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Some well known facts about the proton

• Charge:  Qp = +1
– It has a neutral partner, the neutron, Qn = 0  

• Spin: s = ½ћ
– Magnetic moment μp = 2.79μN

A l ti t 1 79– Anomalous magnetic moment ma = 1.79mN

• Mass:  Mp ~ 940 MeV/c2

Protons + neutrons make up 99 9% of the– Protons + neutrons make up 99.9% of the 
mass of the visible universe

1950’s: Does the proton have finite size?
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Scattering Experiments in Nuclear Physics

• Uses of scattering experiments
– Structure target 

Produced system (meson resonances)– Produced system (meson, resonances)

• Advantages of electron scattering
– Structureless probe. “clean”Structureless probe. clean
– Controlled energy/momentum transfer, 

“microscope” with resolution Q2

– Interaction through well-known 
EM current operator
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Electron Scattering a  clean probe of the Proton Structure
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Interaction described by:

Q2 = -(e-e’)2

ν = Ee – Ee’
xB = Q2/2Mν
t = (p-p’)2

1/√Q2 is the space-time resolution of the virtual γ

t     (p p )

The exploration of the internal structure of the proton
began in the 1950’s with Hofstadter’s experiments
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Does the Proton have finite size?
19551955

e-

e-

Q
p dσ/dΩ = [dσ/dΩ]n.s.|F(q)|

∫p

Q

P t f f t

F q dr riq r( ) ( )= −∫ e ρ

Nobel Prize for

Proton form factors, 
transverse charge & 
current densities

Nobel Prize for 
Physics. 1961

• Elastic electron-proton scattering  
the proton is not a point-like
particle, it has finite size.
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Constituent Quark ModelConstituent Quark Model

The proton  is  build from three quarks of 
i 1/2 i i th t t (L 0)u

Revolutionized our way of thinking about proton structure

M. Gell-Mann, 1964 
G Z i 1964

spin s = 1/2 moving in the s-state (L = 0) 
and having masses mq ~ 300 MeV.

u

u

d
G. Zweig, 1964

• Proton mass:
• Proton spin: 2

1
2
1

2
1 ⊕⊕=S

m mp q≈ 3

Solely built from the quark spins!

Tremendously successful model in description of

• Hadron mass spectra
M ti t e.g.e.g. μp

e e= ≈279
2 2 3

.
( )
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• Magnetic moments e.g.e.g. μp
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What is the internal structure of the proton?
D i l ti l t t N b l i 1990Deep inelastic electron-proton 
scattering ep→e’X

Nobel prize 1990   

e’

e
Q

X J. Friedman   H. Kendall     R. TaylorJ. Friedman   H. Kendall     R. Taylor

p

Q

1968

1/

Quarks carry ~ 50% of the proton momentum =>glue=>QCD

Scaling → Quarks are point-like objects!
= 1/xB
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Q y p g Q
The quark spins contributes only 25% to the proton spin.  



Deep Inclusive Scattering (DIS)
Ob dObserved

Not Observed

Wh t h l d?

• quarks-substructure of the nucleon 
• 50% of the nucleon momentum is carried by quarks the remainder by

What have we learned?

50% of the nucleon momentum is carried by quarks, the remainder by 
gluons

• quarks are spin ½ objects
• less than 25% of the nucleon spin is carried by quark helicity
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Some Open Questions in Nucleon Physics in the 
Valence Quark Region

I t l l d i• Internal nucleon dynamics
• Transverse momentum distributions 
• Quark-quark correlationsQuark quark correlations
• Full (complex) quark wave functions
• Origin of the nucleon spin

G d l iGPDs and Exclusive processes
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D. Mueller, X. Ji, A. Radyushkin, …1994 -1997

How are the proton’s charge/current densities related to its quark 
momentum/spin distribution? 

M. Burkardt, A. Belitsky… Interpretation in impact parameter space  

?

Proton form factors, 
transverse charge & 
current densities

Structure functions,
quark longitudinal
momentum & spin

Correlated quark momentum 
and helicity distributions in
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momentum & spin 
distributions

and helicity distributions in 
transverse space - GPDs



GPDs & PDFs

2-D Scotty
zz

3-D Scotty

x
y

x

1-D Scotty

Water

Deeply Virtual 
Exclusive 

Calcium

CarbonDeep Inelastic Scattering & 

Processes & GPDs

Thomas Jefferson National Accelerator Facility Page 12

xParton Distribution Functions.



