The Nuclear Many-Body Problem
Lecture 4

Coupled Cluster theory and its application to
medium sized nuclei.

Nuclear Landscape




Extending the Ab-Initio program beyond the
lightest nuclel.

* Need a theory which scales softly with system
size and can be systematically improved.

* Need a theory which scales correctly with
system size. Size Extensivity ensures that the
energy scales linearly with number of particles.

* Coupled Cluster theory a promising candidate.



Quantum many-body theory a historical perspective.

PHVYSICAL BEVIEW VOLUME 100, NUMHBER i OCTOBER 1, 1055

Many-Body Problem for Strongly Interacting Particles. II. Linked Cluster Expansion*

E. A. BRUECENER
Indiona Undversity, Bloomington, Indiana ° )
(Received April 28, 1955) 505 CItatlonS

An approximation method developed previously to deal with many particles in strong interaction is
examined in further detail. It iz shown that the series giving the interaction energy is a development in a
sequence of linked or irreducible cluster terma each of which gives & contribution to the energy proportional
to the total mumber of particles, Consequently the convergence of the expansion iz independent of the total
number of particles. The origin of this simple feature is illustrated by showing that a similar situation exists
in the expansion of standard perturbation theory. The numerical convergence of the expansion is quanti-
tatively discussed for the nuclear problem where it is shown that the correction arising from the first cluster
term involving three particles is less than the leading term by a factor of about 104, The smallnesa of the
correction is largely a result of the action of the exclusion principle.

Size Extensive Theories: FCl (NCSM),
Many-body Perturbation theory,

Derivation of the Brueckner many-body theory
1,062 citations

Coupled-Cluster theory By §. GoLosrore
: . P @ Trinity College, Universit Cambridge ]
Size Inextensive Theories: rimity College, University of Cambridge
Particle-hole truncated Cl (shell-model) (Communicated by N. F. Mott, F.R.S.—Received 24 August 1956)
An exact formal solution is obtained to the problem of a system of fermions in interaction.
The description of collective motions in terms of many—body This solution is expressed in a form which avoids the problem of unlinked clusters in many-
. body theory. The technigue of Feynman graphs is used to derive the series and to define
perturbation theory 500 citations linked terms. The graphs are those appropriate to a system of many fermions and are used to

give a new derivation of the Hartree-Fock and Brueckner methode for this problem.
By J. Husparp

Atomie Energy Research Establishment, Huarwell, Didcot, Berkshire

BE ~ A

Series converges for all A

NO unlinked diagrams in energy evaluation
Fast convergence in cluster rank

Precursor to Coupled Cluster theory

(Communicated by R. E. Peierls, F.R.8.—Received 2 Felruary 1957)

In this and a succeeding paper it iz shown how a theory equivalent to the Bohm & Pines
collective motion theory of the electron plasma can be derived directly from a perturbation
geries which gives in princip]a an exact solution of the many-body problem, This result is
attained by making use of & diagrammatic method of analysis of the perturbation series. By
& process analogous to the elimination of photon self-energy parts from the electredynamie
& matrix it is found possible to simplify the perturbation series, introducing a modified interac-
tion between the particles. A useful integral equation for this modified interaction can be
sat up, and it is shown how the energy of the system can be expressed in terms of the modified
interaction. The elose connexion between this approach and the dieleetrie theory of plasma

oseillations iz indicated.



Historical Perspective

Nuclear Physics 7 (1958) 421—424; © Norvih-Holland Publishing Co., Amsterdam

Mot to be reproduced by photoprint or microfilm without written permission from the publisher

523 citations

BOUND STATES OF A MANY-PARTICLE SYSTEM

F. COESTER
Department of Physics, State University of Iowa, Towa City, Towa

Received 10 April 1958

Abstract: Rigorous formal solutions of the bound state Schridinger equation are constructed
in terms of an arbitrary complete set of single particle wave functions. From these
solutions cne sees without effort that the Rayleigh Schridinger perturbation expansion
of the energy does not contain matrix elements represented by products of unlinked
diagrams. The components of the state vector are related in a simple manner to functions
represented by linked diagrams only.

