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Overview of the talk

This talk will be less focused on detailed nuclear physics, and
more of a general overview.

= Where did our field come from, and where are we now?

Start at the beginning (several thousand years ago) and end
with an upcoming spin-physics measurement at JLab.

= all in 55 minutes or less,
= I'm going to gloss over a few details...
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... Overview

e What is the point of our effort?
= We're trying to understand what the world is made of.
© The world is beautiful, there is pleasure in the study.
tj#Knowledge = control (more "practical” reason).
= What do we know so far?

e Overview of Particle scattering Formalism and Jargon
=x, v, W, F,bg, O, .. huh?

= Polarized and unpolarized structure functions
tJ#(exper'imen’ral meat and potatoes)

e d,”: Measuring quark/gluon correlations in the nucleon
= An upcoming experiment at JLab
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What is that stuff made of?

. Earth Fire
* Anaximenes
(Greek philosopher: 6™ \ /
century BC) Air
= Air was universal,
everything is air at I
different densities.

= Theory later expanded Water
to include 4 elements
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* Alchemy (practiced in one form or another for
2000 years):

= | atin dictum:

% SOLVE ET COAGULA
(Separate and Join together)

= Precursor to:
tj¢Chemis’rr'y, metallurgy, physics
= Reagents:
u¢Wc1‘rer', Metal (and oxides), Salts, Acids, ...

$ Refinement and reduction was an important
goal, but few true elemental chemicals.
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Chemistry

e Chemistry

= 1809: 47 true elements identified, patterns in
chemical combination being recognized.

= Mendeleev's Periodic Table (1869)
tJ#armnged elements by atomic mass

W columns (periods) have similar chemical
properties (ie. valence electron structure)

tjl}pr'edic’red other elements and left spaces in
the table for them

= Getting pretty complicated - hints that this is a
manifestation of some simpler underlying
structure.

Qic. quantization of the atomic masses
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Atomic Physics

1886: Radioactivity discovered (Bequerel, Curies)
1897: Thompson discovers atomic electrons

1914: Rutherford identifies discrete protons exist
within nucleus

1922: Stern-Gerlach experiment proves

angular momentum is quantized

= but “intrinsic” spin not on the
table yet...
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Atomic Physics

1925: Spin invoked to explain Zeeman splitting of
atomic spectra in external magnetic field (later
incorporated into Pauli's exclusion principle and the
spin quantum number)

1925: Heisenberg wave mechanics, Schrodinger eqgn
1928: Dirac equation

= Relativistic QM description of a spin-1/2 particle
1932: Chadwick discovers the neutron

= Final key to explaining the Periodic Table
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Nuclear Physics

e 1930s on:

= dozens and dozens of strongly interacting fermion
states (spin 1/2, 3/2,5/2...) have been identified

QA O A 3. (Baryons)

= dozens and dozens of strongly interacting bosons
(spin O, 1, ...) have been identified

q#o, p,w,n, ... (Mesons)

 That's a /ot of "elementary” particles...
= Remind you of the Periodic Table?
= Something more is going on here
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Scattering Experiments

* Most of these particles discovered by smashing sub-
atomic particles into a target and measuring what
comes ouft.

e Time to define some technical terms so we can talk
about how scattering experiments are done...
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“Unpolarized deep inelastic cross sections”

* Cross section measures the probability you'll find an electron of energy £’
scattered into a solid angle d(2:

d’c  _ 2 2 o 2\ w28 1 . ()2 2 0
—OdE — 4E2c;n4% (ﬁFl(grﬁ_Q )sin® 5 + S Fy(z,Q7) cos §)

* F'sare Structure Functions. They encode our (lack of) knowledge about the
target nucleon.

. Hadrons
Q" = 4-momentum transfer squared of the

virtual photon.
v = energy transfer.

@ = scattering angle.

