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1. 
Introduction



Quark-hadron duality

Complementarity between quark and 
hadron descriptions of observables

∑

hadrons

=

∑

quarks

Can use either set of complete basis states
to describe all physical phenomena



Duality in Nature

• Duality between quarks (high energy)      
and hadrons (low energy) manifests itself    
in many processes 
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in many processes 

• e+ e- annihilation                                            
- total hadronic cross section at high energy                 
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• Duality between quarks (high energy)      
and hadrons (low energy) manifests itself    
in many processes 

• e+ e- annihilation                                            
- total hadronic cross section at high energy                 
averages resonance cross section

• Heavy meson decays                                       
- duality between hadronic & quark descriptions   
of decays in                    limitmQ → ∞

Duality in Nature
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• Duality between quarks (high energy)      
and hadrons (low energy) manifests itself    
in many processes 

• e+ e- annihilation                                            
- total hadronic cross section at high energy                 
averages resonance cross section

• Heavy meson decays                                       
- duality between hadronic & quark descriptions   
of decays in                    limit

• Duality between s-channel resonances and   
t-channel (Regge) poles in hadronic reactions 

mQ → ∞

Duality in Nature



s channel resonances
R s t channel poles αj t

∑
R

AR s, t ≈ ∑
j
Aj s, t

R(s)
j

!=
j

"! (t)

R

s =

t

= =

Finite energy sum rules

Igi (1962),  Dolen, Horn, Schmidt (1968)

“Finite energy sum rules”

σ
π

+
p
− σ

π
−

p

s-channel 
resonances

t-channel 
“Regge” poles



2.
Bloom-Gilman duality



Bloom, Gilman, Phys. Rev. Lett. 85 (1970) 1185
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Fig. 9. Early proton !W2 structure function data in the resonance region, as a function of "′, compared to a smooth fit to the
data in the scaling region at largerQ2. The resonance data were obtained at the indicated kinematics, withQ2 in GeV2, for the

longitudinal to transverse ratio R = 0.18. (Adapted from Ref. [3].)

perturbative QCD (as will be discussed in Section 4). Nevertheless, the astute observations made by

Bloom and Gilman are still valid, and may be summarized as follows:

I. The resonance region data oscillate around the scaling curve.

II. The resonance data are on average equivalent to the scaling curve.

III. The resonance region data “slide” along the deep inelastic curve with increasingQ2.

These observations led Bloom and Gilman to make the far-reaching conclusion that “the resonances are

not a separate entity but are an intrinsic part of the scaling behavior of !W2” [2].

In order to quantify these observations, Bloom and Gilman drew on the work on duality in hadronic

reactions to determine a FESR equating the integral over ! of !W2 in the resonance region, to the integral

over "′ of the scaling function [2],

2M

Q2

∫ !m

0

d! !W2(!, Q
2) =

∫ 1+W 2
m/Q2

1

d"′!W2("
′) . (63)

Here the upper limit on the ! integration, !m = (W 2
m −M2+Q2)/2M , corresponds to the maximum value

of "′ = 1 + W 2
m/Q2, where Wm ∼ 2GeV, so that the integral of the scaling function covers the same

range in "′ as the resonance region data. FESR (63) allows the area under the resonances in Fig. 9 to
be compared to the area under the smooth curve in the same "′ region to determine the degree to which
the resonance and scaling data are equivalent. A comparison of both sides in Eq. (63) for Wm = 2GeV

showed that the relative differences ranged from∼ 10%atQ2=1GeV2, to!2%beyondQ2=2GeV2 [3],
thus demonstrating the near equivalence on average of the resonance and deep inelastic regimes (point II

above). Using this approach, Bloom andGilman’s quark–hadron duality was able to qualitatively describe

the data in the range 1!Q2!10GeV2.

scaling curve

resonance - scaling duality in
proton                 structure function νW2 = F2
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“structure functions”F1 , F2
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Electron scattering
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Bloom-Gilman duality

Average over (strongly Q  dependent) resonances 
     Q   independent scaling function2

2

≈

Finite energy sum rule for eN scattering

2M

Q2

∫
νm

0

dν νW2(ν, Q2) =

∫
ω

′

m

1

dω′ νW2(ω
′)

measured structure function
(function of    and     )ν Q2

ω′
=

1

x
+

M2

Q2

scaling function
(function of      only)ω

′



Niculescu et al., Phys. Rev. Lett. 85 (2000) 1182

Bloom-Gilman duality

2

Average over
(strongly Q   dependent)
resonances 
     Q   independent
     scaling function

2

≈

Jefferson Lab (Hall C)
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Fig. 13. Proton F2 structure function in the ! (top) and S11 (bottom) resonance regions from Jefferson Lab Hall C, compared

with the scaling curve from Ref. [7]. The resonances move to higher " with increasing Q2, which ranges from ∼ 0.5GeV2

(smallest " values) to ∼ 4.5GeV2 (largest " values).

higherQ2 values. It is difficult to evaluate precisely the equivalence of the two ifQ2 evolution [60] is not

taken into account. Furthermore, the resonance data and scaling curves, although at the same " or #′, are
at different x and sensitive therefore to different parton distributions. A more stringent test of the scaling

behavior of the resonances would compare the resonance data with fundamental scaling predictions for

the same low-Q2, high-x values as the data.

Such predictions are now commonly available from several groups around the world, for instance,

the Coordinated Theoretical-Experimental Project on QCD (CTEQ) [61]; Martin, Roberts, Stirling, and

Thorne (MRST) [62]; Gluck, Reya, andVogt (GRV) [63]; and Blümlein and Böttcher [64], to name a few.

These groups provide results from global QCD fits to a full range of hard scattering processes—including

lepton–nucleon deep inelastic scattering, prompt photon production, Drell–Yan measurements, jet pro-

duction, etc.—to extract quark and gluon distribution functions (PDFs) for the proton. The idea of such

global fitting efforts is to adjust the fundamental PDFs to bring theory and experiment into agreement

for a wide range of processes. These PDF-based analyses include pQCD radiative corrections which give

rise to logarithmicQ2 dependence of the structure function. In this report, we use parameterizations from

all of these groups, choosing in each case the most straightforward implementation for our needs. It is

not expected that this choice affects any of the results presented here.

Local Bloom-Gilman duality

∆

S11

ξ =
2x

1 +
√

1 + 4M2x2/Q2
Nachtmann scaling variable



Scaling variables

ξ =
2x

1 +
√

1 + 4x2M2/Q2

Nachtmann scaling variable

p+q
q

p

P

→ x as Q2
→ ∞

mq = 0

pT = 0
(p + q)2 = m

2

q {

ξ =
p+

P+
=

p0 + pz

M

light-cone fraction of target’s momentum carried by parton
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Fig. 22. F2 structure function per nucleon as a function of ! for hydrogen, deuterium, and iron. The curves are the GRV
parameterization [81] atQ2 = 1GeV2, corrected for the nuclear EMC effect. Errors shown are statistical only.

Because nucleons in the deuteron have the smallest Fermi momentum of all nuclei, ! scaling is not
expected to work in deuterium as well as in heavier nuclei at low W 2 and Q2. However, ! scaling is
observed even in deuterium at extremely low values of W 2 and relatively low momentum transfers.

For Q2!3GeV2, the resonance structure is completely washed out, so that even the most prominent "
resonance is no longer visible.

A compilation of recent F2 structure function data above W 2 = 1.2GeV2 is shown in Fig. 22 for
hydrogen, deuterium, and iron as a function of !, for a variety of momentum transfers ranging from

Q2=0.5GeV2 at low ! toQ2=7GeV2 at the higher ! values.Also shown is the F2 scaling curve for the
nucleon (from the GRV parameterization [81]), corrected for the known nuclear medium modifications

to the structure function. For the proton, the resonance structure is clearly visible and F2 is seen to
oscillate around the scaling curve. For deuterium, and even more so for iron, the resonances become less

pronounced, being washed out by the Fermi motion of the nucleons inside the nucleus. The prominent

peak present in the deuterium data in Fig. 22 (center panel) corresponds to the " resonance. This peak
follows the scaling curve as for the proton, but the other resonance peaks are smeared so much as to be

Nuclear structure 
functions

for larger nuclei, 
Fermi motion 
does resonance
averaging 
automatically !
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measurements at higher Q2 —data which are planned but
not yet available [24].

Figure 3 shows the same duality integral ratio as in
Fig. 2, but here obtained more locally, in restricted j
ranges around the three prominent resonance enhancement
regions observed in inclusive nucleon resonance electro-
production, i.e., around the masses of the D P33(1232)
(1.3 # W2 , 1.9 GeV2), the S11(1535) (1.9 # W2 ,
2.5 GeV2), and the F15(1680) (2.5 # W2 , 3.1 GeV2)
resonances, and in the higher W2 region above these
(3.1 # W2 # 3.9 GeV2). The uncertainties shown were
computed as in Fig. 2. The latter higher mass ratios,
which compare near deep inelastic data to deep inelastic
data are essentially one and similar to the results in Fig. 2.
It has been pointed out [25] that the D resonance form
factor decreases faster in Q2 than the leading order pertur-
bative QCD Q24 behavior which the scaling curve should
reflect. A similar observation may possibly be made from
Fig. 3 where the ratio (res!DIS) drops below unity in the
region 1 , Q2 , 3.5 "GeV!c#2. The S11 region, on the
other hand, appears systematically higher than the others.
Generally, however, the lower mass resonances appear to
average to the deep inelastic strength, manifesting duality
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FIG. 3. The ratios of integrated data strength in limited ranges
of j around the prominent resonance enhancement mass regions,
to the strength from the resonance fit (stars) and NMC (squares)
scaling curves integrated over the same j regions.

behavior even in these limited ranges of j at low Q2

where higher twist effects might be expected to be large.
By utilizing new inclusive data in the resonance region

at large x, it has been possible to revisit quark-hadron dual-
ity experimentally for the first time in nearly three decades.
These new data, combined with the extensive global mea-
surements of the F2 structure function from deep inelastic
scattering, allow for precision tests of duality in electron-
nucleon scattering. The original duality observations are
verified, and the QCD moment explanation indicates that
higher twist contributions to the n ! 2 moment of the F2
structure function are small or canceling, even in the low
Q2 regime of Q2 $ 0.5 "GeV!c#2. Duality is observed
to hold for local resonance enhancements individually, as
well as for the entire 1 # W2 # 4 GeV2 resonance region.
In all cases, duality appears to be a nontrivial dynamic
property of the nucleon structure function.

This work is supported in part by research grants from
the National Science Foundation. C. E. K. and R. E. wish
to thank A. Radyushkin for many useful discussions.
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Fig. 16. Ratios of the resonance to scaling integrals of the proton structure functions F
p
2 , F

p
L , 2xF

p
1 , and Rp integrated over x.

The integration limits are defined by the pion threshold at the highest x, and by W = 2GeV at the lowest x, for the Q2 values

of the resonance data. The scaling functions in the ratios are the SLAC parameterization [69] (squares) and the target mass

corrected MRST fit [67] (triangles) at the same (x, Q2) values.

other from a parameterization of SLAC deep inelastic data [69]. In most cases, the integrated perturbative

strength is equivalent to the resonance region strength to better than 5% aboveQ2= 1GeV2. This shows
unambiguously that duality is holding quite well on average in all of the unpolarized structure functions;

the total resonance strength over a range in x is equivalent to the perturbative, PDF-based prediction.