The walidity of the Brueckner approximation to the bound state energy
of a many particle system depends on the absence of "unlinked clusters”
in the perturbation expansion of this energy. Brueckner !) has shown that
such terms are absent from a few orders of the perturbation series. General
proofs for all orders of the perturbation series have been given by several
authors 2-%). All these proofs are based on a detailed inspection of pertur-
bation terms of arbitrary order. The purpose of this note is to cast the basic
equations into such a form that the absence of unlinked terms from the
energy becomes evident without detailed inspection of all #'th order
perturbation matrix elements,

Nuglear Physics 17 (1960) 47?—435;@ Nortk-Holland Publisking Co., Amsterdam
Mot to be duced by ph int or microfilm without written permission from the publisher
578 citations

SHORT-RANGE CORRELATIONS IN NUCLEAR
WAVE FUNCTIONS

F. COESTER
Department of Physics and Astronomy, State University of Towa, Towa City, [owa
and
H. KUMMEL
Max Planck Imstitut fiir Chemie, Mainz, Germany t

Received 18 February 1960

Abstract: We assume that the ground state wave functions of a closed shell nucleus is approxi-
mated by a Slater determinant in the restricted region of configuration space where all
internucleon distances are larger than a certain “healing distance”. The remainder of the
wave function is given in terms of a series of cluster functions. The overlap integral between
the correct wave functions and the Slater determinant is small and depends on the higher
cluster functions in a complicated manner. Nevertheless we can show that the one- and
two-body density matrices are well approximated by expressions involving only the single-
particle wave functions and the two-body cluster functions, The Schrédinger equation vieldsa
coupled set of equations which determine the cluster functions as well as the single-particle
wave functions.

THE JOURNAL OF CHEMICAL PHYSICS VOLUME 45, NUMBER 11 | DECEMBER 1966

On the Correlation Problem in Atomic and Molecular Systems. Calculation of
Wavefunction Components in Ursell-Type Expansion Using Quantum-Field

Theoretical Methods
Juit Cizex®

Institite of Physical Chemistry, Czechoslovak Academy of Sciences, Prague, Ceechoslovakia

(Received 17 May 1966)

A method ig suggested for the caleulation of the matrix elements of the logarithm of an operator which
gives the exact wavefunction when operating on the wavefunction in the one-electron approximation. The
method is based on the use of the creation and annihilation operators, hole-particle formalism, Wick"s
theorem, and the technique of Feynman-like diagrams. The connection of this method with the configuration-
interaction method as well as with the perturbation theory in the quantum-field theoretical form is dis-
cussed. The method is applied to the simple models of nitrogen and benzene molecules. The results are
compared with those obtained with the configuration-interaction method considering all possible configura-

tions within the chosen basis of one-electron functions,

1,309 citations

First papers explicitly
describing Coupled-Cluster theory

Kummel, Luhrmann, Zabolitsky, Phys. Reps. 36, 1 (1978)
Bishop, Flynn, Buendia, Guardiola, PRC42, 1341 (1990)

Mihala & Heisenberg, PRL84, 1403 (2000)



A short history of coupled-cluster theory

Formal introduction:
1958: Coester, Nucl. Phys. 7, 421

1960: Coester and Kummel, Nucl. Phys. 17, 477
Introduction into Chemistry (late 60’s):
1966: Cizek, J. Chem. Phys. 45, 4256 (1966); Adv. Chem. Phys. 14, 35 (1969)
1971: Cizek and Paldus, Int. J. Quantum Chem. 3, 359
Numerical implementations
1978: Pople et al., Int. J. Quantum Chem Symp, 14, 545
1978: Bartlett and Purvis, Int. J. Quantum Chem 14, 561
Initial nuclear calculations (1970°s):
1978: Kummel, Luhrmann, Zabolitzky, Phys. Rep. 36, 1 and refs. therein
1980-90s: Bishop’s group. Coordinate space.
Few applications in nuclei, explodes in chemistry and molecular sciences.
Hard-core interactions; computer power; unclear interactions
Nuclear physics reintroduction: (1/E , expansion)
1999: Heisenberg and Mihiala, Phys. Rev. C59, 1440; PRL84, 1403 (2000)
Three nuclei; JJ coupled scheme; bare interactions, approximate V,y
Useful References