From Holography to Tomography
A B lit k B M ll NPA711 (2002) 118

An Apple

A. Belitsky, B. Mueller, NPA711 (2002) 118
mirror

An Apple

mirror

A Proton

mirror

detectormirror

By varying the energy and momentum transfer to the 
proton we  probe its interior and generate images of the 
proton’s quark content
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proton s quark content.



Deeply Exclusive Scattering (DES)
I l i S tt i C t S tt iInclusive Scattering Compton Scattering

θ = 0

Deeply Virtual Compton Scattering (DVCS)

Probes the nucleon quark structure and correlations 
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q
at the amplitude level



DVCS and Generalized Parton Distributions (GPDs)

GPDs: H, E unpolarized, H, E polarized
~~

γ∗ γ

e g H(ξ t Q2) = ∫ Hq(x, ξ, t, Q2)dx

)( ξ+xP )( ξ−xP

GPD’s
e.g. H(ξ, t, Q2) = ∫ x-ξ + iε

Hq(x, ξ, t, Q2)dx
ξ

+ iπHq(ξ, ξ, t, Q2)= ∫ x-ξ
(ξ, ξ, , Q )

cross section 
difference   

d3σ ~ ~

∫
real part imaginary part

d3σ
dQ2dxBdt

~[aH(ξ, t, Q2)+bE(ξ, t, Q2)+cH(ξ, t, Q2)+dE(ξ, t, Q2)]2

Hq:  Probability amplitude for N to emit a parton 

~
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q with x+ξ and N’ to absorb it with x- ξ.



Basic Process – Handbag Mechanism 

Deeply Virtual Compton Scattering (DVCS)
hard ertices

x+ξ x-ξ

hard vertices
x – longitudinal quark
momentum fraction

γ

x 2ξ – longitudinal 
momentum transfer

–t – Fourier conjugate

t

t Fourier conjugate
to transverse impact 
parameter  

xBξ =
GPDs depend on 3 variables, e.g. H(x, ξ, t). They probe 
the quark structure at the amplitude level
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2-xB
ξthe quark structure at the amplitude level.



Link to DIS and Elastic Form Factors
Form factors

DIS at ξ=t=0

Form factors 
[ ) Dirac f.f.(),,(

1

tF1txHdx
q

q =]ξ∫ ∑

[
1 ]∫ ∑DIS at ξ t 0

)()0,0,(~
)()0,0,(
xqxH

xqxH
q

q

Δ=
=

)(),,(~,)(),,(~
,

1

1
,

1

1
tGtxEdxtGtxHdx qP

q
qA

q =ξ=ξ ∫∫
−−

[ ) Pauli f.f.(),,( tF2txEdx
q

q =]ξ∫ ∑

Forward limit

11

Sum rules

),,(~,~,, txEHEH qqqq ξ

[∫− J G = xdx=J q
−12 2

11 1 ]ξ+ξ )0,,q()0,,q( xExH
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Ji’s Angular Momentum Sum Rule



Universality of GPDs

Parton momentum

Elastic form factors

Real Compton
distributions scattering at high t 

GPDs
Deeply Virtual Meson 

Deeply Virtual

Single Spin
Asymmetries

productionDeeply Virtual 
Compton Scattering
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Universality of GPDs

Quark-quark 
correlations

Quark tomography

GPDs

Proton’s gravitational
form factors

Quark angular  
momentum
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So, GPDs give access to complex 
Proton Structure, but … 

How can be determine them?
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Deeply Virtual Compton Scattering

ep      epγ Kinematics

’

yplaneγγ*p

e
φΘγγ∗

γ x

p
e

zγ*

ee’γ* plane
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Access GPDs through Interference

DVCS

BHe e

Eo = 11 GeV Eo = 6 GeV Eo = 4 GeV

d4σ

p p

Eo  11 GeV Eo  6 GeV Eo  4 GeV

d σ
dQ2dxBdtdφ ~ |TDVCS + TBH|2

TBH : given by elastic form factors F1, F2
BH

TDVCS: determined by GPDs

I ~ 2(TBH)Im(TDVCS)
DVCS

BH-DVCS interference generates beam 
and target polarization asymmetries that 
carry the proton structure information

DVCS
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carry the proton structure information.