Of some concern is the seeming deviation from this observation in the MRST ratio at the highest

values of Q2 in Fig. 16, where the ratio rises above unity. This rise is not a violation of duality, but

rather is most likely due to an underestimation of large-x strength in the pQCD parameterizations. Higher

Q2 corresponds to large x here and, for comparison with resonance region data at the larger Q2 values,

accurate predictions at large x are crucial. There exists uncertainty in the PDFs at large x, largely due to

the ambiguity in the d/u quark distribution function ratio beyond x ∼ 0.5, which arises from the model
dependence of the nuclear corrections when extracting neutron structure information from deuterium data

(see Refs. [72–75]). Even if nominally deep inelastic data at higher W 2 and Q2, rather than resonance

region data, are compared to the available pQCD parameterizations, the scaling curves do not show

enough strength at large x (x!0.5) and fall uniformly below the data points.

Jefferson Lab (Hall C)

Moments



3.
Duality in QCD



X

NN

*!*!d
2σ

dΩdE′
∼ L

µν
Wµν

leptonic tensor

X

NN

*!*!

Electron scattering

N

e

e
′

X

γ
∗



in general,              transition matrix element very complicated N → X

at large      and large     (“Bjorken limit”) things simplify ...Q2
ν

correctionsM2/Q2



2

2

Parton model: F2(x, Q2) = x
∑

q

e2

q
q(x, Q2)

probability to find quark type “q” in nucleon,
carrying (light-cone) momentum fraction x



Mn(Q2) =

∫ 1

0

dx xn−2 F2(x, Q2)

= A(2)
n

+
A

(4)
n

Q2
+

A
(6)
n

Q4
+ · · ·

Operator product expansion

expand moments of structure functions
in powers of 1/Q2

Duality and the OPE

τ

matrix elements of operators with 
specific “twist”

τ = dimension − spin



Higher twists

(a) (b) (c)

τ = 2

single quark
scattering

τ > 2

qq and qg
correlations



Mn(Q2) =

∫ 1

0

dx xn−2 F2(x, Q2)

= A(2)
n

+
A

(4)
n

Q2
+

A
(6)
n

Q4
+ · · ·

     

Duality and the OPE

Operator product expansion

expand moments of structure functions
in powers of 1/Q2

If moment      independent of Q≈
2

higher twist terms            smallA
(τ>2)
n



Mn(Q2) =

∫ 1

0

dx xn−2 F2(x, Q2)

= A(2)
n

+
A

(4)
n

Q2
+

A
(6)
n

Q4
+ · · ·

     

de Rujula, Georgi, Politzer,
Ann. Phys. 103 (1975) 315

Duality ⇐⇒ suppression of higher twists

Duality and the OPE

Operator product expansion

expand moments of structure functions
in powers of 1/Q2



Applications of duality

If higher twists are small (duality “works”)

can use single-parton approximation
to describe structure functions

extract leading twist parton distributions

If duality is violated, and if violations are small

can use duality violations to extract higher 
twist matrix elements

learn about nonperturbative
qq or qg correlations 



Lowest moment of g1

Γ1(Q
2) =

∫ 1

0

dx g1(x, Q2)

= µ2 +
µ4

Q2
+

µ6

Q4
+ · · ·

Example:

Twist 2

µ2 =
1

2

∑

q

e
2

q
∆q =

1

2

(
4

9
∆u +

1

9
∆d +

1

9
∆s

)

∆q =

∫
dx (q↑ − q↓)



Lowest moment of g1

Γ1(Q
2) =

∫ 1

0

dx g1(x, Q2)

= µ2 +
µ4

Q2
+

µ6

Q4
+ · · ·

Twist 2

µ
p(n)
2 =

(
±

1

12
gA +

1

36
a8

)
Cns(Q

2) +
1

9
∆Σ Cs(Q

2)

triplet octet RGI singlet 
axial charge

Example:



Higher twist terms

1/Q   correction to g   moment 2
1

µ4 =
1

9
M2 (a2 + 4d2 + 4f2)

target mass
correction

quark-gluon
correlations



Higher twist terms

1/Q   correction to g   moment 2
1

µ4 =
1

9
M2 (a2 + 4d2 + 4f2)

f2 → 〈N | ψ̄ G̃µνγν ψ |N〉

d2 → 〈N | ψ̄ G̃µ{νγα} ψ |N〉
twist 3

twist 4



Color polarizabilities

11/Q   correction to g   moment 2

µ4 =
1

9
M2 (a2 + 4d2 + 4f2)

 color electric polarizability

χE =
1

3
(4d2 + 2f2) ∼ 〈"ja × "Ea〉z

Ji (1995), Schafer, Mankiewicz, ... (1995)

 color magnetic polarizability

χB =
1

3
(4d2 − f2) ∼ 〈j0

a
"Ba〉z

jµ

a = gsψγµ
taψ



Color polarizabilities

response of collective color electric and magnetic fields
to spin of nucleon
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Osipenko, WM et al, 
Phys. Lett. B 609 (2005) 259 

Proton g  moment1

Nachtmann
moment

= µ2 +
4M2

9Q2
f2 + · · ·M1 =

∫ 1

0

dx
ξ2

x2

[
g1

(
x

ξ
−

M2xξ

9Q2

)
− g2

4M2x2

3Q2

]



χ
p
E = 0.026 ± 0.015 (stat) ± 0.021 (sys)

χ
p
B = −0.013 ± 0.007 (stat) ± 0.011 (sys)

Compare with theoretical  calculations:

χ
p
E χ

p
B

Instanton −0.03 0.02

MIT bag 0.05 0.02

QCD sum rules −0.04 0.01

Lattice ? ?



3

high-precision An
1 data of the Jefferson Lab E99-117 ex-

periment [19] at large x. Since the elastic contribution is
included separately, the maximum value of x is defined
for each experiment by the pion electroproduction thresh-
old. The resulting total moments Γn

1 from the world data
are plotted in Fig. 1 for 0.5 < Q2 ≤ 10 GeV2, where the
total uncertainty in each data set is the quadratic sum of
the statistical and systematic uncertainties. The Jeffer-
son Lab experiment E94-010 (filled circles) extends the
range of Q2 with precision data below Q2 = 1 GeV2.
In all cases the data include both the inelastic and elas-
tic contributions, with the latter taken from the fit in
Ref. [20].

1 10
-0.10

-0.05

0

0.05

2
(GeV  )2Q

n
Γ

  
 (

  
  

 )
1

Q
2

SLAC E154SMC

HERMES

SLAC E142

SLAC E143

JLab E94010

FIG. 1: Q2 dependence of Γn

1 from various experiments. The
error bars are a quadratic sum of statistical and systematic
uncertainties. The twist-2 contribution from Eq. (2) is given
by the band with ∆Σ = 0.35, and its width represents the
uncertainty in αs. The elastic contribution is indicated by
the long-dashed curve.

The twist-2 contribution µn
2 is determined by fitting

the neutron data in Fig. 1 assuming there are no higher
twists in the data beyond Q2 = 5 GeV2, from which we
obtain ∆Σ = 0.35±0.08, where the uncertainty is statis-
tical. Using this central value, the twist-2 contribution is
illustrated in Fig. 1 by the shaded band, with the extrema
representing the range of uncertainty associated with the
value of αs in the Wilson coefficients. The exact value of
∆Σ depends somewhat on the x → 0 behavior assumed
in the extrapolation beyond the measured region. How-
ever, since the higher-twist contributions are determined
from the relative variation in Γn

1 from high to low Q2, the
absolute normalization of the leading-twist contribution
does not play a major role in determining fn

2 .
The higher-twist contribution ∆Γn

1 , obtained by sub-
tracting the leading-twist curves in Fig. 1 from data on
the total moment Γn

1 , is shown in Fig. 2 as a function
of 1/Q2 for ∆Σ = 0.35. Here we have used an

2 =
−0.0031(20) for the target mass corrections, obtained
from a fit to the world neutron data [19] at Q2 = 5 GeV2,
and the value dn

2 = 0.0079(48) for the twist-3 matrix el-

ement obtained from SLAC experiment E155X [21]. At
this Q2 value an

2 and dn
2 are dominated by their leading-

twist contributions.
While the Q2 evolution of the (twist-2) an

2 is straight-
forward, the evolution of higher-twist structure func-
tions is in general rather more involved. For the twist-4
fn
2 matrix element the Q2 evolution was computed in

Refs. [6, 22] to leading logarithmic order. In this analy-
sis we assume the leading-twist values for an

2 and dn
2 at

Q2 = 5 GeV2 and use the results from Refs. [6, 22] to ac-
count for the logarithmic Q2 dependence of fn

2 . In prac-
tice, the inclusion of αs dependence of the 1/Q2 correc-
tions has very little influence on the values of the higher
twists that we extract.

The solid curve in Fig. 2 represents a 2-parameter min-
imum χ2 fit to the ∆Γn

1 data for Q2 > 0.5 GeV2, using
Eq. (3) with fn

2 and the 1/Q4 correction µn
6 as free pa-

rameters. We neglect any possible Q2 dependence in µ6

itself, which should be a reasonable assumption within
the present uncertainties. The best fit values for the
twist-4 and 1/Q4 corrections, using only the statistical
uncertainty for each experiment, are found to be

fn
2 = 0.033± 0.005 , µn

6 = (−0.019± 0.002)M4 , (9)

normalized at Q2 = 1 GeV2. Including the total system-
atic uncertainty for each experiment, we find

fn
2 = 0.034± 0.043 , µn

6 = (−0.019± 0.017)M4 . (10)
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FIG. 2: Higher-twist correction ∆Γn

1 versus 1/Q2. The world
data points include statistical (inner ticks) and total uncer-
tainties (outer ticks), except for those of HERMES and JLab
E94010, for which only statistical uncertainties are shown
with error bars, with systematic uncertainties indicated by
the dark bands at the bottom of the figure. The solid curve
is a 2-parameter (fn

2 and µn

6 ) fit to the Q2 > 0.5 GeV2 data,
while the dashed curve is a 1-parameter (fn

2 only) fit to the
Q2 > 1 GeV2 data. The band around the solid curve repre-
sents the uncertainty of the fit due to statistical uncertainties,
and the light band at the bottom of the figure corresponds to
the total uncertainty.
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B = −0.001 ± 0.016

χ
n

E = +0.033 ± 0.029

χ
n

E χ
n
B

Instanton 0.03 −0.01

MIT bag 0.00 0.00

QCD sum rules −0.04 −0.02

Lattice ? ?

Compare with theoretical  calculations:



3

high-precision An
1 data of the Jefferson Lab E99-117 ex-

periment [19] at large x. Since the elastic contribution is
included separately, the maximum value of x is defined
for each experiment by the pion electroproduction thresh-
old. The resulting total moments Γn

1 from the world data
are plotted in Fig. 1 for 0.5 < Q2 ≤ 10 GeV2, where the
total uncertainty in each data set is the quadratic sum of
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son Lab experiment E94-010 (filled circles) extends the
range of Q2 with precision data below Q2 = 1 GeV2.
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Ref. [20].
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uncertainties. The twist-2 contribution from Eq. (2) is given
by the band with ∆Σ = 0.35, and its width represents the
uncertainty in αs. The elastic contribution is indicated by
the long-dashed curve.
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2 and dn
2 are dominated by their leading-

twist contributions.
While the Q2 evolution of the (twist-2) an

2 is straight-
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tions is in general rather more involved. For the twist-4
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2 matrix element the Q2 evolution was computed in

Refs. [6, 22] to leading logarithmic order. In this analy-
sis we assume the leading-twist values for an

2 and dn
2 at

Q2 = 5 GeV2 and use the results from Refs. [6, 22] to ac-
count for the logarithmic Q2 dependence of fn

2 . In prac-
tice, the inclusion of αs dependence of the 1/Q2 correc-
tions has very little influence on the values of the higher
twists that we extract.