Crawford and Schaefer, Reviews in Computational Chemistry, 14, 336 (2000)
Bartlett, Ann. Rev. Phys. Chem. 32, 359 (1981)




Coupled-Cluster theory

Coupled-Cluster theory is fully microscopic

Coupled-Cluster theory is size extensive. NO unlinked
diagrams enters, and energy scales linearly with
number of particles.

Low computational cost
Capable of systematic improvements

Amenable to parallel computing

Computational Chemistry: 100's of publications
in any year ( Science Citation Index ) for
applications and developments.




Coupled Cluster theory.

Exponential Ansatz for W Coupled Cluster Equations
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Coupled-Cluster in pictures

(F. Coester, 1958; F. Coester and H. Kiimmel, 1960; J. Cizek, 1966, 1969; J. Cizek and J. Paldus, 1971)
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The normal ordered Hamiltonian

Wicks theorem: One-body term:
e pla={p'a} + {pla} = {P'q} + Spg=i
ABC...={ABC..}+ Y ABC..}
all Two -body term: _
contrastions p'q'sr = {p'q'sr} + {p'q'sr} + {p'q"sr}
T Fotap tol g
+ sr: -4 57
+ Y {4BC..} {p'a"sr} +{p'q"sr}
all e —t= 1
— — {plq'sr} +pir{g's}t +q's{p'r)
4+ Y {ABC...}
al bl otel ot g
mni%ﬂd p's{q'r} —q'r{p's}
prdts = — 1
(43) + pTrth — p"SqTT .

The normal ordered Hamiltonian is :

Hg-._r =H - <D|H|0} Where H = Efpp{.u P}"‘ E qu{PJrq}"‘ 2 (pq”."&'){quTSF}

PFq

+ (0| H|0). (47)




The Coupled-Cluster energy expression

1
+ I[[[[H" VA VAVAR

The Baker Hausdorff commutator relation:

Hy=Hy+[H.T]+ %[[.-‘L 1717 + %[[[hi 171717

Hy = exp(= TV Hy exp(T) = [Hy exp(T)]c

The Coupled-Cluster energy expression:

E = {(0|H|0}.

E=(0|H+(HT) ¢+ (HT,) o+ (HT32)|0)

Diagramatic representation:

b
Zﬁj B ffjf’{ﬂrfﬂ;} \A/

a

Ti = Y tif{di} =




The Coupled Cluster energy expression
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How do we calculate the Coupled-Cluster the particle-
hole excitation amplitudes ?

CCSD equations — n-n,, (N)
(®F|(Hwe T12)o|®) = (08| [Hn(1 + Ty + To + LT7 + TTe + 1T7)]c|®) = 0

(@ |(Hne " P 2)0l®) = (®F|HN(1+ T+ Ta+ 3T + ThTo + 1T

a

AT+ 4TI + 37T)ol®) = 0

Two ways to solve the problem:

1. Apply wicks theorem and do all possible contractions ->
very tedious and prone to error !

2. Use diagrammatic rules and derive all possible diagrams
and convert into algebraic expressions. Intuitive and simple!




Example: the t1 equation

Algebraic expressions for the t1 amplitude equation:

(@7 |(Hye" " %)c

B)=fo = frta’ + fote — 70 + futla + S0V,
+  atTPusf — T fe + otk + e,

+  mripele + Mol + el — th et ule,
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T eguation




Why is Coupled-Cluster so accurate when compared to
Cl and or shell model calculations ?

i =i e m a e 5 —

ai"a i abij~"a

“Mean field”

CCSD
CCSDT

Disconnected quadruples

Connected quadruples




Size (Extensivity) matters !

