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e High energy DIS spin experiments
@ Acceptance
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High energy DIS spin experiments

Acceptance

Q E142, E143, E154, E155, E155X at SLAC; electrons of < 50 GeV, targets: protons,
deuterons, helium-3;

e EMC, SMC, COMPASS at CERN; muons of 90 — 280 GeV, targets: protons, deuterons;
e HERMES at DESY; electrons of 30 GeV, targets: protons, deuterons, (helium-3);
e STAR, PHENIX at BNL; pp collider, /s = 200 GeV;

a Kinematic variables from incident and scattered leptons in 1, 2, 3; hadrons from target
fragmentation often also measured and — in case of 2, 3 — identified if momenta larger than
1 and 2.5 GeV respectively;

e background due to pe scattering (at x = 0.000545) in 2, 3;
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e High energy DIS spin experiments

@ Status of g; measurements
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High energy DIS spin experiments...cont'd

Status of g; measurements

Spin-dependent cross sections are a small part of the DIS cross section = c.s. asymmetries
= getting A then A; then (using F, and R) g;. Practical matters in: r. windmolders, in "Spin in
physics”, X Séminaire Rhodanien de Physique, eds Anselmino, Mila, Soffer, Frontier Group, 2002.
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High energy DIS spin experiments...cont'd

Status of g; measurements...cont'd

World data on F World data on g
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Scaling violation in g (x, Q?) is weak.
For g1, Q2 becomes > 1 GeV? at x > 0.003 for SMC, 0.03 for HERMES and for COMPASS.
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9 Regge model predictions for g,
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Regge model predictions for g;

@ Remember: s = W2 = M? 4+ Q?(1/x — 1); thus low x behaviour of a structure function
(F2, 91, ...) reflects the high energy behaviour of the virtual Compton scattering cross
section with the cms energy squared, s. This is the Regge limit of DIS.

@ Regge gives for x — 0 (i.e. Q2 < W?2):
91(x,Q%) ~ B(Q*)x )

where i =singlet (s), nonsinglet (ns): g = g} + g, oI =g} — gl

@ Possible trajectories: | =0 (g3; f1 trajectory) and | =1 (g7°; a; trajectory).
Expectations: as,ns(0) < 0 and as(0) & ans(0).

@ Consequence: for Q2 —0, g1(W2) ~ W20,

@ Atlarge Q?: the DGLAP evolution and resummation of In?(1/x) generate more singular x
dependence than that implied by eq.(1) for as,ns(0) < O.

@ Other Regge isosinglet contributions to g; at low x:

@ aterm ~ Inx;
@ aterm~2In(1/x) — 1;

@ aperverse term ~ 1/(xIn?x) got invalidated.

Perturbative QCD effects might modify the Regge expectations. In case of g it creates a more
singular low x behaviour than the (nonperturbative) Regge expectations.
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Regge model predictions for g;...cont'd

Testing Regge behaviour of g; through its x dependence:
@ choose high WZ;
@ choose low x (i.e. Q2 < W2 but not necessarily low Q2);
@ choose a bin of Q2 (i.e. Q2 =const);
@ fit the x dependence of g;.
For the SMC:
@ Testing not possible
For COMPASS:
@ Testing not possible either

@ Observe: assuming g; ~ x° to get x — 0 extrapolation of g; to extract g; moments
is not correct! Evolve g; to a common Q2 before extrapolation!
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9 Low x implications from the pQCD
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Low x implications from the pQCD

In the DGLAP the singular small x behaviour of the gluon and sea
quark distributions (implied by the data) may originate from
@ parametrization of the starting distributions at moderate Qg (equal
to about 4 GeV? or so);
@ evolution starting from non-singular “valence-like” parton
distributions at a very low scale, g ~ 0.35 GeV?. cic ey, voot tur

Phys.J.C5 (1998) 461

Then
g1(x, Q%) ~ exp [A\/g(QZ)In(l/x)} 2)
where - ,
. dg® as(q”)
@)=/, Eo ©)

and A is different for the singlet and non-singlet case.
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Low x implications from the pQCD

World data on gf and gf were NLO QCD analysed but at low x neither measurements nor
reliable calculations exist.