Model representation of GPD H(x,ξ,0)

Quark distribution q(x)

-q(-x) 

DIS measures at ξ=0

Accessed by beam/target

H(x,ξ,0)

Accessed by beam/target 
spin asymmetry x = ± ξ

t=0

Accessed by cross sections
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Measuring GPDs through polarization
Δσσ+ − σ−

A = Δσ
2σ

σ σ
σ+ + σ− =

Polarized beam, unpolarized target:

ΔσLU ~ sinφ{F1H + ξ(F1+F2)H +kF2E}dφ
~ H(ξ,t)

Kinematically suppressed ξ ~ xB/(2-xB) ~

Unpolarized beam, longitudinal target:
~ H(ξ ) H(ξ )

~

Kinematically suppressed ξ B ( B)
k = t/4M2

ΔσUL ~ sinφ{F1H+ξ(F1+F2)(H +ξ/(1+ξ)E) -..  }dφ

Kinematically suppressed

H(ξ,t), H(ξ,t)

Unpolarized beam, transverse target:

ΔσUT ~ sinφ{k(F2H – F1E) + ….. }dφ H(ξ,t), E(ξ,t)
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UT

Kinematically suppressed



Typical cross sections and rates in eN/eA
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Characteristics of eN facilities

Luminosity L: Number of possibleLuminosity L: Number of possible
eN collisions per time [cm-2S-1]  
dNevent = Lσdt 

Polarization (beam, target)   

JLab: High –luminosity frontier
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Aerial View of CEBAF

3 End Stations3 End Stations
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6 GeV CEBAF6 GeV CEBAF
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CEBAF Actual Parameters

• Primary Beam:  Electrons
• Beam Energy:  6 GeV

nucleon → quark transition
baryon and meson excited states

• 100% Duty Factor (CW) Beam

•coincidence experiments ⇒ excite system with a known (q,ω)
and observe its evolution

• Three Simultaneous Beams with Independently Variable Energy and Intensity

•complementary, long experiments
P l i ti (85% b (!) d ti d t )• Polarization (85% beam (!) and reaction products)

•spin degrees of freedom
weak neutral currents (extremely small helicity-correlated 
changes)changes)

� > 106 X SLAC at the time of the original DIS experiments
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Hall A:  Two High Resolution (10-4) Spectrometers
Maximum luminosity 1038 cm-2s-1
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Hall C:  A High Momentum and a Broad Range Spectrometer
Set-up Space for Unique Experiments   
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Hall B:  The CEBAF Large Acceptance Spectrometer (CLAS)
Maximum luminosity 1034 cm-2s-1
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CEBAF Large Acceptance Spectrometer (CLAS)

Torus magnet
6 superconducting coils

Large angle calorimeters
Lead/scintillator, 512 PMTs

Li id D (H )t t NH3 ND3

Drift chambers
Gas Cherenkov counters
e/π separation 216 PMTs

Liquid D2 (H2)target, NH3, ND3
γ start counter; e- minitorus

argon/CO2 gas, 35,000 cells
e/π separation, 216 PMTs

Electromagnetic calorimeters
Lead/scintillator, 1296 PMTs

Time-of-flight counters
l i i illplastic scintillators, 684 PMTs

Operating luminosity 1034cm-2s-1
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CLAS (forward carriage and side clamshells retracted)

Panel 4 TOF 
Panel 2 & 3TOF 

Large angle EC

Panel 1 TOF 

R i 3 d ift h b Cerenkov & Forward angle EC
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Region 3 drift chamber Cerenkov  & Forward angle EC



Analysis of CLAS 4.2 and 4.8 GeV data

Polarized electrons, E = 4.25 GeV and 4.8 GeV

An ep→epX event in CLAS

γγ

Separation of single γ from 
π0→γγ using missing mass.
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Background
Only 2-parameter fit: Nγ and Nπ0

