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Outline

Lecture #1 
Lattice QCD overview 

Background, actions, observables

Baryon spectroscopy

Group theory, operator design, spectroscopy results

Nucleon Structure Functions 

Lecture #2
Axial charge couplings and form factors 

Generalized Parton Distributions (GPDs)

Strangeness in the nucleon
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Lattice 101

Book (if you have to pick just one)

Degrand and De Tar

Lattice Methods for Quantum Chromodynamics

(World Scientific, 2006)

arXiv article

Gupta

―Introduction to Lattice QCD‖

arXiv:hep-lat/9807028
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Lattice QCD is a discrete version of continuum QCD theory

Lec. by Mike Peardon 

Physical observables are calculated from the path integral

Lattice QCD

Uμ(x)

ψ(x)

ψ(x+μ)

Huey-Wen Lin — 23rd HUGS



5

Physical observables are calculated from the path integral

Use Monte Carlo integration combined with the

―importance sampling‖ technique to calculate the path integral.
Simple example:

Take a → 0 and V → ∞ in the continuum limit

Lattice QCD
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General form for improvement up to O(a2)

Commonly used:
Wilson
Iwasaki
Symanzik-improved
doubly blocked Wilson 2 (DBW2)

Most gauge actions used today are O(a2) improved

Small discretization effects (~O(ΛQCD
3a3)) due to

gauge choices

Most fermion actions are only O(a) improved (O(ΛQCD
2a2))

Lattice Gauge Actions
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(Improved) Staggered fermions (asqtad):
Relatively cheap for dynamical fermions (good)

Mixing among parities and flavors or ―tastes‖

Baryonic operators a nightmare — not suitable

Wilson/Clover action:
Moderate cost; explicit chiral symmetry breaking

Twisted Wilson action:
Moderate cost; isospin mixing

Lattice Fermion Actions
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(Improved) Staggered fermions (asqtad):
Relatively cheap for dynamical fermions (good)

Mixing among parities and flavors or ―tastes‖

Baryonic operators a nightmare — not suitable

Wilson/Clover action:
Moderate cost; explicit chiral symmetry breaking

Twisted Wilson action:
Moderate cost; isospin mixing

Chiral fermions
Domain-Wall/Overlap
Automatically O(a) improved,

good for spin physics and weak matrix elements

Expensive

Lattice Fermion Actions
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Lattice Fermion Actions

Mixed Action

Staggered sea (cheap) with domain-wall valence (chiral)

Match the sea Goldstone pion mass to the DWF pion 

Only mixes with the ―scalar‖ taste of sea pion

Anisotropic Wilson/Clover

Wilson/Clover fermions with broken space/time symmetry

Lattice spacing at < ax,y,z

Complicated but useful

for excited-state physics

More details in Mike Peardon’s Lecture
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A wide variety of first-principles QCD calculations can be done:

In 1970, Wilson started off by writing down the first actions

Progress is limited by computational resources

But assisted by advances in algorithms

Computer power available for gaming in 1980’s:

Computational Requirement
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Poor Man’s QCD: Quenched Approximation

Full QCD:

Quenched: Take det M = constant.

―Almost extinct‖ in recent work 

Bad: Uncontrollable systematic error

Good? Cheap exploratory studies to develop new methods
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A wide variety of first-principles QCD calculations can be done:

In 1970, Wilson started off by writing down the first actions

Progress is limited by computational resources

But assisted by advances in algorithms

Computer power available today:

Exciting progress during the last decade

Computational Requirements
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2007: The 13 Tflops cluster at Jefferson Lab

Other joint lattice resources within the US: Fermilab, BNL

Non-lattice resources open to USQCD: ORNL, LLNL, ANL

Huey-Wen Lin — 23rd HUGS
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Gauge generation estimate with latest algorithms scales like 

Cost factor: a−6, L5, Mπ
−3

Chiral domain-wall fermions (DWF) at large volume (6 fm) at 

physical pion mass may be expected in 2011

But for now….

need a pion mass extrapolation Mπ → (Mπ)phys

(use chiral perturbation theory, if available)

Huey-Wen Lin — 23rd HUGS
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Currently, not at the physical pion-mass point 

XPT uncertainty (parameters used in XPT, etc.)

Finite lattice spacing 

Exact: Do multiple lattice-spacing calculations and extrapolate to a = 0

Otherwise, estimate according to the level of improvement for 

the gluon and fermion action and operators 

Finite-volume effect

Exact: Do multiple volume calculations and extrapolate to V = ∞

Otherwise, estimate according to previous work

Or apply finite-volume XPT to try to correct FVE

Other Systematics

For example: if fitting is involved, what is the dependence on the fit range?

Systematic Errors
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Baryon Resonances 
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Spectroscopy on Lattice

Calculate two-point Green function

Spin projection

Momentum projection

At large enough t, the ground-state signal dominates

Two-point correlator

Huey-Wen Lin — 23rd HUGS
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Why Baryons?

