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Probing the Nucleon with Spin
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Overview of the talk

• This talk will be less focused on detailed nuclear physics, and 
more of a general overview.
 Where did our field come from, and where are we now?

• Start at the beginning (several thousand years ago) and end 
with an upcoming spin-physics measurement at JLab.
 all in 55 minutes or less,
 I'm going to gloss over a few details...



HUGS 2008 3June 12, 2008

. . . Overview

• What is the point of our effort?
 We're trying to understand what the world is made of.

The world is beautiful, there is pleasure in the study.
Knowledge = control  (more “practical” reason).

 What do we know so far?

• Overview of Particle scattering Formalism and Jargon
 x, v, Q2, W, F1, g2, Θ, ...  huh?
 Polarized and unpolarized structure functions

(experimental meat and potatoes)

• d2
n : Measuring quark/gluon correlations in the nucleon

 An upcoming experiment at JLab
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What is that stuff made of?

• Anaximenes 
(Greek philosopher: 6th 
century BC)
 Air was universal, 

everything is air at 
different densities.

 Theory later expanded 
to include 4 elements

Earth

Air

Fire

Water
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Alchemy

• Alchemy (practiced in one form or another for 
2000 years):
 Latin dictum: 

SOLVE ET COAGULA
(Separate and Join together)

 Precursor to:
Chemistry, metallurgy, physics

 Reagents:
Water, Metal (and oxides), Salts, Acids, ...
Refinement and reduction was an important 

goal, but few true elemental chemicals.
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Chemistry

• Chemistry
 1809: 47 true elements identified, patterns in 

chemical combination being recognized.
 Mendeleev's Periodic Table (1869)

arranged elements by atomic mass
columns (periods) have similar chemical 

properties (ie. valence electron structure)
predicted other elements and left spaces in 

the table for them
 Getting pretty complicated – hints that this is a 

manifestation of some simpler underlying 
structure.
ie. quantization of the atomic masses
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Atomic Physics

• 1886: Radioactivity discovered (Bequerel, Curies)
• 1897: Thompson discovers atomic electrons
• 1914: Rutherford identifies discrete protons exist 

within nucleus
• 1922: Stern-Gerlach experiment proves

angular momentum is quantized
 but “intrinsic” spin not on the

table yet...



HUGS 2008 8June 12, 2008

Atomic Physics

• 1925: Spin invoked to explain Zeeman splitting of 
atomic spectra in external magnetic field (later 
incorporated into Pauli's exclusion principle and the 
spin quantum number)

• 1925: Heisenberg wave mechanics, Schrodinger eqn
• 1928: Dirac equation

 Relativistic QM description of a spin-1/2 particle
• 1932: Chadwick discovers the neutron

 Final key to explaining the Periodic Table
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Nuclear Physics

• 1930s on:
 dozens and dozens of strongly interacting fermion 

states (spin 1/2, 3/2, 5/2...) have been identified
Δ, Θ, Λ, Σ... (Baryons)

 dozens and dozens of strongly interacting bosons 
(spin 0, 1, ...) have been identified
σ, ρ, ω, η, ... (Mesons)

• That's a lot of “elementary” particles...
 Remind you of the Periodic Table?
 Something more is going on here



HUGS 2008 10June 12, 2008

Scattering Experiments

• Most of these particles discovered by smashing sub-
atomic particles into a target and measuring what 
comes out.

• Time to define some technical terms so we can talk 
about how scattering experiments are done... 
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“Unpolarized deep inelastic cross sections”

• Cross section measures the probability you'll find an electron of energy E' 
scattered into a solid angle dΩ:

• F's are Structure Functions.  They encode our (lack of) knowledge about the 
target nucleon.
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Interpreting the Cross Section

• W2 = M2 + 2Mv + Q2

 M = nucleus 
    (or nucleon) mass

 W = “invariant mass” after 
collision

• Four regions
 Elastic scattering

nucleus intact
 Quasi-elastic scattering

photon interacts with a 
single nucleon

nucleus breaks up
 Resonances

excited nucleon states 
nucleon substructure 

starting to be probed
 Deep inelastic scattering

internal structure 
(partons) resolved
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What the Structure Functions?

• The Parton Model
 Assume hadrons composed of free particles called 'partons'
 F1 (and F2) reflect the probability of finding a parton (ie. quark) with 

momentum fraction 'x'

• The  “F's” in the unpolarized cross section are Structure Functions:

• They encode information about the internal structure of the target nucleon
 You can measure them, 
 You can compute them,
 But what do they mean?
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Interpreting the Structure Functions

Bjorken Scaling
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What happened to F1?

• Callan-Gross Relation
 If the point-like partons are spin 0, then 

2xF1(x)/F2(x) = 0
 If they are spin ½, then

2xF1(x)/F2(x) = 1

• So,
 2xF1(x) = F2(x)

 the partons are spin ½

x
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So, we've got it cased now?