Only size extensive theories produce a result and an error that scale as A.
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Comparison with other many-body techniques.
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FIG. 3. (Color online) Performance of theories for the corre-
lation energy in small molecules. Graphed is the percentage of
the full correlation energy achieved by the CI, CC, and MBPT
theories, as a function of the level of approximation. To facili-
tate comparisons, the ordinate gives the size-scaling parameter
of the approximation a=a, + ay+ «;, in the computational cost
function n**N*¥N7 Shown are MBPT (solid circles), approxi-
mations (2)—(6); CI (solid squares), approximations SD-SDTQ;
and CC (stars), approximations SD-SDTQ. The correlation en-
ergy is defined with respect to the Hartree-Fock energy for the
given basis set, and the full correlation energies are obtained
from the FCI calculations quoted in Table 1.



Comparison with other many-body techniques
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Coupled-cluster calculation for 6O

Interaction: Idaho-A based G-matrix

Model space: Up to 8 oscillator shells
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M. Wiloch et al, Phys. Rev. Lett. 94, 212501 (2005).
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Results converged w.r.t size of model
space

Excited 3 state: 1p-1h, about 6MeV to
high

Some deficiencies in form factor.

Three-nucleon force missing.



Coupled-Cluster meets benchmarks of 3H and 4He !

CCSD(T) and Faddeev (-Yakubovsky) results for *H and *He using Vjow_x from
AV18 with A = 1.9fm~!. CCSD(T) are within the errors (50 keV) of the Faddeev
results! (G. Hagen et al., Phys. Rev. C 76, 044305 (2007))

E(°H) [MeV]

E(*He) [MeV]

—eCCsD |1 —CCs0 1]
o==0 CCSDITI A ge== COSDITI] A
— Laddeey —FY ]

B 3 i1 Ik T m T W
N=2n+l N=2n+l



Benchmarking 160 and 40Ca with Coupled-Cluster

T e T e [

'1-5_ T | 1 T T "t: e
L e CCaD(T] . iy
i a cosor-ll ] = FF
-2.5-\] - 5 HE
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&5 s e . HE
e reen e pE e e e
MN=2n+l
“He 50 s
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exact (FY) [ -29.19(5)

40Ca converged within 1% ! J

Roth and Navratil PRL 99,
092501 (2007) EcispT =
-462.7TMeV. Our comment:
arXiv:0709.0449




Coupled-Cluster Theory with 3NF

We have derived and implemented Coupled-Cluster
equations for three-body Hamiltonians

Probe cutoff dependence of interactions with three
nucleon force in light and medium mass nuclei

Does 3NF provide the necessary repulsion/attraction
needed to approach experimental mass values ?

“Coupled-Cluster theory with three-body Hamiltonians”
G. Hagen et al., PRC 76, 034302 (2007)



3NF contribution to the T1 cluster equation

Energy and 1p-1h equation
as examples.

Factorization of diagrams

very useful

1p-1h: 15 diagrams

2p-2h: 51 diagrams



3NF from Chiral Perturbation theory

Phase shifts reproduced to y2/datum=1
ZH Force 34 Force 4N Force About 24+ parameters
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Coupled-Cluster results for 4He with 3NF

2y rom AVIE Wt A ] GEn
@ 3NF brings in repulsion as expected !

@ CCSD and CCSD(T) with 3NF meets Faddeev-Yakubovsky benchmark !
Ecospim) = —28.24 MeV. F-Y E = —28.20(5)MeV.
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Different contributions to E(CCSD) from 3NF in 4He

Three-body Hamiltonian in normal ordered form:

Hs

1

ijk ipg

-1 . 1 e\ fatata a .
< 2 _Ciikllijk) + = > _Ciipllia){apaq} + 7 > (ipallirs){ap33sar} + b ,
ipgrs

it

I]I__ 1 I
10 E I\%-bﬂd}" only

o " g.0-body 3NF
g ~~~~-a 1-body 3NF
_E-r Hx\
£ estimated triples corrections
- ‘e 2-body 3NF
4.- >
E
: .
- residual 3MF
4 1 ] ] 1 L
(1) (2) (3) (4) (9]

Really good news!