Lattice QCD spectrum
Successfully calculates many ground states (Nature, …)

HPQCD

Predictions: Bc mass, D and Ds decay constants,

D → Klν form factors
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Why Baryons?

Lattice QCD spectrum
Successfully calculates many ground states (Nature, …)

Nucleon spectrum, on the other hand… not quite

Example: Quenched N, P11, S11 

spectrum

Systematic errors not included:

Finite volume and lattice spacing;

possible higher excited-state contamination 
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Strange Baryons

Strange baryons are of special interest;

challenging even to experiment

Example from PDG Live:
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Operator Design

All baryon spin states wanted: j = 1/2, 3/2, 5/2, …

Rotation symmetry is reduced due to discretization

rotation SO(3) ⇒ octahedral Oh group

Huey-Wen Lin — 23rd HUGS



22

Operator Design

All baryon spin states wanted: j = 1/2, 3/2, 5/2, …

Rotation symmetry is reduced due to discretization

rotation SO(3) ⇒ octahedral Oh group
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Operator Design

All baryon spin states wanted: j = 1/2, 3/2, 5/2, …

Rotation symmetry is reduced due to discretization

rotation SO(3) ⇒ octahedral Oh group
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Operator Design

All baryon spin states wanted: j = 1/2, 3/2, 5/2, …

Rotation symmetry is reduced due to discretization

rotation SO(3) ⇒ octahedral Oh group

Baryons

24Huey-Wen Lin — 23rd HUGS
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Operator Design

Baryon field 

Classify states according to symmetry properties 

Projection onto irreducible representations of finite groups

Number of operator

S. Basak et al., Phys. Rev. D72, 094506 (2005)
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26

Variational Method

Construct the matrix

Solve for the generalized eigensystem of 

with eigenvalues 

C. Michael, Nucl. Phys. B 259, 58 (1985)

M. Lüscher and U. Wolff, Nucl. Phys. B 339, 222 (1990)

At large t, the signal of the desired state dominates.

Construct the correlator matrix
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Nf = 0 Study: Nucleon

Anisotropic Wilson action, hep-lat/0609019
V = 123×48, as ~ 0.1 fm, as/at ~ 3, Mπ ~ 700 MeV

27

Exp (GeV) Lat (at
−1)
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Pion-Mass Dependences

Examples of a Nf = 2+1 study

Isotropic mixed action: DWF on staggered sea, 

Mπ ~ 300–750 MeV, L ~ 2.5 fm

Number of operator:

Naïve chiral extrapolation 

28

This calculation:

Three quarks in a 

baryon located at a 

single site
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Pion-Mass Dependences

SU(3) flavor symmetry breaking 

Gell-Mann-Okubo relation

Mass differences are close to experimental numbers

+

2+1-flavor mixed action

Huey-Wen Lin — 23rd HUGS
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Pion-Mass Dependences

SU(3) flavor symmetry breaking 

Gell-Mann-Okubo relation

Decuplet Equal-Spacing Relation

Mass differences are close to experimental numbers

+

Huey-Wen Lin — 23rd HUGS

2+1-flavor mixed action
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Pion-Mass Dependences

The non-strange baryons (N and Δ)

Symbols: JP = 1/2+ , 1/2− , 3/2+ , 3/2−

N N(1535) N(1720) N(1520)

Huey-Wen Lin — 23rd HUGS
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Pion-Mass Dependences

The non-strange baryons (N and Δ)

Symbols: JP = 1/2+ , 1/2− , 3/2+ , 3/2−

N N(1535) N(1720) N(1520)

Δ(1620) Δ Δ(1700)
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Pion-Mass Dependences

The singly strange baryons: (Σ and Λ)

Symbols: JP = 1/2+ , 1/2− , 3/2+ , 3/2−

Σ Σ(1620) Σ* Σ(1580)

Λ Λ(1405) Λ(1890) Λ(1520)

Huey-Wen Lin — 23rd HUGS
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Pion-Mass Dependences

The less known baryons (Ξ and Ω)

Symbols: JP = 1/2+ , 1/2− , 3/2+ , 3/2−

Ξ Ξ(1690)? Ξ(1530) Ξ(1820)

Huey-Wen Lin — 23rd HUGS
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Pion-Mass Dependences

The less known baryons (Ξ and Ω)

Symbols: JP = 1/2+ , 1/2− , 3/2+ , 3/2−

Ξ Ξ(1690)? Ξ(1530) Ξ(1820)

Babar at MENU 2007: 

Ξ(1690)0 negative parity 

−1/2

Huey-Wen Lin — 23rd HUGS
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Pion-Mass Dependences

The less known baryons (Ξ and Ω)

Symbols: JP = 1/2+ , 1/2− , 3/2+ , 3/2−

Ξ Ξ(1690)? Ξ(1530) Ξ(1820)

Could they be Ω(2250), Ω(2380), Ω(2470)?