The solid curve in Fig. 2 represents a 2-parameter min-
imum χ2 fit to the ∆Γn

1 data for Q2 > 0.5 GeV2, using
Eq. (3) with fn

2 and the 1/Q4 correction µn
6 as free pa-

rameters. We neglect any possible Q2 dependence in µ6

itself, which should be a reasonable assumption within
the present uncertainties. The best fit values for the
twist-4 and 1/Q4 corrections, using only the statistical
uncertainty for each experiment, are found to be

fn
2 = 0.033± 0.005 , µn

6 = (−0.019± 0.002)M4 , (9)

normalized at Q2 = 1 GeV2. Including the total system-
atic uncertainty for each experiment, we find

fn
2 = 0.034± 0.043 , µn

6 = (−0.019± 0.017)M4 . (10)
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while the dashed curve is a 1-parameter (fn

2 only) fit to the
Q2 > 1 GeV2 data. The band around the solid curve repre-
sents the uncertainty of the fit due to statistical uncertainties,
and the light band at the bottom of the figure corresponds to
the total uncertainty.
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nonperturbative interactions between
quarks and gluons not dominant at these scales 

suggests strong cancellations between resonances, 
resulting in dominance of leading twist

Total higher twist     zero  at Q2
∼ 1 − 2 GeV

2
∼

OPE does not tell us why higher twists are small !



Can we understand this
behavior dynamically?

How do cancellations between 
coherent resonances produce
incoherent scaling function?



4.
Local duality



Coherence vs. incoherence

Exclusive form factors
coherent scattering from quarks

dσ ∼

(∑
i

ei

)2

dσ ∼

∑

i

e
2

i

Inclusive structure functions

incoherent scattering from quarks

How can  square of a sum      sum of squares ?≈



Pedagogical model

Two quarks bound in a harmonic oscillator potential
exactly solvable spectrum

Structure function given by sum of squares of 
transition form factors

F (ν,q2) ∼

∑

n

∣∣G0,n(q2)
∣∣2 δ(En − E0 − ν)

Charge operator                          excites
∝ (e1 + e2)

2

∝ (e1 − e2)
2

Σi ei exp(iq · ri)

odd  partial waves with strength 
even partial waves with strength



Pedagogical model

Resulting structure function

F (ν,q2) ∼

∑

n

{
(e1 + e2)

2 G2
0,2n

+ (e1 − e2)
2 G2

0,2n+1

}

If states degenerate, cross terms
cancel when averaged over nearby even and odd 
parity states 

(∼ e1e2)

Minimum condition for duality:

at least one complete set of even and odd 
parity resonances must be summed over

Close, Isgur,  Phys. Lett. B509 (2001) 81



Even and odd parity states generalize to 56   (L=0)
and 70   (L=1) multiplets of spin-flavor SU(6)

+
-

scaling occurs if contributions from 56   and 70  
have equal overall strengths

+ -

Simplified case:  magnetic coupling of      to quarkγ
∗

expect dominance over electric at large Q2

Quark model



Quark model

Even and odd parity states generalize to 56   (L=0)
and 70   (L=1) multiplets of spin-flavor SU(6)

+
-

scaling occurs if contributions from 56   and 70  
have equal overall strengths

+ -

of squares of form factors, FN→R(q!
2), describing the transi-

tions from the nucleon to excited states R,

F1!" ,q! 2#$%
R

!FN→R!q! 2#!2&!ER!EN!"#, !2#

where EN and ER are the energies of the ground state and

excited state, respectively. In terms of photoabsorption cross

sections !or W boson absorption cross sections for neutrino

scattering#, the F1 structure function is proportional to the
sum '1/2"'3/2 , with '1/2(3/2) the cross section for total
boson-nucleon helicity 1/2 !3/2#. The spin-dependent g1
structure function, on the other hand, corresponds to the dif-

ference '1/2!'3/2 .
Resonance excitation and deep inelastic scattering in gen-

eral involve both electric and magnetic multipoles. Excita-

tion in a given partial wave at Q2#0 involves a complicated
mix of these. However, as Q2 grows one expects the mag-

netic multipole to dominate over the electric, even by Q2

$0.5 GeV2 in specific models (7,11). Furthermore, recent
phenomenological analyses of electromagnetic excitations of

negative parity resonances suggest that for the prominent

D13 resonance the ratio of helicity-1/2 to helicity-3/2 ampli-

tudes is consistent with zero beyond Q2*2 GeV2 (17),
which corresponds to magnetic dominance. This dominance

of magnetic, or spin flip, interactions at large Q2 for N*
excitation matches the dominance of such spin flip in deep

inelastic scattering. For instance, the polarization asymmetry

A1#g1 /F1 is positive at large Q
2, whereas A1$0 if electric

interactions were prominent (18). Thus in the present analy-
sis we assume that the interaction with the quark is domi-

nated by the magnetic coupling. In this approximation the F1
and F2 structure functions are simply related by the Callan-

Gross relation, F2#2xF1 , independent of the specific mod-
els we use for the structure functions themselves.

The relative photoproduction strengths of the transitions

from the ground state to the 56" and 70! are summarized in

Table I for the F1 and g1 structure functions of the proton

and neutron. For generality, we separate the contributions

from the symmetric and antisymmetric components of the

ground state nucleon wave function, with strengths + and , ,
respectively. The SU!6# limit corresponds to +#, . The co-
efficients in Table I assume equal weights for the 56" and

70
! multiplets (7). Similarly, neutrino-induced transitions to

excited states can be evaluated (8), and the relative strengths
are displayed in Table II for the proton and neutron. Because

of charge conservation, only transitions to decuplet !isospin-
3
2 ) states from the proton are allowed. !Note that the overall
normalizations of the electromagnetic and neutrino matrix

elements in Tables I and II are arbitrary.#
Summing over the full set of states in the 56" and 70!

multiplets leads to definite predictions for neutron and proton

structure function ratios,

Rnp#
F1
n

F1
p , !3#

R"#
F1

"p

F1
"n
, !4#

and polarization asymmetries,

A1
N#

g1
N

F1
N , !5#

A1
"N#

g1
"N

F1
"N
, !6#

for N#p or n. In particular, for +#, one finds the classic
SU!6# quark-parton model results (19):

Rnp#
2

3
, A1

p#
5

9
, A1

n#0 (SU!6 #) , !7#

for electromagnetic scattering, and

TABLE I. Relative strengths of electromagnetic N→N* transitions in the SU!6# quark model. The
coefficients + and , denote the relative strengths of the symmetric and antisymmetric contributions of the
SU!6# ground state wave function. The SU!6# limit corresponds to +#, .

SU!6# representation 2
8(56") 4

10(56") 2
8(70!) 4

8(70!) 2
10(70!) Total

F1
p 9,2 8+2 9,2 0 +2 18,2"9+2

F1
n (3,"+)2/4 8+2 (3,!+)2/4 4+2 +2 (9,2"27+2)/2

g1
p 9,2 !4+2 9,2 0 +2 18,2!3+2

g1
n (3,"+)2/4 !4+2 (3,!+)2/4 !2+2 +2 (9,2!9+2)/2

TABLE II. As in Table I, but for neutrino-induced N→N* transitions.

SU!6# representation 2
8(56") 4

10(56") 2
8(70!) 4

8(70!) 2
10(70!) Total

F1
"p 0 24+2 0 0 3+2 27+2

F1
"n (9,"+)2/4 8+2 (9,!+)2/4 4+2 +2 (81,2"27+2)/2

g1
"p 0 !12+2 0 0 3+2 !9+2

g1
"n (9,"+)2/4 !4+2 (9,!+)2/4 !2+2 +2 (81,2!9+2)/2

SYMMETRY BREAKING AND QUARK-HADRON DUALITY . . . PHYSICAL REVIEW C 68, 035210 !2003#

035210-3

λ (ρ) = (anti) symmetric component of ground state wfn.



SU(6) limit λ = ρ
Table 2: Relative Photoproduction Strengths of 56, 0+ and 70, 1− Mul-

tiplets

SU(6) : [56, 0+]28 [56, 0+]410 [70, 1−]28 [70, 1−]48 [70, 1−]210 total
F p

1 9 8 9 0 1 27
F n

1 4 8 1 4 1 18
gp
1 9 −4 9 0 1 15

gn
1 4 −4 1 −2 1 0

In contrast to the proton case, this table predicts that for neutron targets,
the S11(1530) region ([70, 1−]28) will fall below the scaling curve. The third
resonance region, containing [70, 1−]48 as well as [56, 2+]28 and [56, 2+]410,
is expected to be locally enhanced over the scaling curve for both proton and
neutron targets. Note that to order q2 the [56, 0+] and [70, 1−] multiplets are
sufficient to realise duality. Formally the analyis can be extended to higher
q2 by including correspondingly higher multiplets; however, the credibility
of the non-relativistic harmonic oscillator may become questionable. These
predictions will be interesting tests of our analysis.

Inclusion of both magnetic and electric interactions shows that the duality
is non-trivial. Inasmuch as the magnetic terms dominate at large Q2 in the
quark model, duality can be realised for the dominantly transverse scattering
of the deep inelastic region. For the longitudinal structure function, FL,
duality is again realised, with the breakdown into 56 and 70 as in Table 3:

Table 3: Relative Longitudinal Production Strengths, as in Table 2

SU(6) : [56, 0+]28 [56, 0+]410 [70, 1−]28 [70, 1−]48 [70, 1−]210 total
F p

L 1 0 1 0 1 3
F n

L 0 0 1 0 1 2

However, for F1(Q2 → 0) both electric and magnetic multipoles contribute
and interfere with phases determined by the JP and the spin-Lz correla-
tions in the various 56 and 70 states. This causes dramatic Q2 dependence

7

Summing over all resonances in 56   and 70   multiplets+ -
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SU(6) limit λ = ρ
Table 2: Relative Photoproduction Strengths of 56, 0+ and 70, 1− Mul-

tiplets

SU(6) : [56, 0+]28 [56, 0+]410 [70, 1−]28 [70, 1−]48 [70, 1−]210 total
F p

1 9 8 9 0 1 27
F n

1 4 8 1 4 1 18
gp
1 9 −4 9 0 1 15
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1 4 −4 1 −2 1 0

In contrast to the proton case, this table predicts that for neutron targets,
the S11(1530) region ([70, 1−]28) will fall below the scaling curve. The third
resonance region, containing [70, 1−]48 as well as [56, 2+]28 and [56, 2+]410,
is expected to be locally enhanced over the scaling curve for both proton and
neutron targets. Note that to order q2 the [56, 0+] and [70, 1−] multiplets are
sufficient to realise duality. Formally the analyis can be extended to higher
q2 by including correspondingly higher multiplets; however, the credibility
of the non-relativistic harmonic oscillator may become questionable. These
predictions will be interesting tests of our analysis.

