Relativistic Description of Few-Nucleon Systems

LECTURES FOR THE 2007 PRAGUE SUMMER SCHOOL
Franz Gross JLab and W&M

Plan: Each lecture will be accompanied by questions and
problems, some requiring original research

.geffe;Zon Lab

Outline:

* Lecture 1: Overview: discussion of relativistic methods
* Two schools for the relativistic description of few nucleon systems
will be described.

* How do these approaches handle the problem of relativity and what
are the advantages and disadvantages of each?

* Lecture 2: Theory: two and three nucleon systems

* Introduction to the Covariant Spectator Theory.

* How are the bound state and scattering equations obtained, what
are the normalization conditions?



Outline (continued)

* Lecture 3: Results: energies below the pion production
threshold

* New, high precision fits to np data below 350 MeV lab

energy, and the relativistic properties of the deuteron and
triton.

What do these new results tell us about the nature of
nuclear forces?

* Lecture 4: Electromagnetic interactions: gauge invariance
and effective current operators

* General method for doing gauge invariant calculations in
systems composed of composite particles.

* What can be learned from high energy electron scattering
experiments?

Lecture I:

Overview: Discussion of Relativistic
Methods



Outline

* Overview of relativistic methods: “"Two schools”

* Field dynamics (also referred, in these lectures, to as “field form")

Relativistic interactions and equations in field theory
Introduction to Bethe-Salpeter (BS) and Covariant Spectator® (CS)

equations

Description of bound states in field dynamics

* Hamiltonian Dynamics

Basic theory in “instant form"”
Comparison with field form
Poincaré transformations
Dirac's forms of dynamics

The Bakamjian-Thomas construction

The mass operator

* Cluster separability

* Conclusions

First -- why use a relativistic theory?

* NOT because

of size of (v/c)? corrections
(although they may be large in some
applications)

it is more accurate (it may not be)

it is "better” than EFT (it
complements EFT)

* Use a covariant theory for the
following reasons

Intellectual: fo preserve an exact
symmetry (Poncare' invariance)

Practical: to calculate boosts and
Lorentz kinematics consistently to
all orders (essential when energies
are of the order of 1 GeV)

Consistent: to use field theory for
guidance in the construction of

« forces (23 body consistency)
+ currents consistent with
forces

Conceptual: for "phenomenoclogical
economy”, and to understand the
non relativistic limit:
« spin 1/2 particles (Dirac
equation)
+ interpretation of LeS forces
(covariant scalar-vector theory
of N matter)

« efficient one boson exchange
models of NN forces (?)



Overview of relativistic methods: Two “schools”

Relativity
with a fixed number of particles

Hamiltonian dynamics Field dynamics
On-shell particles Off-shell particles
+ no negative energy states + manifest covariance and locality
— loose locality and manifest covariance — must include negative energy states
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FIELD DYNAMICS



Relativistic interactions in field theory

* Diagrammatic derivation for 2 body scattering:

* The exact scattering amplitude is the sum of all Feynman

diagrams crossed  vertex self
9 Iaddei sum ladder  correction energy
I — . LAy
Gy - ToET I
Scattering OBE : / .
amplitude 2-body reducible 2-body reducible

* Divide the sum into irreducible and 2-body reducible terms, and
collect the irreducible terms into a kernel, which is iterated
Iteration of this
:Gﬁ): = :': + :.::@ equation gives an
/ infinite sum

Kernel (potential) is the sum of all
two-body irreducible diagrams

Field Theory: How are bound states described?

* What is a bound state in field theory?

* A bound state is a new particle (not in the Lagrangian) that arises
because of the interactions. The vertex function I describes how it
couples to the elementary particles in the Lagrangian:

p=3P+p Notation:
:.— I'(p) P=total momentum (always conserved)
p,=3P-p p relative momentum

* The bound state produces a pole in the scattering amplitude which does
not correspond to one of the elementary particles in the theory:

0 - r(p')ﬁﬁp)

* If the bound state is not elementary, no single Feynman diagram will
have the bound state pole; it must be generated from an infinite sum of
Feynman diagrams, much as the geometric series generates a pole at
z=1:

M=z+72+7 +eee =1



Relativistic scattering equations in field theory

* The scattering equation is
M(p',p;P)=V(p',p;P)+ [V(p'.k; PYG(k; P)M (k, p; P)

where Vis the kernel (i.e. potential) and & is the propagator

* If the kernel is phenomenological, this is field dynamics instead of field theory.