De Roeck et al., Eur. Phys. J. C6 (1999)121 Bourrely, Soffer, Buccella, Eur. Phys. J. C23(2002) 487
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@ Ln2(1/x) corrections to g;(x, Q2)
@ General
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|_n2(1/x) corrections to gi (X, Qz)

General

@ Low x = large parton densities = new dynamics?

@ Small x behaviour of both g7 and g7* is controlled by terms
corresponding to powers of asIn?(1/X) sares crmoen rysiin 2 Piys. 70 (1996)
273; Z.Phys. C72 (1996) 627.

@ These terms generate the leading small x behaviour of g;.

@ They go beyond the standard QCD evolution of spin dependent
parton densities which does not generate the double but only the
single In(1/x) terms.

@ They may be included in the QCD evolution; one of the methods:
a formalism based on unintegrated parton distributions, f(x, k2),
where the conventional parton distributions p(x, Q?) are

Q% yk2
p(x.@%) = [ (k) @

and k? is a transverse momentum squared of the partons.
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@ Ln2(1/x) corrections to g;(x, Q2)

@ Predictions for g7°
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@ Ln?(1/x) corrections to g 3 2
are generated by ladder diagrams —>

or mathematically by an equation: Xp, K

¥p. ¥

NN

2 / ’
F(x/, k) = FO(x', k) + as(k?) 1 & [ /7 &25(X k2

x' 'z kg k’2

(LR IRLALLL

and PR

ns 2y _ 4(0) W2 k2 K2y 2 [
[} (X7Q )_gl (X)+fkg sz(X —X(l+ Qz)vk ) ﬁﬁ

where as(k?) = 2as(k?)/3w and
ggo)(x) is a nonperturbative part, corresponding to k? < kg.

@ Ln?(1/x) terms originate from the z-dependent limit of the [ dk’2/k’2 and x-dependent
limit in W2(x).

@ They create a leading small x behaviour of gf's if g:S(O) and (% are non-singular at x —0.

@ DGLAP evolution is incomplete at low x; only In(1/x) terms are present, originating from
S k2 /2,

@ For fixed (i.e. non-running) és(k2) — ds, small x behaviour is g (x, Q%) ~ x~* where

)\ = 2\/ ds
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Ln?(1/x) corrections to g;(x, Q?)...contd

Predictions for g°...cont'd

@ A unified equation which incorporates the complete LO DGLAP at finite x and In?(1/x)
effects at x — 0 was formulated.
@ Potentially large InQ? and In(1/x) treated on equal footing.

@ For the numerical results it was assumed that g*® = 2g,(1 — x)3/3 where ga = 1.257
(axial vector coupling). Atx — 0, 925(0) —const, in agreement with the Regge expectation.
The g]°* satisfies the Bjorken sum rule at LO: [} dxg{*® (x) = ga/6.

o
@ Parameter k2=1 GeV2.
@ To compare the g7* to the (SMC) data it was assumed:

o =gb — g7 =2[9) —99/(1 — wp/3)]; wp =0.05 (D-state probability in the deuteron).

9y s

9
b 1.3 < Q%GeV? < 56.3 '
sE Q°=10 GeV?
97° vs x
continuous — full calculations *
broken — LO DGLAP
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@ Ln2(1/x) corrections to g;(x, Q2)

@ Low Q? extrapolation of g
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Ln?(1/x) corrections to g;(x, Q?)...contd

Low Q? extrapolation of g[S Badelek, Kwiecinski, Phys. Lett. B418 (1998) 229

@ For Q2 — 0 (for fixed W?), g1 should be a finite function of W?2,
free from kinematical singularities or zeroes at Q2 = 0.