2
= Q@ fraction of nucleon momentum
2Mv  carried by the struck quark.
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Interpreting the Cross Section

WP = M? + 2Mv + GF
= M = nucleus
(or nucleon) mass

= W = “invariant mass" after
collision

Four regions
= Elastic scattering
$ nucleus intact
= Quasi-elastic scattering

§ photon interacts with a
single nucleon

§ nucleus breaks up
= Resonances
%exci’red nucleon states

%nucleon substructure
starting to be probed

= Deep inelastic scattering

tJﬁn‘rernal structure
(partons) resolved

Cross section

A
0.4

T~ W>2GeV
(deep inelastic)

A\ Constant W
(resonances)

W=M
(quasi—elastic)

Q? (GeV/c)?
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What the Structure Functions?

 The "F's" in the unpolarized cross section are Structure Functions:

_d’o > 2 ¢, 2\ i 2 0 1 N2 2 6
J0dE = 43;;114% (MFl(‘r‘-Q )sin® 5 + 2 Ih(x, Q) cos 5)

e They encode information about the internal structure of the target nucleon
= You canh measure them,
= You can compute them,
= But what do they mean?

e The Parton Model

= Assume hadrons composed of free particles called ‘partons’
= F (and F,) reflect the probability of finding a parton (ie. quark) with
momentum fraction 'x’
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Interpreting the Structure Functions
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What happened 1o F?

Callan-Gross Relation

= If the point-like partons are spin O, then

© 2xF(x)/F,(x)= 0
= If they are spin 3, then
© 2xF (x)/F(x) = 1

So,
2xF(x) = F,(x)

= the partons are spin 3

2X F,/F,

1.2

o8 ¢

04

-

%{%EE%&% Fle oy

L - spin 0
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So, we've got it cased now?

e The partons in the nucleon look like quarks
= quarks are point-like, spin % particles
= a proton is a spin 3 particle
$ therefore you expect to have two quarks with spin +3 and
one with spin -3
tJl}(qucu"k spin sum) 7 + 7 - 3 = +3 (proton spin)

e CERN designed an experiment to explicitly measure the quark
contribution to the proton spin (1987)

= naive expectation: 100%
= after relativistic corrections: 75%
= measured: 12 + 16%

171

The “Proton Spin Crisis”
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Spin Crisis (Puzzle) still not fully understood

o Total spin=3 AZ + AG+L,
= AZ = quark spin (including sea quarks now)
= AG = gluon spin
= L_ = orbital angular momentum of gluons and quarks
e Sea quarks were supposed to solve the puzzle but measurements
indicate a very small contribution < 5%
» (L, is extremely hard to measure)

e Understanding the gluon contribution is now underway
= But how do we probe the gluon field?
tj#’rhey don't respond to an electromagnetic probe

Qwe can't manipulate gluons directly, but we can manipulate
the nucleon spin

June 12, 2008



Spin Crisis (Puzzle) still not fully understood

e There's more going on inside the nucleon than we thought
= gluons are a big part of it

e How can we get a handle on the quark/gluon interactions?
= by manipulating the nucleon spin
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Polarized deep inelastic cross sections

dg’dﬂ(ur ) ]éoéy VEE {(E—FE cos8)g1(z, Q2> @ gz(ib', Qzﬂ _ A(I"

d’o (|= — 1) = 4ol sinf E”
dE'd) - MQ? V’E

Vgl(wa Qz) + 2E92(w) Qz) } — AUJ_

. Hadrons
Q" = 4-momentum transfer squared of the

virtual photon.
v = energy transfer.

# = scattering angle.
Q 2
T = fraction of nucleon momentum
2Mv  carried by the struck quark.

nucleon
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What are g and g,?