Inclusion of both magnetic and electric interactions shows that the duality
is non-trivial. Inasmuch as the magnetic terms dominate at large Q2 in the
quark model, duality can be realised for the dominantly transverse scattering
of the deep inelastic region. For the longitudinal structure function, FL,
duality is again realised, with the breakdown into 56 and 70 as in Table 3:

Table 3: Relative Longitudinal Production Strengths, as in Table 2

SU(6) : [56, 0+]28 [56, 0+]410 [70, 1−]28 [70, 1−]48 [70, 1−]210 total
F p

L 1 0 1 0 1 3
F n

L 0 0 1 0 1 2

However, for F1(Q2 → 0) both electric and magnetic multipoles contribute
and interfere with phases determined by the JP and the spin-Lz correla-
tions in the various 56 and 70 states. This causes dramatic Q2 dependence
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as in quark-parton model !
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Ap

1
=

gp

1

F p

1

=
5

9
An

1 =
gn

1

Fn

1

= 0R
np

=
Fn

1

F
p

1

=
2

3

Quark model



cancellations within multiplets for g
n

1

g
n

1earlier onset for      than g
p

1

expect duality to appear earlier for      thanF
p

1
F

n

1

SU(6) limit λ = ρ
Table 2: Relative Photoproduction Strengths of 56, 0+ and 70, 1− Mul-

tiplets

SU(6) : [56, 0+]28 [56, 0+]410 [70, 1−]28 [70, 1−]48 [70, 1−]210 total
F p

1 9 8 9 0 1 27
F n

1 4 8 1 4 1 18
gp
1 9 −4 9 0 1 15

gn
1 4 −4 1 −2 1 0

In contrast to the proton case, this table predicts that for neutron targets,
the S11(1530) region ([70, 1−]28) will fall below the scaling curve. The third
resonance region, containing [70, 1−]48 as well as [56, 2+]28 and [56, 2+]410,
is expected to be locally enhanced over the scaling curve for both proton and
neutron targets. Note that to order q2 the [56, 0+] and [70, 1−] multiplets are
sufficient to realise duality. Formally the analyis can be extended to higher
q2 by including correspondingly higher multiplets; however, the credibility
of the non-relativistic harmonic oscillator may become questionable. These
predictions will be interesting tests of our analysis.

Inclusion of both magnetic and electric interactions shows that the duality
is non-trivial. Inasmuch as the magnetic terms dominate at large Q2 in the
quark model, duality can be realised for the dominantly transverse scattering
of the deep inelastic region. For the longitudinal structure function, FL,
duality is again realised, with the breakdown into 56 and 70 as in Table 3:

Table 3: Relative Longitudinal Production Strengths, as in Table 2

SU(6) : [56, 0+]28 [56, 0+]410 [70, 1−]28 [70, 1−]48 [70, 1−]210 total
F p

L 1 0 1 0 1 3
F n

L 0 0 1 0 1 2

However, for F1(Q2 → 0) both electric and magnetic multipoles contribute
and interfere with phases determined by the JP and the spin-Lz correla-
tions in the various 56 and 70 states. This causes dramatic Q2 dependence
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SU(6) may be      valid at x ~ 1/3 ≈

which combinations of resonances reproduce
behavior of structure functions at large x?

R!!
1

2
, A1

!p!"
1

3
, A1

!n!
2

3
"SU#6 $% , #8$

for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:

!p↑'!
1

!2
!u↑#ud $0'#

1

!18
!u↑#ud $1'"

1

3
!u↓#ud $1'

"
1

3
!d↑#uu $1'"

!2
3

!d↓#uu $1', #9$

where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4

A1
p 5/9 1 1 1 1 1

A1
n 0 2/5 1/3 1 1 1
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:
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where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:
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where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
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states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:
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where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
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states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:
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where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
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states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
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for neutrino scattering, which correspond to u!2d and &u
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where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the
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S11(1650), D13(1700), and D15(1675), while the isospin-
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states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4

A1
p 5/9 1 1 1 1 1

A1
n 0 2/5 1/3 1 1 1

R! 1/2 3/46 0 1/14 1/5 0

A1
!p –1/3 1 1 –1/3

A1
!n 2/3 20/23 13/15 1 1 1
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hence one may expect that at large enough Q2 these would

be constrained by perturbative QCD. In particular, at high Q2

perturbative arguments suggest that the interaction of the

photon !or W boson" should be predominantly with quarks
with the same helicity as the nucleon #23,24$. Since the pho-
ton (W boson" scattering from a massless quark conserves

helicity, the %3/2 cross section would be expected to be sup-
pressed relative to the %1/2 #19$. The question then arises
whether duality can exist between parton distributions at

large x and resonance transitions classified according to

quark helicity rather than spin.

In general, if the relative strengths of the %1/2 and %3/2
contributions to the cross section are weighted by cos2&h and
sin2&h , respectively, then from Table I the ratio of the neu-

tron to proton F1 structure functions can be written as

Rnp!
3

7"5sin2&h
, !18"

while the proton and neutron polarization asymmetries be-

come

A1
p!
7"9 sin2&h
7"5sin2&h

, !19"

A1
n!1"2 sin2&h . !20"

Similarly for neutrino scattering, one has

R'!
1#sin2&h
5"4 sin2&h

!21"

for the unpolarized structure functions, and

A1
'p!

1"3 sin2&h
1#sin2&h

, !22"

A1
'n!

5"6 sin2&h
5"4 sin2&h

!23"

for neutrino-induced polarization asymmetries. The depen-

dence of these ratios on the mixing angle &h is illustrated in
Figs. 2 and 3 !solid curves". For &h!(/4 the SU!6" results in

Eqs. !7" and !8" are once again recovered. In the phenom-
enologically favored region of 0)&h)(/4 the predictions
for A1

p and for A1
'n are very similar to those derived on the

basis of quark spin, which reflects the fact that the ratios

*u/u are predicted to be similar in both cases. Both the %3/2
and S3/2 suppression scenarios give rise to the same predic-

tions for A1
n in the &→0 limit, although the approach to the

maximum values is faster in the case of %3/2 suppression. For
the unpolarized ratios, %3/2 suppression gives rise to larger
values of Rnp and R' than for S3/2 suppression. This is also

evident from the modified transition strengths for F1 and g1
displayed in Tables IV and V for the case of %1/2 dominance
at large x. Summing up the coefficients for the neutron and

proton, one has in the limit x→1:

Rnp!
3

7
, A1

p!1, A1
n!1 #&h!0$ , !24"

for the electromagnetic ratios, and

R'!
1

5
, A1

'p!1, A1
'n!1 #&h!0$ , !25"

for neutrino scattering.

Fitting the x dependence of the mixing angle &h(x) to the
Rnp data with the above x→1 constraint !Fig. 4", the result-
ing predictions for A1

p ,n are shown in Figs. 5 and 6, respec-

tively. Compared with the S1/2 dominance scenario, the %1/2
dominance model predicts a faster approach to the

asymptotic limits. The values for the ratios in Eqs. !24" and
!25" correspond exactly to those calculated at the quark level
on the basis of perturbative QCD counting rules #23,24$.
There, the deep inelastic scattering at x+1 requires the ex-
change in the initial state of two hard gluons, which prefer-

entially enhances those configurations in the nucleon wave

function in which the spectator quarks have zero helicity.

The structure function at large x is then determined by com-

ponents of the nucleon wave function in which the helicity of

the interacting quark matches that of the nucleon. For an

initial state SU!6" wave function, Eq. !9", suppression of the
helicity antialigned configurations leads to the unpolarized

ratio d/u!1/5, and the polarization ratio *q/q!1 for all

TABLE IV. Relative strengths of electromagnetic N→N* transitions corresponding to %1/2 dominance.
These values can be obtained from Table I by adding the F1 and g1 contributions.

SU!6" representation 2
8#56#$ 4

10#56#$ 2
8#70"$ 4

8#70"$ 2
10#70"$ Total

F1
p!g1

p 9 2 9 0 1 21

F1
n!g1

n 4 2 1 1 1 9

TABLE V. Relative strengths of N→N* transitions in neutrino scattering corresponding to %1/2
dominance.

SU!6" representation 2
8#56#$ 4

10#56#$ 2
8#70"$ 4

8#70"$ 2
10#70"$ Total

F1
'p!g1

'p 0 6 0 0 3 9

F1
'n!g1

'n 25 2 16 1 1 45
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polarization asymmetries AN

1 → 1
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SU(6) may be      valid at x ~ 1/3 ≈

which combinations of resonances reproduce
behavior of structure functions at large x?

R!!
1

2
, A1

!p!"
1

3
, A1

!n!
2

3
"SU#6 $% , #8$

for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:

!p↑'!
1

!2
!u↑#ud $0'#

1

!18
!u↑#ud $1'"

1

3
!u↓#ud $1'

"
1

3
!d↑#uu $1'"

!2
3

!d↓#uu $1', #9$

where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4

A1
p 5/9 1 1 1 1 1

A1
n 0 2/5 1/3 1 1 1

R! 1/2 3/46 0 1/14 1/5 0

A1
!p –1/3 1 1 –1/3

A1
!n 2/3 20/23 13/15 1 1 1
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:

!p↑'!
1

!2
!u↑#ud $0'#

1

!18
!u↑#ud $1'"

1

3
!u↓#ud $1'

"
1

3
!d↑#uu $1'"

!2
3

!d↓#uu $1', #9$

where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4

A1
p 5/9 1 1 1 1 1

A1
n 0 2/5 1/3 1 1 1

R! 1/2 3/46 0 1/14 1/5 0

A1
!p –1/3 1 1 –1/3

A1
!n 2/3 20/23 13/15 1 1 1
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In the other extreme limit as !s→"/2, the polarization asym-
metries approach !1, while Rnp→3/2. Neither of these sce-

narios are supported phenomenologically, as we shall discuss

below, and the physical region appears to correspond to 0

"!s"9"/32.
In analogy with Eqs. #10$–#12$, the ratio of the unpolar-

ized proton and neutron structure functions for neutrino scat-

tering is

R%#
1$7sin2!s
14!10sin2!s

, #14$

and the neutrino polarization asymmetries:

A1
%p#

1!5sin2!s
1$7sin2!s

, #15$

A1
%p#

7!8sin2!s
7!5sin2!s

. #16$

The dependence on the angle !s for the neutrino observables
is shown in Fig. 3 #dashed curves$. The trends of the ratios
are similar to those of the electromagnetic ratios in Fig. 2

#with the neutron and proton reversed$. Once again the

SU#6$ symmetric limit, Eq. #8$, is reproduced when !s
#"/4. The phenomenologically favored scenario in which
S3/2 contributions are suppressed in the limit x→1 gives rise

to

R%#
1

14
, A1

%p#1, A1
%n#1 &!s#0' . #17$

From the relations between the structure functions and par-

ton distributions in the Appendix one can verify that the

results for d/u extracted from Rnp are consistent with those

from R% &Eqs. #A5$ and #A12$', and those for (q/q extracted
from A1

N consistent with those from A1
%N &Eqs. #A6$–#A7$

and Eqs. #A13$–#A14$'.
The dependence of the structure function ratios in Eqs.

#10$–#12$ and Eqs. #14$–#16$ on one parameter !s means

that the SU#6$ breaking scenario with S3/2 suppression can be
tested by simultaneously fitting the n/p ratios and the polar-

ization asymmetries. In general, data on unpolarized struc-

ture functions are more abundant, especially at high x, than

on spin-dependent structure functions, so it is more practical

to fit the x dependence of !s(x) to the existing data on un-
polarized n/p ratios, which can then be used to predict the

polarization asymmetries.