* The bound state equation follows by assuming the M matrix has a pole, and
substituting
L(p' . M) (p, M)
M;-P’

M(p',p;P)= =V(p',p;P)

T(k,M )T (p.M,)
M; - P’

+JV(p',k;P)G(k;P)

extracting the pole part gives the bound state equation uniquely
T(p'.My) = [ V(p' k:M ;) Gk My)T(k, M)

* This equation also insures that the non-pole parts of the scattering amplitude do
not contribute near the pole (next lecture)

Two field dynamical equations

* The Bethe-Salpeter (BS) propagator depends on all four
components of the relative momentum, {k;,k}. For two scalar
particles it is

G P = ! ith {plz%mk
W ) i) — - 2(pl) i) " pe=iPk

* The Covariant Spectator® propagator depends on only three
components of the relative momentum, k. One particle is on-
shell

2mid.(mi=(4P+k) ) 2mis(k,—E +1P)
(s = pi=2(p})~ie) 2k,(E2 - (R -E) -2(p})-ie)

G (k;P) =

exercise: write the explicit form of these equations in a ¢* theory




These equations both have a connection to field theory

* The Bethe-Salpeter amplitude is a well defined field theoretic

matrix element:
W 00,5,) = (017 (W(x)y(x))1d) :D*

* The Covariant Spectator® amplitude is also a well defined field

theoretic amplitude:
W(x)= (N ly(x,) d) ;[>_

* Equations for the Bethe-Salpeter and the Spectator* amplitudes
can be derived from field theory

* Both are manifestly covariant under all Poincaré transformations
(advantage)

* Both incorporate negative energy (antiparticle) states (disadvantage)

*O. W. Greenberg's "n-quantum approximation"

HAMILTONIAN DYNAMICS*

*B. D. Keister and W. N. Polyzou, Ad. in Nucl. Phys. 20, 225 (1991)



Hamiltonian dynamics: basic theory (in “instant” form)

* Start with a Hilbert space of free particle states (H, - E,)¢, =0

* Interactions described by the interaction Hamiltonian, H;
1
(Hy-E)¥,=HY, = V¥,=¢+ = HY,

0 i

* Solve by iteration (perturbation theory) H , = <¢jH,¢k>

1 1 1
‘Pl.=¢,.+2¢jE oy Hﬁ+2¢j,[E —E)H”(E _E]Hﬁ+---
j i i1 i i i

Jj#Ei Jj i J'#i
J#i

* The scattering amplitude is then

1 1 1
M, =<¢kHI\Pi>=Hki+2ijﬁHji+2ij'(m]Hj'j£E _E ]Hji+..'
! i J i

J#i J i j'#i j
J#i

exercise: check these relations

Comparison with Field form: ¢* theory in 1+1 dimensions

* Consider scattering from the 2nd order bubble
1P+k I

=>C_ <

Pk
2
* In field theory (Feynman diagrams) this is
d’k

B(s) = ij

=+ é%)[wl@ )[

* Conclusion 1: Manifest covariance bbtained when BO
negative energy contributions are ihcluded.

positive and

* Conclusion 2: ONE Feynman diagram is the sum of ALL possible
time-ordered graphs. [ [ additional part for 1

Hamiltonian part } manifest covariance




The Poincaré group and Dirac forms of dynamics

* The Poincaré group are unitary operators on the Hilbert space, with 10
generators: P9, P, J, and K, satisfying the following 45 CR's:

[/, 07 ]=ie™*,  [J K ]=ie"k*, [T, P]=ie"P*, [K'.K']=-ie"J*
[k’ P/ |==is"P°, [K'.P']==iP', [P*.P"]=0, [J,P°]=0
* Forms of dynamics: The Poincaré group has three subgroups:
* The instant-form is based on the subgroup
(7,07 ]=ie"s*,  [J.P]=ie"P,  [P.P]=0
* The point-form is based on the Lorentz subgroup
[J, 01 ]=ie™r*, [V, K']=ie"K*, [K'.K']=-ie"J"

* The front-form is based on the subgroup constructed from 7 generators
P =P +P’, P ={P'.P}, ), K’ E =K -ix]J,

exercise: prove that the commutation relations for these 7
generators close.

Definition of generators

* Finite transformations “"generated” by the generators

Ty (z)=exp(—i P, - x")y(z) = exp(i P.a )y (z) = exp(a.V )y (z)

1
= t//(z)+azail//(z)+—az2 0 y(z)+-
<

27 9%z
=y(z+a,)



Kinematic surfaces and generalized hamiltonia

* Instant-form:

States with definite momentum and spin (eigenstates of P and J):
defined on a surface connected by translations and rotations (the
t=0 surface). P?and K are dynamical; evolving the states away
from the t=0 surface

* Point-form:

States with definite four-velocity (eigenstates of J and K):
defined on a hyperboloid with x, x#=1. The 4 components of P+ are

dynamical.
* Front-form:

States defined on a light-front, x- = + — z = 0. The dynamical
generatorsare P~ = PO - P3 F =K, +zxJ,

Some of the Poincaré transformations arﬂ

Dirac Hamiltonian classifications [kinematic; others involve the dynamics

* Plane forms t-az=0 * Hyperbolic for'ms[ t =V + @) J
-1<a<l1

a<1: instant form 644 Limit not a = 0: point form on the light cone
a = 1: front form 5, 5 :

continuous a = %: instant form

light front light front light front light front



The Bakamjian-Thomas construction (in instant-form)*

* The commutation relations can be automatically satisfied if the
operators P, J, K, and H= P? are replaced by P, r, s, and M.