Huey-Wen Lin — 23rd HUGS
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Roper in Full QCD

Nf = 2+1 mixed action (DWF+asqtad) calculation (L ~ 2.5 fm)

Symbols: JP

1/2+ N

1/2− S11

1/2+ P11

Finite-volume effects starting at 350 MeV pion

Prove or disprove Roper as the first radial excited state of nucleon?

Huey-Wen Lin — 23rd HUGS
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Roper in Full QCD

Nf = 2+1 mixed action (DWF+asqtad) calculation (L ~ 2.5 fm)

Symbols: JP

1/2+ N

1/2− S11

1/2+ P11

Finite-volume effects starting at 350 MeV pion.?

Prove or disprove Roper as the first radial excited state of nucleon?

Not a crazy possibility (see the hand-drawn extrapolation lines) 

Stay tuned on future Nf = 2+1 lattice calculations

Huey-Wen Lin — 23rd HUGS
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Nucleon Structure

Huey-Wen Lin — 23rd HUGS
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Deep Inelastic Scattering

Probing nucleon structure

The symmetric, unpolarized, spin-averaged

The anti-symmetric, polarized

Huey-Wen Lin — 23rd HUGS
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Moments of Structure Functions

No light-cone operator directly calculated on the lattice

Operator product expansion  

Polarized

Unpolarized

e1, e2, c1, c2 are Wilson coefficients

are the forward nucleon matrix elements  

Huey-Wen Lin — 23rd HUGS
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Nucleon Structure Functions

Unpolarized

Huey-Wen Lin — 23rd HUGS

xnq

xnΔq

xnδq

Polarized 

Transversity

Matrix element  P,S | O | P,S
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Implementation on the Lattice

Interpolating field

Three-point Green function

Contractions: u insertion, connected

Huey-Wen Lin — 23rd HUGS
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Implementation on the Lattice

Interpolating field

Three-point Green function

Contractions: u insertion, disconnected
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Implementation on the Lattice

Interpolating field

Three-point Green function

Contractions: d insertion, connected
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Implementation on the Lattice

Interpolating field

Three-point Green function

Contractions: d insertion, disconnected

Huey-Wen Lin — 23rd HUGS



47

Isospin Quantities

Disconnected contractions are noisy; mostly ignored

Calculate isospin quantity where

disconnected contribution cancelled

Use ratios to cancel out the unwanted factors

Huey-Wen Lin — 23rd HUGS
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Plateaux

Example: 2f DWF, Mπ ~ 700 MeV, a ~ 0.12 fm, L ~ 2fm 
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Nucleon Structure Functions

List of operators: lowest moments only
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Nucleon Structure Functions

Chiral extrapolation formulae for each quantity

Chen et al., Nucl.Phys. A707, 452 (2002); Phys. Lett. B523, 107 (2001)

W. Detmold et al., Phys. Rev. D66, 054501 (2002); Phys. Rev. Lett. 87, 172001 (2001)

Linear ansatz

Renormalization
Analytically: Lattice perturbation theory

Numerically: RI/MOM-scheme nonperturbative renormalization 
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Nucleon Structure Functions

Example: 2+1 DWF, Mπ ~ 320–620 MeV, a ~ 0.12 fm, L ~ 3 fm

Chiral extrapolations: lowest moments only

Huey-Wen Lin — 23rd HUGS

Unrenormalized
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Nucleon Structure Functions

World data: the first moment of the momentum fraction

xq

HWL et al., 0802.0863[hep-lat]; M. Guertler et al., PoS(LAT2006)107; 

D. Pleiter et al., PoS(LAT2006)120 ; K. Orginos et al., Phys.Rev.D73:094507, 2005; 

D. Renner et al., PoS(LAT2006)121; D. Dolgov et al., Phys. Rev. D66, 034506 (2002)
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Nucleon Structure Functions

xΔq

HWL et al., 0802.0863[hep-lat]; M. Guertler et al., PoS(LAT2006)107; 

D. Pleiter et al., PoS(LAT2006)120 ; K. Orginos et al., Phys.Rev.D73:094507, 2005; 

D. Renner et al., PoS(LAT2006)121; D. Dolgov et al., Phys. Rev. D66, 034506 (2002)

Huey-Wen Lin — 23rd HUGS

World data: the first moment of the helicity distribution
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Nucleon Structure Functions

World data: zeroth moment of the transversity

HWL et al., 0802.0863[hep-lat]; M. Guertler et al., PoS(LAT2006)107; 

D. Pleiter et al., PoS(LAT2006)120 ; K. Orginos et al., Phys.Rev.D73:094507, 2005; 

D. Renner et al., PoS(LAT2006)121; D. Dolgov et al., Phys. Rev. D66, 034506 (2002)

1δq
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Nucleon Structure Functions: Higher moments

Example: 

unpolarized moments
D. Dolgov et al., Phys. Rev. D66, 

034506 (2002)

Symbols:
Diamonds: 0f LHPC-SESAM

Triangles: 0f QCDSF

Squares: 2f LHPC-SESAM

n ≥ 4: mixings with

lower-dimension operators

x2q

x3q
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