Unfortunately, data on F1 neutrino structure functions at

x%0.4–0.5 are essentially nonexistent, and there have been
no experiments at all to measure spin-dependent structure

functions in neutrino scattering. The most precise data on the

electromagnetic neutron to proton ratio Rnp come from

SLAC experiments &20,21'. The absence of free neutron tar-
gets has meant that neutron structure information has had to

be inferred from inclusive deuteron and proton structure

functions. Because of uncertainties in the treatment of
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FIG. 4. Ratio Rnp of unpolarized neutron to proton structure

functions from duality, according to different scenarios of SU#6$
breaking: helicity )1/2 dominance #solid$; spin S1/2 dominance

#dashed$; *+ dominance #dot-dashed$. Various theoretical predic-
tions for the x→1 limit are indicated on the ordinate. The data are

from SLAC &20,21', analyzed under different assumptions #see text$
about the size of the nuclear EMC effects in the deuteron &22'.
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1

nuclear corrections in the deuteron at large x, however,

which is more sensitive to the high momentum components

of the deuteron wave function, the results beyond x!0.6 are
somewhat model dependent "22#, as indicated in Fig. 4. The
difference between the two sets of points is representative of

the theoretical uncertainty in the extraction. In particular, the

lower set of points corresponds to an analysis which ac-

counts for Fermi motion in the deuteron "28#, while the up-
per set of points includes Fermi motion and binding effects

"22# $see also Ref. "29#%. A fit to the weighted average of the
extrema of the two sets of data points, constrained to ap-

proach Rnp!6/19 as x→1, is indicated by the dashed curve

"a polynomial of degree two is used to fit the x dependence
of &s(x) in Eq. $10%#. The fit is clearly compatible with the
current data on Rnp, but could be further constrained by

more accurate data at large x. Several proposals for obtaining

the neutron to proton ratio at large x with reduced nuclear

uncertainties are discussed in Refs. "30,31#.
Using the mixing angle &s(x) fitted to R

np, the resulting

polarization asymmetries for the proton and neutron are

shown in Figs. 5 and 6, respectively, compared with a com-

pilation of large-x data from SLAC "32#, SMC "33#, and

HERMES "34#. The predicted x dependence of both A1
p and

A1
n in the S3/2 suppression scenario is relatively strong; the

SU$6% symmetric results which describe the data at x!1/3
rapidly give way to the broken SU$6% predictions as x→1.

Within the current experimental errors, the S3/2 suppression

model is consistent with the x dependence of both the Rnp

ratio and the polarization asymmetries.

Using the neutrino ratios R', A1
'p , and A1

'n , the indi-

vidual quark flavor and spin distribution ratios can be deter-

mined $or equivalently, extracted from the electromagnetic

ratios as discussed in the Appendix%. The unpolarized d/u
ratio in the S1/2 dominance scenario is shown in Fig. 7

$dashed%, and the spin-flavor ratios (u/u and (d/d are illus-
trated in Figs. 8 and 9, respectively.

C. Helicity 3Õ2 suppression

The above discussion has demonstrated how duality be-

tween the parton model and a sum over low-lying resonances

can arise on the basis of classifying transitions to excited

states according to the total spin of the quarks, with either

equal weighting of S1/2 and S3/2 components in the case of

SU$6% symmetry, or suppression of the latter at large x. Ac-
cording to duality, structure functions at large x are deter-

mined by the behavior of transition form factors at high Q2;
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of squares of form factors, FN→R(q!
2), describing the transi-

tions from the nucleon to excited states R,

F1!" ,q! 2#$%
R

!FN→R!q! 2#!2&!ER!EN!"#, !2#

where EN and ER are the energies of the ground state and

excited state, respectively. In terms of photoabsorption cross

sections !or W boson absorption cross sections for neutrino

scattering#, the F1 structure function is proportional to the
sum '1/2"'3/2 , with '1/2(3/2) the cross section for total
boson-nucleon helicity 1/2 !3/2#. The spin-dependent g1
structure function, on the other hand, corresponds to the dif-

ference '1/2!'3/2 .
Resonance excitation and deep inelastic scattering in gen-

eral involve both electric and magnetic multipoles. Excita-

tion in a given partial wave at Q2#0 involves a complicated
mix of these. However, as Q2 grows one expects the mag-

netic multipole to dominate over the electric, even by Q2

$0.5 GeV2 in specific models (7,11). Furthermore, recent
phenomenological analyses of electromagnetic excitations of

negative parity resonances suggest that for the prominent

D13 resonance the ratio of helicity-1/2 to helicity-3/2 ampli-

tudes is consistent with zero beyond Q2*2 GeV2 (17),
which corresponds to magnetic dominance. This dominance

of magnetic, or spin flip, interactions at large Q2 for N*
excitation matches the dominance of such spin flip in deep

inelastic scattering. For instance, the polarization asymmetry

A1#g1 /F1 is positive at large Q
2, whereas A1$0 if electric

interactions were prominent (18). Thus in the present analy-
sis we assume that the interaction with the quark is domi-

nated by the magnetic coupling. In this approximation the F1
and F2 structure functions are simply related by the Callan-

Gross relation, F2#2xF1 , independent of the specific mod-
els we use for the structure functions themselves.

The relative photoproduction strengths of the transitions

from the ground state to the 56" and 70! are summarized in

Table I for the F1 and g1 structure functions of the proton

and neutron. For generality, we separate the contributions

from the symmetric and antisymmetric components of the

ground state nucleon wave function, with strengths + and , ,
respectively. The SU!6# limit corresponds to +#, . The co-
efficients in Table I assume equal weights for the 56" and

70
! multiplets (7). Similarly, neutrino-induced transitions to

excited states can be evaluated (8), and the relative strengths
are displayed in Table II for the proton and neutron. Because

of charge conservation, only transitions to decuplet !isospin-
3
2 ) states from the proton are allowed. !Note that the overall
normalizations of the electromagnetic and neutrino matrix

elements in Tables I and II are arbitrary.#
Summing over the full set of states in the 56" and 70!

multiplets leads to definite predictions for neutron and proton

structure function ratios,

Rnp#
F1
n

F1
p , !3#

R"#
F1

"p

F1
"n
, !4#

and polarization asymmetries,

A1
N#

g1
N

F1
N , !5#

A1
"N#

g1
"N

F1
"N
, !6#

for N#p or n. In particular, for +#, one finds the classic
SU!6# quark-parton model results (19):

Rnp#
2

3
, A1

p#
5

9
, A1

n#0 (SU!6 #) , !7#

for electromagnetic scattering, and

TABLE I. Relative strengths of electromagnetic N→N* transitions in the SU!6# quark model. The
coefficients + and , denote the relative strengths of the symmetric and antisymmetric contributions of the
SU!6# ground state wave function. The SU!6# limit corresponds to +#, .

SU!6# representation 2
8(56") 4

10(56") 2
8(70!) 4

8(70!) 2
10(70!) Total

F1
p 9,2 8+2 9,2 0 +2 18,2"9+2

F1
n (3,"+)2/4 8+2 (3,!+)2/4 4+2 +2 (9,2"27+2)/2

g1
p 9,2 !4+2 9,2 0 +2 18,2!3+2

g1
n (3,"+)2/4 !4+2 (3,!+)2/4 !2+2 +2 (9,2!9+2)/2

TABLE II. As in Table I, but for neutrino-induced N→N* transitions.

SU!6# representation 2
8(56") 4

10(56") 2
8(70!) 4

8(70!) 2
10(70!) Total

F1
"p 0 24+2 0 0 3+2 27+2

F1
"n (9,"+)2/4 8+2 (9,!+)2/4 4+2 +2 (81,2"27+2)/2

g1
"p 0 !12+2 0 0 3+2 !9+2

g1
"n (9,"+)2/4 !4+2 (9,!+)2/4 !2+2 +2 (81,2!9+2)/2
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where EN and ER are the energies of the ground state and

excited state, respectively. In terms of photoabsorption cross

sections !or W boson absorption cross sections for neutrino

scattering#, the F1 structure function is proportional to the
sum '1/2"'3/2 , with '1/2(3/2) the cross section for total
boson-nucleon helicity 1/2 !3/2#. The spin-dependent g1
structure function, on the other hand, corresponds to the dif-

ference '1/2!'3/2 .
Resonance excitation and deep inelastic scattering in gen-

eral involve both electric and magnetic multipoles. Excita-

tion in a given partial wave at Q2#0 involves a complicated
mix of these. However, as Q2 grows one expects the mag-

netic multipole to dominate over the electric, even by Q2

$0.5 GeV2 in specific models (7,11). Furthermore, recent
phenomenological analyses of electromagnetic excitations of

negative parity resonances suggest that for the prominent

D13 resonance the ratio of helicity-1/2 to helicity-3/2 ampli-

tudes is consistent with zero beyond Q2*2 GeV2 (17),
which corresponds to magnetic dominance. This dominance

of magnetic, or spin flip, interactions at large Q2 for N*
excitation matches the dominance of such spin flip in deep

inelastic scattering. For instance, the polarization asymmetry

A1#g1 /F1 is positive at large Q
2, whereas A1$0 if electric

interactions were prominent (18). Thus in the present analy-
sis we assume that the interaction with the quark is domi-

nated by the magnetic coupling. In this approximation the F1
and F2 structure functions are simply related by the Callan-

Gross relation, F2#2xF1 , independent of the specific mod-
els we use for the structure functions themselves.

The relative photoproduction strengths of the transitions

from the ground state to the 56" and 70! are summarized in

Table I for the F1 and g1 structure functions of the proton

and neutron. For generality, we separate the contributions

from the symmetric and antisymmetric components of the

ground state nucleon wave function, with strengths + and , ,
respectively. The SU!6# limit corresponds to +#, . The co-
efficients in Table I assume equal weights for the 56" and

70
! multiplets (7). Similarly, neutrino-induced transitions to

excited states can be evaluated (8), and the relative strengths
are displayed in Table II for the proton and neutron. Because

of charge conservation, only transitions to decuplet !isospin-
3
2 ) states from the proton are allowed. !Note that the overall
normalizations of the electromagnetic and neutrino matrix

elements in Tables I and II are arbitrary.#
Summing over the full set of states in the 56" and 70!

multiplets leads to definite predictions for neutron and proton

structure function ratios,
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and polarization asymmetries,
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, !6#

for N#p or n. In particular, for +#, one finds the classic
SU!6# quark-parton model results (19):

Rnp#
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9
, A1

n#0 (SU!6 #) , !7#

for electromagnetic scattering, and

TABLE I. Relative strengths of electromagnetic N→N* transitions in the SU!6# quark model. The
coefficients + and , denote the relative strengths of the symmetric and antisymmetric contributions of the
SU!6# ground state wave function. The SU!6# limit corresponds to +#, .

SU!6# representation 2
8(56") 4

10(56") 2
8(70!) 4

8(70!) 2
10(70!) Total

F1
p 9,2 8+2 9,2 0 +2 18,2"9+2

F1
n (3,"+)2/4 8+2 (3,!+)2/4 4+2 +2 (9,2"27+2)/2

g1
p 9,2 !4+2 9,2 0 +2 18,2!3+2

g1
n (3,"+)2/4 !4+2 (3,!+)2/4 !2+2 +2 (9,2!9+2)/2

TABLE II. As in Table I, but for neutrino-induced N→N* transitions.