@ g!s from the above formalism and the above g fulfil this.

o 1f g7°%(x) has a singularity then it should be replaced by g]> (%)

where X = x(1 + k2/Q?). Remaining parts left unchanged.
@ Then g® can be extrapolated to the low Q? for fixed 2Mv = Q?/x

including Q2 = 0. Observe! That is just the partonic contribution
to the low Q? region; it may not be the only one there.
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@ Ln2(1/x) corrections to g;(x, Q2)

@ Predictions for g
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Ln?(1/x) corrections to g;(x, Q?)...contd

Predictions for g;  Kwiecinski, Ziaja, Phys. Rev. D60 (1999) 054004

Results of full g; (x, Q2) calculations at Q2 =10 GeV?2. At low X, the singlet part, g5 dominates
g7®. Apart of the "standard” ladder diagram, the following ones were taken into account for

97°(x,Q?):

0F < g}(x,Q?) vs x at Q2 =10 GeV?
-50 red — nonperturbative input, gio)
100 i pink — only LO DGLAP
. thick black — full g;
& 150 blue — LO DGLAP + ladder In?(1/x)
200 Atlow X, g3 — x = with X ~ 0.4 for g
-250 and A ~ 0.8 for g3.
More singular than Regge expectations!

-300
1e-05 1e-04  0.001 0.01 0.1 1
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@ Ln2(1/x) corrections to g;(x, Q2)

@ Low x contributions to g; moments
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Ln?(1/x) corrections to g;(x, Q?)...contd

Low x contributions to g; moments

Fundamental tools: sum rules (Ellis—Jaffe, Bjorken, DHG, ...) which involve first moments
of g, i.e. integrations over dx from0Oto1,e.g. [; = fol g.dx.
Unmeasured regions: [0,Xmin], [Xmax,1].
The [Xmax,1] not critical but [0,Xmin] is very important.
Xmin depends on vmax accessed in experiments at a given Qg, e.g.

SMC at 200 GeV and QS: 1 GeV2 = Xmin ~ 0.003;

COMPASS at 160 GeV and Q2= 1 GeV? = Xjn =~ 0.002.
Contribution to moments from the 0< x < 0.003 has to be estimated phenomenologically.
LO DGLAP + In?(1/x) resummation used to extrapolate polarised parton distributions and
structure functions down to x ~ 10~ to calculate contributions to moments from
107% < x <1073, In 2 < Q? <15 GeV? interval, contributions to 'Y was 2% and 8% for ']
(however calculations of I'! were below the data in the overlap region). Contributions
with Q2 7. Also estimated that 10~° < x <10~3 interval contributes 1% and 2% to the
Bjorken and Ellis—Jaffe s.r.
Same formalism gave a contribution of 0.0080 to the Bjorken integral from the unmeasured
region, 0< x <0.003 at Q2 = 10 GeV? (LO DGLAP only gave 0.0057 and assuming g; =
const resulted in 0.004). Kwiecinski, Ziaja, Phys. Rev.,60 (1999)054004
Extrapolation of the NLO DGLAP fits to the world data: in 0< x <0.003 is 10% of F‘l’. NLO
DGLAP for the SMC data at Q2 = 10 GeV? gave 10% contribution to the Bjorken integral.
SMC, Phys. Rev., D58 (1998) 112002 (obs! assumptions!).
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Nonperturbative effects in g;

@ Data on g;(x, Q?) extend to low Q? ~ 0.0001 GeV?2.

@ Nonperturbative mechanisms dominate the particle dynamics
there; transition from “soft” to “hard” physics may be studied.

@ Partonic contribution to g, has to be suitably extrapolated to low
Q? and complemented by a nonperturbative component.

@ Low Q?, spin-independent electroproduction well described by
the GVMD = GVMD should be used to describe the g;.