Nγ

ep→epX
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Exclusive DVCS with CLAS

Beam Spin Asymmetry • Beam energy – 4.25 GeV

• ep→epγ identified by   
analyzing the missing mass 
distribution ep→epX

•W > 2 GeV

•1(GeV/c)2 < Q2 < 1.75(GeV/c)2

•0.1 (GeV/c)2 < -t < 0.3 (GeV/c)2

The measured asymmetry:

α = 0.202 ± 0.028stat ± 0.013sys

Α(φ) = αsinφ + βsin2φ
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Exclusivity for e p → e p γ

Missing Mass2 = ( p + γ* – γ )2

Missing Mass resolution : 0.8 GeV
Exclusive region: Missing Mass < 1.7 GeV
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Exclusive region: Missing Mass  1.7 GeV



DVCS asymmetry measurement

PRL, 87 (2001), 182001

‹xB›=0.11 
2 2

e p → e p γ

‹Q2›=2.6 GeV2

‹-t›=0.27 GeV2

ALU = -0.23±0.04(stat)±0.03(syst)

Signal of DVCS process

--Kivel, Polyakov & VanderhaeghenKivel, Polyakov & Vanderhaeghen (2001)(2001) ––
sin Φ dependence
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Signal of DVCS process
Can be described by GPD calculation



Pioneering experiments observe interference !

2001JLab HERA

E = 4 3 GeV E = 27 GeV

e-p−>e-pγ e+p−>e+pγ
E = 4.3 GeV
Q2 = 1.5GeV2

E = 27 GeV
Q2 = 2.5GeV2

N l di  t ib ti   ll!
AUL = αsinφ + βsin2φ
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Non-leading contributions are small!
non-leadingLeading term



Measuring GPDs through polarization
Δσσ+ − σ−

A = Δσ
2σ

σ σ
σ+ + σ− =

Polarized beam, unpolarized target:

ΔσLU ~ sinφ{F1H + ξ(F1+F2)H +kF2E}dφ
~ H(ξ,t)

Kinematically suppressed ξ ~ xB/(2-xB) ~

Unpolarized beam, longitudinal target:
~ H(ξ ) H(ξ )

~

Kinematically suppressed ξ B ( B)
k = t/4M2

ΔσUL ~ sinφ{F1H+ξ(F1+F2)(H +ξ/(1+ξ)E) -..  }dφ

Kinematically suppressed

H(ξ,t), H(ξ,t)

Unpolarized beam, transverse target:

ΔσUT ~ sinφ{k(F2H – F1E) + ….. }dφ H(ξ,t), E(ξ,t)
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UT

Kinematically suppressed



Spin polarized proton target
The separation of GPDs requires measurements on polarized hydrogen targets.
Measurements on such a target are more difficult than on unpolarized hydrogen. 
A typical polarized target NH3 contains only 3 protons with spins aligned out of 17 
nucleonsnucleons.

final state 
particle to CLAS

Magnetic field ~ 5 Tesla 

Temperature ~ 1 K

Dynamically polarized NH3 target 

Temperature ~ 1 K

beam

target cell
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Helmholtz coilsliquid He
1m



Hall B Longitudinally Polarized Target

Dynamically polarized NH3

5 Tesla magnetic field

δB/B ≈ 10-4

1K LHe cooling bath

NH3 polarization:75%

12C, 15N,  and  4He targets 
to measure the dilution factor
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DVCS eg1: Separating DVCS Photons from Polarized Protons in NH3
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Events from both π0 and unpolarizedEvents from both π and unpolarized 
target nucleons are suppressed
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Geometry cut: θγx< 1o



First DVCS measurement with spin-aligned target

Unpolarized beam, longitudinally spin-aligned target:

ΔσUL ~ sinφIm{F1H+ξ(F1+F2)H +… }dφ
~

~
AUL is dominated by H and H~

fit
S. Chen, et al., Phys. Rev. Lett 97, 072002 (2006)

CLAS preliminary

H=0
~

model
model (H=0)~

H=0
H=0
~

= 0 252 ± 0 042 Planned experiment in 2008 will 
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α =  0.252 ± 0.042 
β = -0.022 ± 0.045

Planned experiment in 2008 will 
improve accuracy dramatically.