SU!6# representation 2
8(56") 4

10(56") 2
8(70!) 4

8(70!) 2
10(70!) Total

F1
"p 0 24+2 0 0 3+2 27+2

F1
"n (9,"+)2/4 8+2 (9,!+)2/4 4+2 +2 (81,2"27+2)/2

g1
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suppression model! identical production rates
in 56   and 70   channels+ _
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2), describing the transi-

tions from the nucleon to excited states R,
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where EN and ER are the energies of the ground state and

excited state, respectively. In terms of photoabsorption cross

sections !or W boson absorption cross sections for neutrino

scattering#, the F1 structure function is proportional to the
sum '1/2"'3/2 , with '1/2(3/2) the cross section for total
boson-nucleon helicity 1/2 !3/2#. The spin-dependent g1
structure function, on the other hand, corresponds to the dif-

ference '1/2!'3/2 .
Resonance excitation and deep inelastic scattering in gen-

eral involve both electric and magnetic multipoles. Excita-

tion in a given partial wave at Q2#0 involves a complicated
mix of these. However, as Q2 grows one expects the mag-

netic multipole to dominate over the electric, even by Q2

$0.5 GeV2 in specific models (7,11). Furthermore, recent
phenomenological analyses of electromagnetic excitations of

negative parity resonances suggest that for the prominent

D13 resonance the ratio of helicity-1/2 to helicity-3/2 ampli-

tudes is consistent with zero beyond Q2*2 GeV2 (17),
which corresponds to magnetic dominance. This dominance

of magnetic, or spin flip, interactions at large Q2 for N*
excitation matches the dominance of such spin flip in deep

inelastic scattering. For instance, the polarization asymmetry

A1#g1 /F1 is positive at large Q
2, whereas A1$0 if electric

interactions were prominent (18). Thus in the present analy-
sis we assume that the interaction with the quark is domi-

nated by the magnetic coupling. In this approximation the F1
and F2 structure functions are simply related by the Callan-

Gross relation, F2#2xF1 , independent of the specific mod-
els we use for the structure functions themselves.

The relative photoproduction strengths of the transitions

from the ground state to the 56" and 70! are summarized in

Table I for the F1 and g1 structure functions of the proton

and neutron. For generality, we separate the contributions

from the symmetric and antisymmetric components of the

ground state nucleon wave function, with strengths + and , ,
respectively. The SU!6# limit corresponds to +#, . The co-
efficients in Table I assume equal weights for the 56" and

70
! multiplets (7). Similarly, neutrino-induced transitions to

excited states can be evaluated (8), and the relative strengths
are displayed in Table II for the proton and neutron. Because

of charge conservation, only transitions to decuplet !isospin-
3
2 ) states from the proton are allowed. !Note that the overall
normalizations of the electromagnetic and neutrino matrix

elements in Tables I and II are arbitrary.#
Summing over the full set of states in the 56" and 70!

multiplets leads to definite predictions for neutron and proton

structure function ratios,
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for electromagnetic scattering, and
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p 9,2 !4+2 9,2 0 +2 18,2!3+2
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SU!6# representation 2
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"n (9,"+)2/4 8+2 (9,!+)2/4 4+2 +2 (81,2"27+2)/2
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where EN and ER are the energies of the ground state and

excited state, respectively. In terms of photoabsorption cross

sections !or W boson absorption cross sections for neutrino

scattering#, the F1 structure function is proportional to the
sum '1/2"'3/2 , with '1/2(3/2) the cross section for total
boson-nucleon helicity 1/2 !3/2#. The spin-dependent g1
structure function, on the other hand, corresponds to the dif-

ference '1/2!'3/2 .
Resonance excitation and deep inelastic scattering in gen-

eral involve both electric and magnetic multipoles. Excita-

tion in a given partial wave at Q2#0 involves a complicated
mix of these. However, as Q2 grows one expects the mag-

netic multipole to dominate over the electric, even by Q2

$0.5 GeV2 in specific models (7,11). Furthermore, recent
phenomenological analyses of electromagnetic excitations of

negative parity resonances suggest that for the prominent

D13 resonance the ratio of helicity-1/2 to helicity-3/2 ampli-

tudes is consistent with zero beyond Q2*2 GeV2 (17),
which corresponds to magnetic dominance. This dominance

of magnetic, or spin flip, interactions at large Q2 for N*
excitation matches the dominance of such spin flip in deep

inelastic scattering. For instance, the polarization asymmetry

A1#g1 /F1 is positive at large Q
2, whereas A1$0 if electric

interactions were prominent (18). Thus in the present analy-
sis we assume that the interaction with the quark is domi-

nated by the magnetic coupling. In this approximation the F1
and F2 structure functions are simply related by the Callan-

Gross relation, F2#2xF1 , independent of the specific mod-
els we use for the structure functions themselves.

The relative photoproduction strengths of the transitions

from the ground state to the 56" and 70! are summarized in

Table I for the F1 and g1 structure functions of the proton

and neutron. For generality, we separate the contributions

from the symmetric and antisymmetric components of the

ground state nucleon wave function, with strengths + and , ,
respectively. The SU!6# limit corresponds to +#, . The co-
efficients in Table I assume equal weights for the 56" and

70
! multiplets (7). Similarly, neutrino-induced transitions to

excited states can be evaluated (8), and the relative strengths
are displayed in Table II for the proton and neutron. Because

of charge conservation, only transitions to decuplet !isospin-
3
2 ) states from the proton are allowed. !Note that the overall
normalizations of the electromagnetic and neutrino matrix

elements in Tables I and II are arbitrary.#
Summing over the full set of states in the 56" and 70!

multiplets leads to definite predictions for neutron and proton

structure function ratios,
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SU!6# quark-parton model results (19):
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SU!6# ground state wave function. The SU!6# limit corresponds to +#, .
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SU!6# representation 2
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10(70!) Total
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important test for future experiments



5.
DIS at low Q2



as Q   decreases,  pQCD description
(twist expansion) breaks down

2

near real photon point expand in Q   rather than 1/Q2 2

intriguing indications of duality even at Q   = 02

Donnachie, Landshoff (1992)

high-energy Regge fit

!"p = X(2M#)$P−1+Y (2M#)$R−1



low Q   behavior constrained by (electromagnetic)
gauge invariance

2

Donnachie, Landshoff (1992)

F2(x,Q2)→ Q2

FL(x,Q2)→ Q4
} as Q2→ 0

model for      at low Q2
F
!
2

VMD PCAC

F!
2

= Q2

(
f"

1+Q2/m2"

)2

#"N + f 2$

(
1

1+Q2/m2A1

)2

#$N

cf.     scattering - axial current partially conserved

F!
2
(x,Q2)→ f 2" #

"N as Q2→ 0

ν



gauge invariance or dynamics?

Donnachie, Landshoff (1992)

Niculescu et al., Phys. Rev. Lett. 85 (2000) 1182

F2 valence-like
2at low Q   ?

cf. xF3



gauge invariance or dynamics?

Donnachie, Landshoff (1992)

F2 ∼ Q0.5

Niculescu et al., Phys. Rev. Lett. 85 (2000) 1182

need lower Q   before behavior driven by gauge inv.2



Phenomenological higher twists

usually parameterized as

Virchaux, Milsztajn,
Phys. Lett. B274 (1992) 221

F2(x,Q2) = FLT
2

(x,Q2)
(
1+

C(x)
Q2

)

Volume 274, n u m b e r  2 PHYSICS LE T TER S B 9 January  1992 

combine them in quadrature  with the statistical er- 

rors, and to treat  the resulting point- to-point  errors 

in the fits as i f  they were totally uncorrelated.  This 

approximation is of  minor  importance given the small 

size and the numerous different uncorrelated sources 

of  these errors. 

The QCD fits described above have been per- 

formed simultaneously on the H2 and D2 data both 

with and without the inclusion of  target mass correc- 

tions (TMC) .  These corrections are computed  nu- 

merically from the measured F 2 ' s  themselves and do 

not involve any addi t ional  free parameter .  The main  

results f the  fit with TMC are given in table 1. 

The Z 2 of  the fit is good; it is smaller than one per 

degree of  freedom, because we have included the mi- 

nor systematic errors in the point- to-point  uncorre- 

lated errors (i t  is close to one when these minor  er- 

rors are not taken into account) .  It is better with TMC 

included (around 10 units o f x  2) and, although the 

higher-twist coefficients C, that one obtains from the 

fits with or without TMC are significantly different, 

the values of  c~ and of  the gluon dis t r ibut ion param- 

eters A and t /are  almost the same in both cases. The 

errors on the fi t ted parameters  are domina ted  by sys- 

tematic  uncertainties.  When the data  are dis tor ted by 

the effect of  a one-s tandard-devia t ion  error from any 

given systematic source, the Z 2 variat ion is in average 

of  order  9. So, we have chosen to quote errors that 

correspond to AX 2 = 9. 

The fit including TMC is shown in fig. 1 together 

with the H2 and D2 data. The overall descr ipt ion of  

the data by the fit is good, apart  from local minor  

problems (for example for H2, x =  0.07 and 0.275 for 

SLAC, x = 0 . 0 7  and 0.55 for BCDMS) .  The differ- 

ence between the solid and dashed curves (see the 

caption of  fig. 1 ) is directly l inked to the magni tude 

of  the higher-twist terms: this figure therefore shows 

that the influence of  higher-twists in the Q2-evolu- 

t ion .of  F2 is small or negligible above ~ 4 GeV 2 at 

low x ( x < 0 . 5 0 )  and above ~ l0 GeV 2 at higher x. 

The fitted relative normal isat ions  of  the data  sets 

are smaller than 1.0%, well within the absolute nor- 

malisation uncertainties of  3% and 2% on the BCDMS 

and SLAC data. The amount  of  BCDMS main sys- 

tematic  error (2 parameter )  that corresponds to the 

min imum X 2 is about  1.3 t imes the published errors. 

The fitted values of  2 for H2 and D2 are very similar,  

as is to be expected for systematic uncertainties which 

do not depend on the target material .  

3. Higher twists 

We show in fig. 2 and give in table 2 the values of  

the coefficients C,, for the fit with TMC. The x-de- 

pendences of  these higher-twist terms are similar  in 

H2 and D2 data. For  x < 0 . 4 0  they are small, with a 

mean value of  order  - 0 . 0 5  GeV 2. For  x >  0.40, the 

higher-twist terms increase with x, as expected in 
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X 

Fig. 2. The  higher-twist coefficients C, as a function of  x. Full 

( open )  circles are for H2 (D2) data. 