@ Two attempts tried to extract from the data a contribution of
nonperturbative effects at low x, low Q2.
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e Nonperturbative effects in g1
@ g; at low Q?, method |
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Nonperturbative effects in g;...cont'd

g: at low Q?, method | Badelek, Kiryluk, Kwiecinski, Phys. Rev. D61 (2000) 014009

The following representation of g; was assumed:

91, Q%) = g™ (x, Q%) + 97" (x,Q?) )
gpalrt at low x is controlled by the In?(1/x) terms; it was parametrised as discussed in  Kwiecinski,
Ziaja, Phys. Rev. D60 (1999) 054004. 9yMP(x, Q?) was represented as:

My Z Mg Aoy (W2)

VMD 2
9~ (X,Q%) = T2/2 L2\2
ar =, ¥ (Q2 + MZ)?

©)

The unknown cross sections Aoy (W?2) are combinations of the total cross sections for the
scattering of polarised vector mesons and nucleons. At high W2: Aoy = (012 — 03/2)/2
Assume:

Mv

Z M Aoy _
4 2,75 (Q7 + M7)?

4 Mg
C {9 (Bu%(x) +240°()) + (Ad0|(X)+2Ad (X))} Q2 +pMS)27 (7)
My M(‘;A%p 2. Mg
T RV e B R GO VALY ©
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Nonperturbative effects in g;...cont'd

g: at low Q?, method I...contd

Each Ap/(x) — x° for x —0. Thus Aoy — 1/W? atlarge W?, i.e. zero intercept of the
appropriate Regge trajectories.

Results for the spin asymmetry, A; = g, /F1, for the proton, and for different C:

Cc?? C<0?
p 2 2
AY QP<1.GeV AL @ <1GeV
0.08[- O E143data, c-0
SMC data 020 162GeV?
006 c=2
015}
0.04F
J 0.10F Ot
002 Cova
c=0
ok Coa 0051
-0.02~ 2 0 2
ol ooe 006 o1 02| 05 06 vt @®-"[05 06 07 08 09 1. Gev
= . . g - 8 8 sl b b b b b baa
Ll < | 3 L 0.02 0.04 0.06 0.08 0.1
10 10 X

X
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e Nonperturbative effects in g1

@ g; at low Q?, method Il
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Nonperturbative effects in g;...cont'd

g: at low Q?, method Il Badelek, Kwiecinski, Ziaja, Eur. Phys. J. C26 (2002) 45

The following representation of g, was assumed, valid for fixed W2 > QZ, i.e. small
X =Q2/(Q% +W? — M2):

Mv M¢ Aoy (W?) AS /o 2 2
91(x,Q%) = gr(x,Q%) +97'(x,Q%) = —— > SV +91°(X,Q* + Q). (9)
4r S 2 (Q2+MZ)2 !
The first term sums up contributions from light vector mesons, My, < Qo, Qg ~ 1GeV2. The
unknown Aoy are expressed through the combinations of nonperturbative parton distributions,
evaluated at fixed Qg, similar to method I.

The second term, gf (x, Q?), represents the contribution of heavy (My > Qo) vector mesons to
g1(x, Q?) can also be treated as an extrapolation of the QCD improved parton model structure
function, g (x, Q?), to arbitrary values of Q2: gt'(x, Q?) = g#5(X, Q2 + Q2). The scaling
variable x is replaced by X = (Q? + Q2)/(Q? + Q3 + W2 — M2). It follows that at large Q2,

g} (x,Q?) — gS(x,Q?). Thus:

2 _ 4 0 =0 1 0 A0 Mg
gl(X:Q ) - c {§(Auval (X) +2A0 (X)) + §(Adval(x) +2Ad (X)) (Qz + Mg)z
1 =0 Mg AS (o A2 2
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Nonperturbative effects in g;...cont'd

g: at low Q?, method II...cont'd

Now fixing C in the photoproduction limit via the DHGHY sum rule.