The CLAS detector

• Toroidal magnetic field (6 supercond. coils)Toroidal magnetic field (6 supercond. coils)
• Drift chambers (argon/CO2 gas, 35000 cells)
• Time-of-flight scintillators 
• Electromagnetic calorimeters 
• Cherenkov Counters (e/π separation)

Performances:
f h d i l• large acceptance for charged particles

8°<θ<142°, pp>0.3 GeV/c, pπ>0.1GeV/c
• good momentum and angular resolution

Δp/p ≤0.5%- 1.5%, Δθ, Δφ ≤ 1 mradp/p ≤0.5% .5%, θ, φ ≤ ad
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Channel selection

e’’ ’ CC

TOF

e

γ

ep→e’p’γ
in CLAS

DC
CC

γ
All 3 particles 
are detected

EC

p’
• electron ID: 

EC, CC, DC and TOF IC• proton ID: 
DC and TOF

• photon ID: 

IC
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IC or EC



The e1-dvcs experiment at CLAS
E i M h M 2005 424 PbWO424 PbWO424 PbWO444 crystalscrystalscrystals

16cm x 1.3cm x 1.3cm16cm x 1.3cm x 1.3cm16cm x 1.3cm x 1.3cm
18 radiation lengths18 radiation lengths18 radiation lengths

• Experiment: March - May 2005
• Ee = 5.77 GeV
• Polarization: 76% - 82%
• Current: 20-25 nA

CLAS

APD light readoutAPD light readoutAPD light readout• Integrated luminosity: 3.33· 107 nb-1

solenoid

CLAS

Standard CLAS acceptance
for photons: [ ]oo 4317 ;∈θIC

solenoid

[ ]

I l i [ ]oo 154θ

IC

Superconducting solenoid magnet
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Inner calorimeter: [ ]oo 154 ;∈θ
p g g

(shielding for Moeller electrons)



Magnetic Shielding for Møller Electrons

ith ti fi ldith ti fi ld
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without magnetic fieldwithout magnetic field with magnetic fieldwith magnetic field



Kinematics and Acceptance with CLAS + IC
DVCS studies require:

high Q2

low t

The much improved acceptance for photon detection, and the longer running time
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The much improved acceptance for photon detection, and the longer running time 
will allow us to extend the kinematics range to higher Q2, and to map out the xB

and t dependence in small bins



Selection of the DVCS final state

epπ0→epγ(γ) background
calculated with Monte Carlo
i l ti d i t lsimulation and experimental 

epπ0→epγγ data: 5% on average

Exclusivity cuts:
• P T < 90 MeV/c (150 MeV/c) [ep→epgX]• PX

T < 90 MeV/c (150 MeV/c) [ep→epgX]
• Cone angle α(γX’) <1.2° (2.7°) [ep→epX’]
• Coplanarity angle between (γp) et 
(γ*p)<±1.5° (±3°)
• E < 300 MeV (500 MeV)
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• EX < 300 MeV (500 MeV)



BSA: coverage and f distributions
Data integrated over t

• 13 Q2, xB bins
• 5 t bins
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Fit = α sinφ/(1+βcosφ)• 12 φ bins

Ph.D. Thesis of F.X. Girod



BSA: a vs. t
CLAS e1-dvcs
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Ph.D. Thesis of F.X. Girod
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0 09 t 0 2 G V2 0 2 t 0 4 G V2 0 4 t 0 6 G V2

Unpolarized Cross Sections φ
φ

σ γ   offunction  a as 2

4

dtddxdQ
d

B

epep→

0.09<-t<0.2 GeV2 0.2<-t<0.4 GeV2 0.4<-t<0.6 GeV2

0 6< t<1 GeV2 1< t<1 5 GeV2 1 5< t<2 GeV20.6<-t<1 GeV 1<-t<1.5 GeV 1.5<-t<2 GeV
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Ph.D. Thesis of H.S. Jo