Table 2 

Higher-twist  coefficients C, for Hydrogen  and deuter ium.  

x C (H2 )  (GeV 2) C (D2 )  ( O e V  2) 

0.070 -0 .100_+0 .  I 13 -0 .118_+0 .115  

0.100 - 0.077 _+ 0.098 - 0.088 _+ 0.100 

0.140 - 0.052 + 0.075 - 0.053 + 0.079 

0.180 - 0.043 _+ 0.049 - 0.038 + 0.052 

0.225 - 0.046 _+ 0.026 - 0.008 + 0.028 

0.275 - 0.048 + 0.023 - 0.021 _+ 0.023 

0.350 - 0.041 + 0.026 + 0.022 + 0.026 

0.450 + 0.090 + 0.050 + 0.125 _+ 0.051 

0.550 + 0.304 _+ 0.095 + 0.410 + 0.095 

0.650 +0.792_+0.190 +0.938_+0.190 

0.750 + 1.250_+ 0.420 + 1.320_+0.400 

224 

SLAC, BCDMS
data (+TMC)



Phenomenological higher twists

more recent JLab data analysis

Liuti, Ent, Keppel, Niculescu,
Phys. Rev. Lett. 89 (2002) 162001

pQCD at Q2 ! 200 GeV2 shown for comparison demon-
strates the large effect of pQCD corrections above x"
0:2. In Fig. 2, we show the low W2 data extracted here,
along with large W2 data from [24,25]. Note that the data
in the resonance region smoothly blend to the deep in-
elastic—another manifestation of BG duality. The curves
correspond to our calculations including pQCD# TMC
at NLO (dashes), and pQCD# TMC with resummation
(full). The dots in each curve represent regions where
TMC are uncertain. The effect we find is qualitatively
similar to that found in [9,10], in that over the range
0:45 $ x $ 0:85, higher order perturbative contributions,
in this case large x resummation, improve the agreement
with the data. Substantial discrepancies remain, which we
interpret in terms of dynamical HT corrections. We pa-
rametrize H%x;Q2& as

H%x;Q2& ! FpQCD#TMC
2 %x;Q2&CHT%x&: (3)

Equation (3) is motivated by the lack of knowledge of the
anomalous dimensions of the twist-4 operators, a reason-
able assumption within the precision of the data (see also
[26]). Our fixed W2 approach enables us to extract CHT
from the resonance region and from the DIS region,
separately.

In Fig. 3(a) we show the coefficient CHT, Eq. (3), ex-
tracted from the following: (i) DIS data with W2 '
4 GeV2, (ii) the resonance region, W2 < 4 GeV2, as
well as (iii) averaged over the entire range of W2. The
figure also shows the range of extractions previous to the
current one [11,27]. We observe in all three cases, values
for CHT smaller than the ones in [11,27], because of the
effect of large x resummation. We have checked that our
results without resummation are consistent with a pre-
vious extraction using moments of the structure function
[12]. Most importantly, while the large W2 data track a
curve that is consistent with the 1=W2 behavior expected
from most models [28], the low W2 data yield a much
smaller value for CHT, and they show a bend over of the
slope vs x, already predictable from a similar behavior of
the slopes at low W2 in Fig. 2. This surprising effect is not
a consequence of the interplay of higher order corrections
and the HT terms, but just of the extension of our detailed
pQCD analysis to the large x, low W2 kinematical region.
In order to ascertain whether the discrepancy between the
low W2 and large W2 values of CHT are due to O%1=Q4&
terms in the twist expansion, Eq. (1), which could become
more important at low W2, we have extracted for each
resonance the quantity !H%x;Q2&, defined as

Fexp
2

FpQCD#TMC
2

! 1# CHT%x&
Q2 # !H%x;Q2&; (4)

where CHT%x& coincides with the value fitted at large W2.
From Fig. 3(b) one sees that !H%x;Q2& is negative for all
lower W2 ( $ 3:4 GeV2) bins, as expected if a cancella-
tion among higher order inverse powers were to occur,
consistent with the requirement of parton-hadron duality.
However, we uncover a nontrivial Q2 dependence of this
term: one can see a sharp change between the behavior of
the higher mass resonances and that of the N ( ! tran-
sition region which shows a distinctively steeper fall with

Q2 (GeV2)

F
2p (

x,
Q

2 )

FIG. 2 (color online). Comparison of pQCD# TMC calcula-
tions at NLO (dashed lines) and with resummation (full lines),
with current large x data. The solid dots are in the resonance
region, 1:3 $ W2 $ 3:4 GeV2; the open triangles correspond to
W2 $ 1:3 GeV2. The dotted lines represent the regions where
TMC contributions are uncertain.
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FIG. 3 (color online). (a) Coefficient CHT, Eq. (3), extracted
from DIS data with W2 ' 4 GeV2 (solid dots), from the reso-
nance region, W2 < 4 GeV2 (stars) and averaged over the entire
range of W2 (open dots). The shaded area summarizes extrac-
tions previous to the current one. A dotted line at zero is added
to guide the eye; (b) !H, Eq. (4), extracted at fixed values of
W2 as described in the text, and plotted vs Q2. The figure
further elucidates a breakdown of the twist expansion at low
W2, already visible in (a).
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along with large W2 data from [24,25]. Note that the data
in the resonance region smoothly blend to the deep in-
elastic—another manifestation of BG duality. The curves
correspond to our calculations including pQCD# TMC
at NLO (dashes), and pQCD# TMC with resummation
(full). The dots in each curve represent regions where
TMC are uncertain. The effect we find is qualitatively
similar to that found in [9,10], in that over the range
0:45 $ x $ 0:85, higher order perturbative contributions,
in this case large x resummation, improve the agreement
with the data. Substantial discrepancies remain, which we
interpret in terms of dynamical HT corrections. We pa-
rametrize H%x;Q2& as

H%x;Q2& ! FpQCD#TMC
2 %x;Q2&CHT%x&: (3)

Equation (3) is motivated by the lack of knowledge of the
anomalous dimensions of the twist-4 operators, a reason-
able assumption within the precision of the data (see also
[26]). Our fixed W2 approach enables us to extract CHT
from the resonance region and from the DIS region,
separately.

In Fig. 3(a) we show the coefficient CHT, Eq. (3), ex-
tracted from the following: (i) DIS data with W2 '
4 GeV2, (ii) the resonance region, W2 < 4 GeV2, as
well as (iii) averaged over the entire range of W2. The
figure also shows the range of extractions previous to the
current one [11,27]. We observe in all three cases, values
for CHT smaller than the ones in [11,27], because of the
effect of large x resummation. We have checked that our
results without resummation are consistent with a pre-
vious extraction using moments of the structure function
[12]. Most importantly, while the large W2 data track a
curve that is consistent with the 1=W2 behavior expected
from most models [28], the low W2 data yield a much
smaller value for CHT, and they show a bend over of the
slope vs x, already predictable from a similar behavior of
the slopes at low W2 in Fig. 2. This surprising effect is not
a consequence of the interplay of higher order corrections
and the HT terms, but just of the extension of our detailed
pQCD analysis to the large x, low W2 kinematical region.
In order to ascertain whether the discrepancy between the
low W2 and large W2 values of CHT are due to O%1=Q4&
terms in the twist expansion, Eq. (1), which could become
more important at low W2, we have extracted for each
resonance the quantity !H%x;Q2&, defined as
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FpQCD#TMC
2

! 1# CHT%x&
Q2 # !H%x;Q2&; (4)

where CHT%x& coincides with the value fitted at large W2.
From Fig. 3(b) one sees that !H%x;Q2& is negative for all
lower W2 ( $ 3:4 GeV2) bins, as expected if a cancella-
tion among higher order inverse powers were to occur,
consistent with the requirement of parton-hadron duality.
However, we uncover a nontrivial Q2 dependence of this
term: one can see a sharp change between the behavior of
the higher mass resonances and that of the N ( ! tran-
sition region which shows a distinctively steeper fall with
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tions at NLO (dashed lines) and with resummation (full lines),
with current large x data. The solid dots are in the resonance
region, 1:3 $ W2 $ 3:4 GeV2; the open triangles correspond to
W2 $ 1:3 GeV2. The dotted lines represent the regions where
TMC contributions are uncertain.
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range of W2 (open dots). The shaded area summarizes extrac-
tions previous to the current one. A dotted line at zero is added
to guide the eye; (b) !H, Eq. (4), extracted at fixed values of
W2 as described in the text, and plotted vs Q2. The figure
further elucidates a breakdown of the twist expansion at low
W2, already visible in (a).
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Phenomenological higher twists

extrapolation to low Q
(Alekhin, Kulagin, Petti 2005)
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Phenomenological higher twists

Impact of the twist-6 terms
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The twist-6 terms are important basically for Q2 ! 2GeV2

extrapolation to low Q
(Alekhin, Kulagin, Petti 2005)

2

R! !→ 0 as Q2→ 0NB:

large twist 6!
convergence?



5.
DIS at low Q  :

target mass corrections

2



Georgi, Politzer (1976) 
∫

d
4
x e

iq·x〈N |T (Jµ(x)Jν(0))|N〉

=

∑

k

(
−gµνqµ1qµ2 + gµµ1qνqµ2 + qµqµ1gνµ2 + gµµ1gνµ2Q2

)

×qµ3
· · · qµ2k

22k

Q4k
A2kΠµ1···µ2k}

〈N |Oµ1···µ2k
|N〉

traceless, symmetric rank-2k tensor

=
k∑

j=0

(−1)j (2k − j)!

2j(2k)j
g · · · g p · · · p

Πµ1···µ2k
= pµ1

· · · pµ2k
− (gµiµj

terms)

Operator Product Expansion



=
∞∑

j=0

(
M2

Q2

)j
(n + j)!

j!(n − 2)!

An+2j

(n + 2j)(n + 2j − 1)

“quark distribution function”

F (y) =
F2(y)

y2

n-th moment of       structure functionF2

∫
dx xn−2 F2(x, Q2)Mn

2 (Q2) =

An =

∫ 1

0

dy yn F (y)



inverse Mellin transform (+ tedious manipulations)

r =
√

1 + 4x2M2/Q2ξ =
2x

1 + r

... similarly for other structure functions F1, FL

FGP
2 (x, Q2) =

x2

r3
F (ξ) + 6

M2

Q2

x3

r4

∫ 1

ξ

dξ′ F (ξ′)

+ 12
M4

Q4

x4

r5

∫ 1

ξ

dξ′
∫ 1

ξ′

dξ′′ F (ξ′′)



Christy et al. (2005)

no TMCTMC

TMCs significant at large          , especially for x2/Q2
FL
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Fig. 14. Proton F
p
2 structure function in the resonance region for several values of Q2, as indicated. Data from Jefferson Lab

Hall C [65,66] are compared with some recent parameterizations of the deep inelastic data at the same Q2 values (see text).

Comparison of resonance region data with PDF-based global fits allows the resonance–scaling com-

parison to be made at the same values of (x, Q2), making the experimental signature of duality less

ambiguous. Such a comparison is presented in Fig. 14 for F
p
2 data from Jefferson Lab experiment E94-

110 [65,66], with the data bin-centered to the values Q2 = 1.5, 2.5 and 3.5 GeV2 indicated. These F
p
2

data are from an experiment capable of performing longitudinal/transverse cross section separations, and

so are even more precise than those shown in Figs. 11–13.

The smooth curves in Fig. 14 are the perturbative QCD fits from the MRST [67] and CTEQ [68]

collaborations, evaluated at the same Q2 values as the data. The data are shown with target mass (TM)

corrections, which are calculated according to the prescription of Barbieri et al. [16]. The SLAC curve

is a fit to deep inelastic scattering data [69], which implicitly includes target mass effects inherent in

the actual data. The target mass corrected pQCD curves appear to describe, on average, the resonance

strength at each Q2 value. Moreover, this is true for all of the Q2 values shown, indicating that the

resonance averages must be following the same perturbative Q2 evolution [60] which governs the pQCD

parameterizations (MRST and CTEQ). This demonstrates even more emphatically the striking duality

between the nominally highly nonperturbative resonance region and the perturbative scaling behavior.