* For asingle particle, a, the generators are written in lower case:

Po Jo =S4 +T, X Py hy =M +pg. ka=—%{ha,ra}‘,l::ijza

with inverse relations
[ 2 _ hij —-p,*xk,)
m. = h2_ 2’ rz_l hl,k _pax(aa o Ot’
(04 o pa o 2{ a a} maha(ma+ha)

PPy " o)
m,(m,+h,)

S¢ = m;l(haja P X ka)_

with non-zero commutators

Y Y i ik K
[ra,pa:l—lé‘ , [sa,sa:l—ze S

*B. Bakamjian and H. L. Thomas, Phys. Rev. 92, 1300 (1953)

Bakamjian-Thomas for n>1

* Proceed in 4 steps

1. Construct total P*, J and K by adding generators for each
particle  pr=Yp! J=Yj,., K=Yk,

2. Construct the operators My, R and S (together with P, already
constructed) using the inverse relations (previous slide)

3. Add the interactions to My, M = M, + V. Require that V
commute with My, P, R and S

4. Construct the new generators H, J and K as functions of M, P, R
and S. This completes the construction. All intferactions are in
the mass operator.

Exercise: think about this and work through the relations




The mass operator

*

To achieve manifest covariance without negative energy states,
infroduce the mass operator

1
)A = M*=M;+V

M=M,+U=((H,+H,) -P
where V=HH,+H H,+H;
Following the steps we used with the hamiltonian, we have

(Mg -M?)P,=VY, = ¥ =94 +ﬁv ¥,

0 i
Solving by iteration, the sca‘r’rering amplitude becomes

1
=(¢,V¥,) V,a+z a7V 2 k[ JV [—}V Fooe
J J j M2 M2 M2
where, for the second or'der bubble i
M}-M}=(E,+E) P

This agrees with the covariant result.

Comparison with Field form: ¢* theory in 1+1 dimensions

*

Consider scattering from the 2nd order bubble

5P+k |

=>C_ <

Pk

2
In field theory (Feynman diagrams) this is
d’k A2
Q) (i +,2 = (1P +k,) —ig)(m? + ki (1 P—k,) —ic)

dk 1
=\ | —
J (2n)[4E+E_

Conclusion 1: Manifest covariance bbtained when BOTK positive and
negative energy contributions are ihcluded.

B(s) = ij

Conclusion 2: ONE Feynman diagram is the sum of ALL possible
time-ordered graphs. [ additional part for 1

manifest covariance

[ Hamiltonian part ]




Overview of relativistic methods: Two “schools”

Relativity
with a fixed number of particles

Hamiltonian dynamics Field dynamics
On-shell particles Off-shell particles
+ no negative energy states + manifest covariance and locality
— loose locality and manifest covariance — must include negative energy states
] 1
Equal Time (ET) manifest covariance
Point Front Instant — l_l_\ ,_|_|
form form form
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Cluster separability -- 3-body example

* Definition: when one particle is far away, the interaction between

the other two is the same as it would be without the third particle
{ —

P roe
2 =
:—— 49—
* IfP=p;+p,+p3=0,and p; 2 0, then the 23 amplitude is in a moving
frame. The boost depends on the mass of the 2-body system.

* Hamiltonian dynamics is of f-energy shell, E, + E, # M3, +p:. The
energies of particles and subsystems do not match the free particle
energies, and under boosts the cluster property is not easy to
implement.

* Field dynamics is of f-mass shell, Po# Nm® +p’ Energy is conserved
so boosts and cluster properties are easily satisfied, but of f-mass
shell = negative energy states.

Research study: How is separability handled by the two schools; Can you
support my claim that here off-mass shell techniques work better?




Conclusions and comparison

* Hamiltonian dynamics

* Advantages:
+ Real quantum mechanics
+ No negative energy states
* Disadvantages
+ More ambiguities; no direct connection to field theory
« Difficulties with cluster separability (?)

* Field Dynamics
* Advantages
+ Manifest covariance and cluster separability easily implemented
+ Close connection to field theory guides the construction of
interactions and currents
* Disadvantages
+ Not conventional quantum mechanics; a new approach (if you think
that 1951 is new?) still requiring conceptual development
«+ Singularities, and need to treat negative energy states is more
work

Exercise: What's your opinion?