0 09 t 0 2 G V2 0 2 t 0 4 G V2 0 4 t 0 6 G V2

Difference of Polarized Cross Sections φ
φ

σ
φ

σ γγ   offunction  a as 2

4

2

4

dtddxdQ
d

dtddxdQ
d

B

epep

B

epep →→ −
sr

0.09<-t<0.2 GeV2 0.2<-t<0.4 GeV2 0.4<-t<0.6 GeV2

0 6< t<1 GeV2 1< t<1 5 GeV2 1 5< t<2 GeV20.6<-t<1 GeV 1<-t<1.5 GeV 1.5<-t<2 GeV

Largest kinematical coverage
ever obtained for DVCS:
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Ph.D. Thesis of H.S. Jo

0.1<xB<0.58, 1<Q2<4.6, 0.09<-t<2



Separating GPDs Through Polarization

Polarized beam unpolarized target:

ξ = xB/(2-xB) 
k = -t/4M2

A = Δσ
2σ

σ+ − σ−

σ+ + σ− =ep         epγ

ΔσLU ~ sinφ{F1H + ξ(F1+F2)H +kF2E}dφ
~

Polarized beam, unpolarized target:

H, H, E
~

Unpolarized beam, longitudinal target:

Kinematically suppressed

~
ΔσUL ~ sinφ{F1H+ξ(F1+F2)(H + … }dφ

~ H, H

Unpolarized beam, transverse target:

ΔσUT ~ sinφ{k(F2H – F1E) + ….. }dφ H, E
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Global analysis of polarized and unpolarized data needed for GPD separation



Status of GPDs Studies at Jefferson Lab

ep→epγ (DVCS) BSA CLAS 4.2 GeV Published PRL

GPD Reaction Obs. Expt Status
),,( tH ξξ±

CLAS 4.8- 5.75 GeV Preliminary

(+ σ) Hall A 5 75 GeV Fall 04

From 

ep → epX

D di t d(+ σ) Hall A 5.75 GeV Fall 04

CLAS 5.75 GeV Spring 05

ep→epγ (DVCS) TSA CLAS 5.65 GeV Preliminary),,(~ tH ξξ±

)( tE ξξ± Dedicated

Dedicated 
set-up

e(n)→enγ (DVCS) BSA Hall A 5.75 GeV Fall 04

ed→edγ (DVCS) BSA CLAS 5.4 GeV under analysis

ep→epe+e- (DDVCS) BSA CLAS 5.75 GeV under analysis

),,( tE ξξ±

)( du +

Dedicated 
set-up

No other proposals at Jefferson Lab are available for 
the study of the DVCS process with a polarized target
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the study of the DVCS process with a polarized target.



DVCS with Polarized Target, Experimental Situation

Experimental Studies with CLAS
Data were collected as a by-productPreliminary CLAS data Data were collected as a by product 
during the Eg1 2000 run:  5.75 GeV 
with NH3 longitudinally polarized target, 
<Q2> ~ 1.8 GeV2

HERMES Experiment
Preliminary target spin asymmetriesPreliminary target spin asymmetries
have been shown by HERMES Collaboration
DIS2005 Workshop, Madison (2005)
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DVCS eg1: Separating DVCS Photons from Polarized Protons in NH3
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v
e
n

ts

100

ve
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before the angular cut after the angular cut
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4015N
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0

2/c2       GeV2
XMM
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0

2/c2                       GeV2
XMM

Events from both π0 and unpolarizedEvents from both π and unpolarized 
target nucleons are suppressed
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Geometry cut: θγx< 1o



Hall B Longitudinally Polarized Target

Dynamically polarized NH3

5 Tesla magnetic field

δB/B ≈ 10-4

1K LHe cooling bath

NH3 polarization:75%

12C, 15N,  and  4He targets 
to measure the dilution factor
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Target Spin Asymmetry: φ Dependence
6 GeV run with NH3 longitudinally polarized target 
(CLAS + IC) 60 days of beam time

CLAS eg1 (preliminary)
• CLAS (eg1+IC) projected

A dedicated CLAS experiment with longitudinally polarized
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A dedicated CLAS experiment with longitudinally polarized 
target will provide a statistically significant measurement of 

the kinematical dependences of the DVCS target SSA



Target Spin Asymmetry: Q2 Dependence
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Target Spin Asymmetry: t- Dependence

Higher t values will also be measured. The interpretation 
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g p
within the handbag formalism needs to be clarified.