An alternate approach to quantifying the observation that the resonances average to the scaling curve

has been used recently by Alekhin [70]. Here the differences between the resonance structure func-

tion values and those of the scaling curve, !F
p
2 , are used to demonstrate duality, as shown in Fig. 15,

duality in F  and F  structure functions2 L



Threshold problem

if                          at largeF (y) ∼ (1 − y)β y

then since ξ0 ≡ ξ(x = 1) < 1

F (ξ0) > 0

FTMC
i (x = 1, Q2) > 0

is this physical?

problem with GP formulation?



Possible solutions

Nachtmann moment

µn

2 (Q2) =

∫ 1

0

dx
ξn+1

x3

(
3 + 3(n + 1)r + n(n + 2)r2

(n + 2)(n + 3)

)
F2(x, Q2)

supposed to remove TMCs explicitly from SF moment

Johnson/Tung - modified threshold factor



Possible solutions

Nachtmann moment

µn

2 (Q2) =

∫ 1

0

dx
ξn+1

x3

(
3 + 3(n + 1)r + n(n + 2)r2

(n + 2)(n + 3)

)
F2(x, Q2)

n fixed, Q2
→ ∞

µn
2 (Q2) → (lnQ2/Λ2)−λn An

n → ∞, Q2
fixed

µn

2 (Q2) → ξn

0 (Q2) µ̃n

2 (Q2)

“regularized” amplitudes
(threshold-independent)

Johnson/Tung - modified threshold factor



Possible solutions

Johnson/Tung - modified threshold factor

Nachtmann moment

µn

2 (Q2) =

∫ 1

0

dx
ξn+1

x3

(
3 + 3(n + 1)r + n(n + 2)r2

(n + 2)(n + 3)

)
F2(x, Q2)

Bitar, Johnson, Tung
PLB 83B (1979) 114

ansatz µn
2 (Q2) = ξn

0 (Q2) (lnQ2/Λ2)−λn An

consistent with asymptotic pQCD behavior

not unique!



Possible solutions

Johnson/Tung - modified threshold factor

moreover, if identify      with An

µn

2 (Q2) = ξn

0 (Q2) Mn

2 (Q2)

Mn

2 (Q2) = µn

2 (Q2) +
nM2

Q2
Mn

2 + · · ·

cf. exact expression

Mn

2 (Q2) = µn

2 (Q2) +
n(n − 1)

n + 2

M2

Q2
Mn+2

2 + · · ·

inconsistency at low      ?    Q2

M
n

2 =

∫ 1

0

dx x
n−2

F2(x)



work with     dependent PDFs

Steffens, WM
PRC 73 (2006) 055202

ξ0

n-th moment       of distribution function An

An =

∫ ξmax

0

dξ ξn F (ξ)

what is        ?ξmax

GP use                                unphysicalξmax = 1, ξ0 < ξ < 1

strictly, should use                               ξmax = ξ0

Alternative solution



what is effect on phenomenology?

try several  “toy distributions”

q(ξ) = N ξ−1/2 (1 − ξ)3 , ξmax = 1

standard TMC (“sTMC”)

modified TMC (“mTMC”)

q(ξ) = N ξ−1/2 (1 − ξ)3 Θ(ξ − ξ0), ξmax = ξ0

threshold dependent (“TD”)

qTD(ξ) = N ξ−1/2 (ξ0 − ξ)3 , ξmax = ξ0

Alternative solution
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FIG. 3: The x dependence of the F2 structure function at Q2 = 1 GeV2 (upper) and 5 GeV2 (lower). The effects of TMCs
on the (input) scaling distribution (dotted curve) are illustrated for the sTMC (dashed) and mTMC (double-dot–dashed)
prescriptions, and compared with the effects on the (input) TD-distribution ξqTD(ξ) (dot-dashed) using the TD approach
(prescription C, solid).

the sTMC and mTMC prescriptions, the corrected structure function is significantly larger in magnitude than for the
TD prescription at intermediate and large x. For the sTMC case in particular, it is also seen to approach a nonzero
value in the x → 1 limit. This result suggests that the evaluation of the twist-two part of the longitudinal structure
function at low Q2 may also need to be reassessed in phenomenological analyses, especially at intermediate and large
x.

TMCs in F2

correct threshold behavior for  “TD” correction

non-zero
at x = 1
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on the (input) scaling distribution (dotted curve) are illustrated for the sTMC (dashed) and mTMC (double-dot–dashed)
prescriptions, and compared with the effects on the (input) TD-distribution ξqTD(ξ) (dot-dashed) using the TD approach
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the sTMC and mTMC prescriptions, the corrected structure function is significantly larger in magnitude than for the
TD prescription at intermediate and large x. For the sTMC case in particular, it is also seen to approach a nonzero
value in the x → 1 limit. This result suggests that the evaluation of the twist-two part of the longitudinal structure
function at low Q2 may also need to be reassessed in phenomenological analyses, especially at intermediate and large
x.

TMCs in F2

effect small at higher Q2



5

from 0 to 1 (specifically, in the integrals for An, H(ξ) and G(ξ)). Here the normalization N ensures that the
distribution integrates to unity. We denote this prescription the “standard TMC” (sTMC).

(B) Integrate a modified distribution which vanishes for ξ > ξ0, as implied by Eq. (7)1:

q(ξ) = N ξ−1/2(1 − ξ)3 Θ(ξ − ξ0) . (19)

We denote this prescription the “modified TMC” (mTMC).
(C) Use a “threshold dependent” (TD) quark distribution which vanishes in the physical limit:

qTD(ξ) = N ξ−1/2(ξ0 − ξ)3 . (20)
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TD
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n=2

FIG. 1: Ratio of the n = 2 Nachtmann moment of the F2 structure function and the n = 2 moment of the quark distribution,
as a function of Q2. The curves correspond to prescriptions A [“sTMC”] (dotted), B [“mTMC”] (dashed) and C [“TD”] (solid).

Note that because of the upper limit in Eq. (7), An itself will be M2/Q2 dependent for prescriptions B and C. The
results for the ratio µn

2/An of the n = 2 moments are displayed in Fig. 1 for the three cases, with prescriptions A, B
and C corresponding to the dotted, dashed and solid curves, respectively. Comparing the sTMC and mTMC results,
one can see a reduced Q2 dependence when the integrals are restricted to ξ < ξ0. However, a much more dramatic
change occurs when the quark distribution is constrained to vanish at ξ0. This renders the Nachtmann moment almost
equal to the moment of the quark distribution for virtually all Q2 considered. Certainly for Q2 > 1 GeV2 there is no
visible deviation of the ratio from unity. Even for very small Q2, Q2 ∼ 0.3 GeV2, the ratio differs from unity by only
∼ 0.7% (of course the OPE itself may not be valid at such low values of Q2).

Similarly, the ratios for the n = 4 and n = 6 moments are shown in Fig. 2. The deviation of the ratio from unity
for the sTMC approach is between 10%− 20% for Q2 <

∼ 1 GeV2, while that for the modified TMC with prescription
B is of the order of 5% over the same Q2 region. On the other hand, for the threshold dependent prescription C, the
deviation from unity remains around 1% even at these low Q2 values.

A consequence of prescription C is that the moments of the parton distribution are Q2 dependent. This seems to
be an inevitable consequence if the Nachtmann moments of the structure function are to be equal to the moments of
the parton distribution for all Q2. Note that this Q2 dependence is not of higher twist or perturbative QCD origin,
but arises solely from kinematics. Nevertheless, this avoids the more serious problems which arise within the sTMC

1 We believe this was also the implication of De Rújula et al. [11]

Nachtmann     momentsF2

moment of structure function agrees with 
moment of PDF to 1% down to very low Q2
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FIG. 2: Ratios of the n = 4 (upper graph) and n = 6 (lower graph) Nachtmann moment of the F2 structure function and the
corresponding moments of the quark distribution, as a function of Q2. The curves are as in Fig. 1.

approach (prescription A), where the Nachtmann moments below Q2 ∼ 1 GeV2 start to deviate significantly from the
moments of the quark distributions. In addition, in the sTMC formulation one is faced with the so-called “threshold
problem”. Namely, if the moments An of the quark distributions are Q2 independent, then one should have:

∫ 1

0
dξ ξn F (ξ, Q2

1) =

∫ 1

0
dξ ξn F (ξ, Q2

2) (21)

for any two momentum scales Q2
1 and Q2

2. Since F (ξ, Q2) must vanish in the kinematically forbidden region ξ > ξ0,
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corresponding moments of the quark distribution, as a function of Q2. The curves are as in Fig. 1.

approach (prescription A), where the Nachtmann moments below Q2 ∼ 1 GeV2 start to deviate significantly from the
moments of the quark distributions. In addition, in the sTMC formulation one is faced with the so-called “threshold
problem”. Namely, if the moments An of the quark distributions are Q2 independent, then one should have:

∫ 1

0
dξ ξn F (ξ, Q2

1) =

∫ 1

0
dξ ξn F (ξ, Q2

2) (21)

for any two momentum scales Q2
1 and Q2

2. Since F (ξ, Q2) must vanish in the kinematically forbidden region ξ > ξ0,

Nachtmann     momentsF2

higher moments show much weaker Q2

dependence than sTMC & mTMC prescriptions
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structure functions at finite Q2, and produces vanishing structure functions as x → 1. This is true for both the F2

and FL structure functions.
The Nachtmann moments µn

2 of the F2 structure function, calculated with the threshold dependent distributions
qTD, agree with the moments An of qTD to within 1% for the n = 2, 4 and 6 moments for Q2 as low as 1 GeV2 and
even lower. In contrast, the deviation for the standard or modified TMC procedure (sTMC or mTMC prescriptions)
is more than an order of magnitude larger at the same Q2 values, and grows rapidly with increasing n. Furthermore,
for Q2 > M2 one can show analytically that, at least to O(1/Q6), the moments µn

2 and An are identical. Similarly,
for the longitudinal structure function FL, the Nachtmann moments µn

L with the threshold dependent distribution
are considerably smaller (i.e. closer to the asymptotic value of zero) than the moments in the sTMC or mTMC
prescriptions.

A consequence of our formulation is that the moments of the threshold dependent distributions will in general be
M2/Q2 dependent. This dependence is not associated with either perturbative QCD effects or higher twists, but
comes entirely from the leading twist, target mass effects. Our analysis suggests that it may be necessary to reassess
the interpretation of a parton distribution in the presence of the finite M2/Q2, or ξ, corrections, as well as the
implementation of the qTD distributions in the Q2 evolution equations. We will address these problems in future work
[15]. At the same time, our numerical results give impetus to investigating the impact of TMCs on phenomenological
fits to structure functions at low Q2 [16] and the extraction of twist-two parton distributions.
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IV. CONCLUSION

In this work we have revisited the long-standing problem of target mass corrections to nucleon structure functions.
The standard procedure for implementing target mass effects suffers from the well known threshold problem, in
which the corrected, leading twist structure function does not vanish at x = 1. We have proposed a solution to this
problem by introducing a finite-Q2, “threshold dependent” parton distribution function that explicitly depends on the
kinematical threshold ξ0, which is smooth in the entire physical region, and approaches the ordinary, Q2-independent
parton distribution in the limit Q2 → ∞. Our prescription avoids any discontinuities in the parton distributions and
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Summary

Remarkable confirmation of quark-hadron duality in
structure functions  

higher twists “small” down to low Q2
2(~ 1 GeV  )

OPE  “organizes” duality violations in terms of higher twists 
but need quark models to understand origin of resonance 
cancellations  

Use duality violations to extract higher twist matrix elements
color polarizabilities

2Intriguing low-Q  behavior
importance of  TMC’s at large   x2M2/Q2
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The End