* The "g's" play a role analogous to the "F's" in the unpolarized cross section

_d’o > 2 ¢, 2\ i 2 0 1 N2 2 6
J0dE = 43;;114% (37 F1 (2, Q%) sin® § 4 Fo(x, Q%) cos® §)

e F encodes information about the
momentum structure of the nucleon

e g,and g, encode information about the
spin structure of the target nucleon

e The Parton Model
= g, reflects the difference in probabilities between quarks with spin

aligned parallel and anti-parallel to the nucleon spin
= g, 2??
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g, and Quark-Gluon Correlations

twist-2 QCD allows the twist-3

+1 O helicity exchange +1 0

to occur in two
principle ways

1/2 - -1/2 1/2

Carry one unit of orbital Couple to a gluon
angular momentum

gz, Q%) = g5 "V (2, Q) + Go(z, Q°)

-1/2

® a twist-2 term (Wandzura & Wilczek, 1977):
1 dy
ggVW(:C? Qz) — _gl(aj7 QQ) + / gl(y7 Qz)g

s
® a twist-3 term with a suppressed twist-2 piece (Cortes, Pire & Ralston, 92):
L0 /m ( dy
_ 2 N 2 o A

/A

transversity quark-gluon correlation
June 12, 2008



Moments of Structure Functions

1
L@ = [ oo, @ de= uy + 2 4 B0y

Q? Q
leading twist higher twist
Mgan( Y = (£ igA + iaé%) + }AZ + pQCD corrections
12 36 9

ga= 1.257 and ag = 0.579 are the triplet and octet axial charge, respectively
AY] = singlet axial charge
(Extracted from neutron and hyperon weak decay measurements)

gan = Au — Ad
ag = Au+ Ad — 2As
AY., = Au—+ Ad+ As

pQCD radiative corrections
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Moments of Structure Functions (continued)

1(Q%) = %42 ax(Q%) +4dy(Q°) + 4/2(Q)]

Twist -2 Twist -3 Twist -4
(TMC)

where ay, d2 and /> are higher moments of g, and g,

eg. (@) = [ +*201(2, Q%) + 30:(x, Q) =3 +* T
a(Q°) = /01 v gi(z,Q°) dx

« To extract £, d, needs to be determined first.

*Both d,and 7, are required to determine the color polarizabilities

June 12, 2008



Color "polarizabilities”

How does the gluon field respond when
a nucleon is polarized ?

Define color magnetic and electric polarizabilities (in nucleon rest frame):
XB7E2M2§ = <P5\5B,E!P5>
where O = WigBy
Oy = 4'a x gBEi

Xe = (4dy +2f5)/3
X = (4dy — f3)/3

XEand X, represent the response of the color E & E fields
| to the nucleon polarization
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0.03
L Proton
0.02F :
0.01f Lattice SLAC E155X]
L <> .
. Oot = e O o =
[ Bag Model } T % Chiral soliton y
-0.01} B
[ QCD Sum Rules ]
-0.02} -
-0.03 Z
0.02f JLab E99-117
[]
0.00—x—= —
-0.02} % h

-0.04L

Model evaluations of d,

i

Predictions and data
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World Data on d_2

0.015 ——— ——
NS ' o E94010 Neutron
| m E99-117 + E155x Neutron
0.010 I O EI155x Neutron
______ ChPT I
0.005 | —— MAID !
0.000 | 3
_ Lattice QCD
I QCDSEF collaboration
~0.005
0.01 0.1 | 0 (GeV’) 10

\

(nucleon elastic contribution suppressed)
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The Experiment

e A46andb.7 GeV polarized electron beam scattering off a
polarized *He target

e Measure unpolarized cross section for 3ﬁege ¢’) reaction USH in
conjunction with the parallel asymmetry 1HH‘ and the ftransverse
asymmetry A " for 0.23 < x < 0.65 with 2 < Q? < 5 GeV>.