Target Spin Asymmetry: t- Dependence
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Target Spin Asymmetry: x- Dependence
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Target Spin Asymmetry: Q2- Dependence
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DVCS in Hall A (E00-110 and E03-106)
• 75% polarized 2 5 µA electron beam• 75% polarized 2.5 µA electron beam
• 15 cm LH2 target -> L = 1037 cm-2s-1

• Left Hall A HRS with electron package
• 11x12 blocks PbF electromagnetic calorimeter• 11x12 blocks PbF2 electromagnetic calorimeter
• 5x20 blocks plastic scintillator array
• Digital sampling of PMT signals at 1 GHz

• Clear DVCS identification from HRS+calo
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E00-110 kinematics

The calorimeter is centered
on the virtual photon direction.
A t θ 150 dAcceptance: θγγ < 150 mrad

)2
 (G
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H(e,e’γ)  Exclusivity
[ H(e e’γ)X H(e e’γ)γY ]: Missing Mass2

4000
 cut2

XM

H(e e’γ)ΔH(e e’γ)p

[ H(e,e γ)X - H(e,e γ)γY ]:  Missing Mass2

2000

3000
H(e,e γ)Δ…H(e,e γ)p

1000

2000

H(e,e’γp) sample,
Normalized to H(e,e’γ)

)2 (GeV2M
0 0.5 1 1.5 2 2.5

0

)2 (GeV2
XM

H(e,e’γp) 
simulation

<2% in estimate of
H(e eγ)Nπ
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simulation,
Normalized to data

H(e,eγ)Nπ… 
below threshold MX

2<(M+m)2



Difference of cross sections
PRL97, 262002 (2006) 2 22 3 GeVQ = Im(CI

I) s1
I Twist-22.3 GeV

0.36B

Q

x

=

=

( I ) 1

Im(CI
I) s2

I Twist-3

Corrected for real+virtual RadCor Extracted twist-3
contribution small !Corrected for efficiency

Corrected for acceptance
Corrected for resolution effects
Checked elastic cross section @ ~1%

contribution small !

New work by P. Guichon
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Checked elastic cross section @ ~1%



Total cross section
PRL97, 262002 (2006) 

2 22 3 G VQ2 22.3 GeV

0.36B

Q

x

=

=

Corrected for real+virtual RC
C t d f  ffi i

Again, extracted twist-3
contribution small !

Corrected for efficiency
Corrected for acceptance
Corrected for resolution effects BH*DVCS + DVCS2 is large, 

comparable to BH2
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Q2 dependence and test of scaling
Twist-2
Twist-3

No Q2 dependence: strong indication for 
scaling behavior and handbag dominance Cross-section coefficients 

much larger than VGG
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much larger than VGG



Q2-dependence: averaged over t: <t>=-0.23 GeV2

Im[CI(F )]: ‘sinϕ term’

Im[CI]: VGG

Im[C (F )]:     sinϕ term

Hq(x,0,t) = x−α’t q(x)
ξ-dependence: 
DD, b=1
E 0Eq =0

Average of 
three  Q2

points.

Im[CI]:  10% bound on [ Twist-4 +  dσLT’(DVCS2) ] terms
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[ ] [ LT ( ) ]
Twist-3



Continuous
Electron
Beam

Jefferson Laboratory
Newport News, USA

Beam
Accelerator
Facility

Imax   ~ 200 μA
Duty Factor ~ 100%
σ /E 2 5 10-5σE/E ~ 2.5 10 5

Beam Pol ~ 80%

Emax = 6 GeV

Hall B
CEBAF 
L
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Large
Acceptance

Spectrometer



Add th d• Add the upgrade
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HERA experiments HERA experiments 

Hamburg GermanyHamburg, Germany
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Hermes @ DESYHermes @ DESY

calorimeter
RICH

preshowerTRD

10 countries
30 institutions

• resolution: δp/p~2%, δθ<1 mradresolution: δp/p 2%, δθ<1 mrad

• particle ID: lepton ID with  ε~98%, hadron contamination <1%

RICH: π, K, p  ID within 2<Eh<15 GeV Lumi ~1032cm-2sec-1
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pure nuclear-polarised atomic gas target
Lumi 10 cm sec