@ The “density
dependent” terms of
3NF are dominant!

@ ¢ from residual 3NF
costs 1 — € of work !

@ "“2-body” machinery
can be used.
@ Residual

three-nucleon force
can be neglected!




Utilize the nuclear total spin symmetry to push further
Potential for ‘ab initio’ in heavy nuclel

*Implemented a CCSD J-coupled code for heavier nuclei:

« Scaling at CCSD goes from O(n2n*) to O(n_ *3n 2?)

« Can do up to 14 complete major shells on a single node.

* CCSDT Gold standard for these heavier nuclei (developing)

* Enables specified calculations for heavy nuclel

* The large model spaces mean that we can do BARE interactions!

* Is it technically feasible to go further? (YES)
* Does size extensivity work in the nuclear case? (YES)
* Does power counting hold in medium mass nuclei (YES)



Speedup of J-coupled CCSD code for 40Ca as compared
to m-scheme CCSD code
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CONVERGED 160, 40Ca, 48Ca and 48Ni CCSD ground
state energies with N3LO !!
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160, 40Ca, 48Ca and 48Ni CCSD ground state densities
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Charge and matter radii/Summary of results

s o ocap

Charge radii for various nuclei Wf T s “u el

using N3LO nucleon-nucleon 5 -

interaction. S e

~1MeV missing binding energy e |

for all nuclei: Size Extensivity ! i | -::__:_-:.':__:
. - hw [MeV] -

N ; r r o8 1yl a1z
ucleus | E/A V/A 8 | sl | e e =r 2o lExp)
“He -5.99 | -22.75 | 0.90 1.08 1.673(1}
T -6.72 | -30.69 | 1.08 125 27s) 2.737(8)
s -7.72 | -36.40 | 1.18 0.84 3 7519} 3.4764
= e 740 | 3707 | 131 127 3.24(9) 3.4738
eI -6.02 | -36.04 | 1.20 1 71 3.52(15]) !




foundation of the shell-model

Simplicity out of Complexity ! Towards microscopic

Occupation of natural orbitals

Nucleus S1/2 P3/2 P1/2 ds /2 S1/2 d3 /2 f7/2
“He w | 0.946
1 0.946
S 0.953 0.965 0.962
1 0.952 0.964 0.961
Ca 7 0.986 0.974 0.973 0.983 0.959 0.980
1 0.984 0.973 0.972 0.982 0.960 0.979
oy 0.983 0.971 0.970 0.979 0.959 0.977
v | 0987 | 0.976 | 0975 | 0.983 | 0.963 | 0.982 | 0.987
N 0.986 0.973 0.972 0.981 0.985 0.979 0.985
1 0.977 0.966 0.9606 0.974 0.956 0.971
Occupation of Hartree-Fock orbitals
"o | D7RY | AG2E | 062D
v 0.737 0.634 0.648
sl 0.904 0.587 0.584 0.500 | 0.431 0.489
v 0.911 0.604 0.601 0.519 0.448 0.509




Summary

Coupled-Cluster theory is size-extensive. Energy scales correctly
with system size.

CC scales polynomial with system size allowing to reach medium
size and heavier nuclei.

By using diagrammatic rules systematic improvements can be easliy
implemented. CCSD -> CCSDT -> CCSDTQ

CC meets few-body benchmarks.

We have implemented CC for three-body Hamiltonians, investigate
role of 3NF in medium sized nuclei.

Taking spherical symmetry into account we have been able to
reduce dramatically the computational cost. Converged ground
states of 40Ca, 48Ca 48Ni using a single workstation.

Coupled-Cluster theory is an ideal candidate for extending the ab-
initio program to beyond the lightest region of the nuclear chart.



