approaches

Polychromatic more appropriate to
predicting responses 1o solar radiation

Monochromatic studies more appropriate to
mechanistic studies of damage and repair
mechanisms

— Mechanisms of inhibition by UVA exposure

— Regulation of photorepair

— Efficacy of photoprotection at cellular length scales

Poly vs Mono comparison: Generality of
spectral shape (Flint & Caldwell)

Advantage of FEL — high output in the UVA,
narrow bandwidth, flexibility in time of
exposure



Thanks!



Production Model for the

WSC

Measured BWFs
*Broad Band Irradiance Measurements °

Modeled Irradiance Spectra
*Single Day Climatology
*Range of Ozone

*Average Attenuation Spectra
*Range of Mixing Depths and Speeds
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Next Steps

 Establish a simple assay system
to measure effect of
monochromatic exposure (e.g.
PSIlI fluorescence)

 Test for non-linear (2) photon
processes



BWF variation modifies inhibition
and the effect of O, depletion
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Production Model for the
Rhode River

Measured BWFs May-Jul (n=8)
Irradiance Spectra
28 d, June-July 1999
Measured with SR18 290-324 nm
*Extended with full RT 325-400 nm
sSpectra for range of Ozone using RT

Measured Attenuation Spectra (n=16)
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UV Effects on Rhode
River Productivity

Average range integral midday

Factor water column production (+18%
overall)
Irradiance + 5%
Transparency + 7%
Sensitivity (BWF) + 8%

“+” Is the half range of (max-min)/average

See: Neale 2001 J. Photochem. Photobiol. B 62:1-8



The Next Steps

e UV Responses Under Realistic Mixing
Regimes
— Kinetics of Damage and Repair
— Measurements of Mixing Rates

e Systematic Understanding of BWF
Variation
— Consistent differences between taxa
— Nutrient limitation (cultures and natural populations)
— Resource tradeoffs (survival vs. defense)



Long Term Objectives

« BWFs for multiple trophic levels

 Photochemical transformations
* Bacteria
« Zooplankton

 Predictions of Ecological Responses

« Shifts in Community Structure
« Shifts in Trophic Structure



It couldn’t have been done
without a lot of help!

 Rhode River

— Ania Banaszak, UNAM marine lab, Puerto
Morelos, MX

 Culture Studies, Swiss Lakes
— Elena Litchman, Rutgers University, NJ

e Antarctica
— Jennifer Fritz, RSMAS, Miami, FL

Thank youl!
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