= Asymmetries measured by BigBite at a single angle: 6 = 45°
= Absolute cross sections measured by L-HRS
o Determine d)" using the relation

bz, Q%) = 2*2g1(z, Q%) + 3ga(, Q)
M@Q? x2y? 1+ (1—y)cosf 4 6 4
= o 3 - —tan — |A ——314
10* (1 —'y)(?-—'y) ! ( (1 —y)sind - y '2-) L ('y ) |
where, ~ , ,
T 2 = 20,
GHe Ay BHe B
AT = P,P; cos ¢ AP = B,P,
A = (NT= - NI=) Ay = —(j\?.l.ﬂ TN
. V.
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Kinematics of the measurement

Two beam energies
4.6 and 5.7 GeV
(4 pass, 5 pass)

[=)}

Ln

BigBite fixed at single ~*
scattering angle (6:45°E

(data divided into 10
bins during analysis)

Avoid resonance region
as much as possible.

R
o]
<

w2

[a—

| | T T

. E=5.7GeV

i 9 = 45°

- E=4.6GeV
- 9 = 45°

N //ﬁ

i P

| |
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Floor configuration for this experiment

I$h0'u'-..'er Counter

Beam Polarization: 75% Pb-glass
Beam Current: 15 microA erenkov

Moller Polarimeter Drift Chambers ~\

A

Target

.. reshower
Polarization: 40%

Scintillators

Q

&

HRS-r Spectrometer
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BigBite Configuration

e Non-focusing, Large acceptance, Open geometry

o Ap/p=1-15% (@ 1.2 T) o(W) = 50 MeV

e Angular resolution 1.5 mr, extended target resolution 6 mm
* Large solid angle: ~64 msr

e Detector package:

= 3 MWDCs, scinftillator plane,
Pb-glass pre-shower + shower

= Gas Cherenkov (new)
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Background Rates

e MC simulation by Degtyarenko et al. (tested in Halls A and C)
e Online cuts include:
= BB magnet sweeps particles with p < 200 MeV/c
= GeN BB trigger: shower+pre-shower+scint
tj#provide ~10:1 online hadron rejection (or better)
= ~550—600 MeV threshold on shower
= 4—5 p.e. threshold on Cherenkov
tj¢hec1vi|y suppress random background
t%negl. pion contamination (~100 Hz knock-ons)
e Total estimated trigger rate (GeN trig + Cherenkov): 2—5 kHz

e W8 E+ 28 mi online cuts

n 50 kHz
\ J

June 12, 2008

Online | e- 2-5 kHz /p- 90 kHz Removed via
triggers




Projected x°g,(x,Q%) results

1 1 || 1
O SLACET155x @ This proposal

® JLab E99-117
o JLab E97-103

>
n—

AR =
-0.005 btrahﬁann | Z ]
Weigel and Gamberg ]
L Soffer and Bourelly .
-0.01 - g2_Ww -
0015 0.2 0.2 0.6 0.8 1

X
g, for 3He is extracted directly from L and T spin-dependent cross sections
measurements within the same experiment.

The nuclear corrections will be applied to the moments not to the structure
functions.

SLAC E155x g, data points at high x are evolved from Q2 as large as 16 GeV?
to b GeV?
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Expected Error on d,

0.015 ————r ——r
=S ] O E94010 Neutron
Z m E99-117 + E155x Neutron
0.010 | O E155x Neutron
. ____ChPT T
0.005 | —— MAID !
i Proposal
0.000 | O * _
- Lattice QCD
—0.005 | '

00l 01 HIWIQZ'(GeIV'Z.)HiO
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Summary of Experiment

We will precisely measure the neutron d," at Q* = 3.0 GeV?.

= Determine asymmetries in conjunction with an absolute cross section
measurement over the region (0.23 < x< 0.65)

= Also, measure Q? evolution of 2”7, over the same x region

Provide a benchmark test for theory (lattice QCD).
= we can achieve a statistical uncertainty of Ad,"=5 x 10

§ four times better then existing world average!

Dramatically improve our knowledge of g,"(x)
= double the data points for x > 0.2, all with better precision

The nature of the this quantity (clean measurement, clean calculation)
makes the d." an excellent way to precisely probe the strength and

character of quark-gluon interactions in the nucleus.
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