Digression: the DHGHY sum rule

The ~*p scattering amplitude fulfills the dispersion relation:

oo G (V/ q2)
2) = gy 219
Si(v,q%) = 4/—q2/2M v'dv E .2 (11)
where M
G1(r.0%) = T-01(x,Q?) (12)
in the Q2, v — oo limit. As a result of Low’s theorem: S;(0,0) = —n’z)(n), G, inthe Q2 — 0 limit
fulfills the DHGHY sum rule:
> dv 1,
/0 L64(1,0) = ~ ey (13)

End of digression
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Nonperturbative effects in g;...cont'd

g: at low Q?, method II...cont'd

First moment I, for the proton and deuteron

Xmn X(W=1.07) @Phenomenological Models
L= I g,dx+ !Qndx ® Burkert/loffe
x=0.001 X Resonance contribution pion electroproduction analysis
DIS (unmeasured) without elastic hd SOﬁer/Teryaev .
Parameterization  contribution Interpolation of the integral '[(g‘+gz)dx
of world data
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== Soffer - 2
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B. Badelek (Warsaw & Uppsala) Low Qz, lecture IV HUGS, June 2006 32/37



Nonperturbative effects in g;...cont'd

g: at low Q?, method II...cont'd

Atv —0, eq.(11) is:
>~ dv

S10.0) =M [ Laiw). @) (1)

Q
Now we define the DHGHY moment, 1(Q?) as:

Q1) = S1(0.%)/4 =M | -

dv

—01(x(v), Q%). (15)
Qz/am v
Before taking the Q2 — 0 limit of (14), observe that it is valid only down to some threshold value
of W, Wy, < 2 GeV (above resonances). Requirement W > Wy, gives the lower limit for

integration over v in (14), where 14(Q?) = (W?2 + Q% — M2)/2M:

©  dv
Q) = s @) +M [ s (x(1).Q%). (16)
1n(Q?) V
Here lres = contribution of resonances. The DHGHY sum rule now implies:
>~ dv 2
I(O) = |res(0) +M © ﬁ g1 (X(V)v 0) = _K’p(n)/4' (17)
"
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Nonperturbative effects in g;...cont'd

g: at low Q?, method II...cont'd

Thus action plan for extracting C in eq.(10):
@ take g1(x(v),0), eq.(10); C is the only free parameter,
@ putitinto eq.(17),
@ get les(0) from measurements,
@ extract C from (17).
Taking:
@ lres(0) from photoproduction, Wy=1.8 GeV GDH, Nucl. Phys. 105 (2002) 113,
@ g7S prametrized by NLO GRSV2000 Fhys.Rev. D63 (2001) 094005

@ nonperturbative Apj(o)(x) atQ? = Q2 = 1.2 GeV2 from
@ GRsV2000 —C =-0.30
@ “flat’ Ap¥(x) = Ni(1—x)"  =C =-0.24.
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Nonperturbative effects in g;...cont'd

g: at low Q?, method II...cont'd

Byproducts: g; from eq.(10) and the DHGHY moment, 1(Q?), eq.(15). Results for the proton:

ak Q*=0.01 GeV?

— , )
NO’ 1 Q= 0.1 GeV’ x=0.001
o)
e
—
o0
aL Q=1GeV? x=0.01
1 F
0
1 ,/ Q=10 GeV? x=0.1
L L L L L L
0t w0t 1w ! 10" 1 10
2 2
X Q" [GeV7]

broken lines — g7, dotted — g},

continuous — total g;
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Figures from: Badelek, Kwiecinski, Ziaja, Eur. Phys. J. C26 (2002)45
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e Summary
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@ At high energies, low Q2 region correlated with low x.

@ Very important for understanding the nucleon structure is the
transition from photoproduction to DIS; also for practical purposes.

@ Several theoretical concepts relevant there.

Both perturbative and nonperturbative contributions to the nucleon
structure are present everywhere in Q2
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