• The partons in the nucleon look like quarks
 quarks are point-like, spin ½ particles
 a proton is a spin ½ particle

therefore you expect to have two quarks with spin +½ and 
one with spin -½

(quark spin sum) ½ + ½ - ½ = +½ (proton spin)

• CERN designed an experiment to explicitly measure the quark 
contribution to the proton spin (1987)
 naïve expectation:   100%
 after relativistic corrections:     75%
 measured: 12 ± 16%

!?!  
The “Proton Spin Crisis”
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Spin Crisis (Puzzle) still not fully understood

• Total spin = ½ ΔΣ + ΔG + Lz

 ΔΣ = quark spin (including sea quarks now)
 ΔG = gluon spin
 Lz     = orbital angular momentum of gluons and quarks

• Sea quarks were supposed to solve the puzzle but measurements 
indicate a very small contribution < 5%

• (Lz  is extremely hard to measure)

• Understanding the gluon contribution is now underway
 But how do we probe the gluon field?

they don't respond to an electromagnetic probe
we can't manipulate gluons directly, but we can manipulate 

the nucleon spin
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Spin Crisis (Puzzle) still not fully understood

• There's more going on inside the nucleon than we thought
 gluons are a big part of it

• How can we get a handle on the quark/gluon interactions?
 by manipulating the nucleon spin
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Polarized deep inelastic cross sections
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What are g
1
 and g

2
?

• The Parton Model
 g

1
 reflects the difference in probabilities between quarks with spin 

aligned parallel and anti-parallel to the nucleon spin
 g2 ???

• The “g's” play a role analogous to the “F's” in the unpolarized cross section 

• F encodes information about the 
momentum structure of the nucleon

• g1 and g2 encode information about the 
spin structure of the target nucleon
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g2 and Quark-Gluon Correlations
QCD allows the 

helicity exchange 
to occur in two 
principle ways
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Moments of Structure Functions

(Extracted from neutron and hyperon weak decay measurements)
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Moments of Structure Functions (continued) 

•To extract f2, d2 needs to be determined first.

•Both d2 and f2  are required to determine the color polarizabilities  

3
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Color “polarizabilities”
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Model evaluations of d2
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World Data on d
2

(nucleon elastic contribution suppressed)
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The Experiment
• A 4.6 and 5.7 GeV polarized electron beam scattering off a 

polarized 3He target
• Measure unpolarized cross section for                reaction         in 

conjunction with the parallel asymmetry          and the transverse 
asymmetry         for 0.23 < x < 0.65 with 2 < Q2 < 5 GeV2. 
 Asymmetries measured by BigBite at a single angle: θ = 45°
 Absolute cross sections measured by L-HRS

• Determine d2
n using the relation

where,



HUGS 2008 28June 12, 2008

Kinematics of the measurement

• Two beam energies
4.6 and 5.7 GeV
(4 pass, 5 pass)

• BigBite fixed at single 
scattering angle (θ=45°)
(data divided into 10 
bins during analysis)

• Avoid resonance region 
as much as possible.
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Jefferson Lab – Hall A
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Floor configuration for this experiment
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• Non-focusing, Large acceptance, Open geometry
• p/p = 1 – 1.5% (@ 1.2 T) (W) = 50 MeV
• Angular resolution 1.5 mr, extended target resolution 6 mm
• Large solid angle: ~64 msr
• Detector package:

 3 MWDCs, scintillator plane, 
Pb-glass pre-shower + shower

 Gas Cherenkov (new)

BigBite Configuration
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• MC simulation by Degtyarenko et al. (tested in Halls A and C)
• Online cuts include:

 BB magnet sweeps particles with p < 200 MeV/c
 GeN BB trigger: shower+pre-shower+scint

provide ~10:1 online hadron rejection (or better)
 ~550—600 MeV threshold on shower
 4—5 p.e. threshold on Cherenkov

heavily suppress random background
negl. pion contamination (~100 Hz knock-ons)

• Total estimated trigger rate (GeN trig + Cherenkov): 2—5 kHz

Background Rates

e- 2-5 kHz 90 kHz
e+ <1 kHz 90 kHz

p 50 kHz
n 50 kHz

p-
p+

Removed via 
online cuts

Online 
triggers
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Projected x2g2(x,Q2) results

• g2  for 3He is extracted directly from L and T spin-dependent cross sections 
measurements  within the same experiment.

• The nuclear corrections will be applied to the moments not to the structure 
functions.

• SLAC E155x g2 data points at high x are evolved from Q2 as large as 16 GeV2 
to 5 GeV2
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Expected Error on d2
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Summary of Experiment

• We will precisely measure the neutron d2
n at Q2 ≈ 3.0 GeV2.

 Determine asymmetries in conjunction with an absolute cross section 
measurement over the region (0.23 < x < 0.65)

 Also, measure Q2 evolution of          over the same x region

• Provide a benchmark test for theory (lattice QCD).
 we can achieve a statistical uncertainty of ∆d

2
n = 5 x 10-4

four times better then existing world average!

• Dramatically improve our knowledge of g
2

n(x)
 double the data points for x > 0.2, all with better precision

• The nature of the this quantity (clean measurement, clean calculation) 
makes the d2

n an excellent way to precisely probe the strength and 
character of quark-gluon interactions in the nucleus.
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