C++ I1

Bdlint Joo (bjoo@ jlab.org)
Jefferson Lab, Newport News, VA
given at
Jefferson Lab Graduate Lecture Series

July 19, 2006

"
L] L]
i“
L]
I.=
l=
L
®
[WL
-‘”
-
A
-

g
-
=3
Sl
=1 |
:
=
&
=
=
=
§
y

Recap from Last Time

* We discussed C or Fortran 77 in C++

* basic types, loops, conditionals, references & pointers
* native arrays ARE pointers
* classes

* private data, public functions
* Information hiding and encapsulation

* inheritance

g
‘_U_
=3
Sl
=1 |
:
=
&
=
=
=
§

* of functions and data

w
L] "

i“
L]

I.=
|=
L3
-

k]
allla
L
-

L L

- "

* virtuality (overriding base class members properly)

* pure virtuality (specifying interfaces)

Recap of Inheritance

* Aninheriting class

* gets copies of the functions and data of the base
class. Private data

* is called a derived class

* To manipulate a derived class as if it was the base
class (polymorphism) we must declare override
functions to be virtual. Base classes provide default
implementations

.
L] L]
l“
o
.I=
l=
L]

-

L

-‘”

.

:
-
-
L=
ap
E
=
-T'E .
3
%

* When an overriding function cannot provide a default
we declare it pure virtual (= 0) - it is an interface

.
L] L]
l“
o
.I=
l=
L3
-
L
-‘”
i
.
!

Modularizing the code

:
-
-
L=
ap
E
=
-T'E .
3
%

>

>

We don't want to write large ‘'mammoth’ programs

We would like to split the code up into small pieces
* eg: 1 or 2 files per class
* a few short main file to "drive it all’
C++ features for supporting this:
* Separating declarations from definitions
* Include guards

* Separate compilation

O/S features: object files, libraries

Name mangling

* How do we distinguish between functions that have
the same name?

* void foo(int x) in class X
* void foo(double x) in class X
* void foo(int x) in class Y

* C++ 'mangles’ the names into something unique

* ZNI1X3fooEi - class X, void foo(int x)
* ZNI1X3fooEd - class X, void foo(double x)
* _7ZN1Y3fooEi - class Y, void foo(int x)

Preventing Mangling

* We can stop the compiler from mangling a name:

extern “C {
void foo(double x) { cout << x; }

}
* Useful for calling/providing non C++ routines
* we write C++ routines with extern "C"
* can be used from C or assembler
* we can call C/Fortran/Assembler routines

* we declare them as extern “C"

.
L] L]
l“
o
.I=
l=
L]

-

L

-‘”

.

:
-
-
L=
ap
E
=
-T'E .
3
%

Qualification/Disambiguation

+

>

>

Mangling is great for the compiler for internal use
but not for humans

We can instead disambiguate by using the :: qualifier
* void X::foo(int x)
* void X::foo(double x)
* void Y::foo(int x)

We can separate declaration and definition of
functions in classes using the disambiguator

Move the declarations to separate files for reuse

Example - separate compilation

originally was:
class X {
publi c:
void foo(int x) { cout << x ; }
voi d foo(double x) { cout << x; }

}

nhow move declarations into file classX.h:

#i f ndef CLASSX H /* Trigger guard. So it is included */

#defi ne CLASSX H /* only once. */

class X { /| Decl arations only

publ i c:

void foo(int x); /1 Declaration — no function body
voi d foo(double y); // Declaration — no function body

b

#endi f /* End of trigger guard */

and now move definitions to file classX.cc :
#i ncl ude “cl assX. h” /] I nclude the decl arati ons

#i ncl ude <i ostreane
usi ng nanespace std;

void X :foo(int x) { cout << x; } /1 Definition
void X :foo(double x) { cout << x; } /1 Definition

Example continued

file main.cc:

#i ncl ude <i ostreanp
usi ng nanespace std,;

#i ncl ude “cl assX. h” [/ Include the declarations fromthe .h file

int main(int argc, char *argv|[])

{
X class_X; /[l Can now use the classes in the .h file
class_X foo(5);

}

* Compile as:

* g++ -0 program main.cc classX.cc
* Or can do it piecemeal:

* g++ -c classX.cc (This makes an object file: classX.o)

* g++ -0 program main.cc classX.o (Link it fogether)

Libraries

* Can compile classX.cc into a library (UNIX/Linux)

* g++ -c classX.cc

* ar -cru libclassX.a class.o
* ranlib libclassX.a

* Tnstall
* libclassX.a into /foo/lib/libclassX.a
* classX.h into /foo/include/classX.h

* Use library as

* g++ -I /foo/include -0 program main.cc -L/foo/lib -IclassX

More about Libraries

* This is technically compiler specific but is mostly
standard on UNIX

* -T flag tells compiler in which directory to look for .h
files for inclusion

* -L flag tells compiler/linker in which directory to look
for libraries (libX.a files) for linking

* -| flag tells compiler which libraries to link to the
program

* -Ifoo will try to link libfoo.a ('lib" prepended ".a’
appended internally

Summary of Physical Modularization

+

>

>

>

Classes allow modularization of concepts

Separation of declarations and definitions allows

* separate compilation

* physical modularisation into

* “include files" (.h files)

* libraries (libXXX.a files)

True for other languages too
* eg separate compilation in C etc.

Libraries from vendors typically delivered this way

"
L
w
L] "
I“
L]
.‘=
|=
L]
-
L
“”
-

:
-
-
L=
ap
E
=
I'E .
3
%

Namespaces

Suppose you want to use a class called vector

BUT you already have a different class also called
vector that behaves differently from your class?

OR you may want to write a function called

* void print(int x)

BUT there is already a function in a library called
* void print(int x)

which prints x in a different way from how you want

.
L] L]
l“
o
.I=
l=
L3
-
L
-‘”
i
.
!

Namespaces

:
-
-
L=
ap
E
=
-T'E .
3
%

+

>

A 4

A 4

Clearly it is just the names of the functions/classes
that clash

Solution 1: Use a different name -> avoid clash
Solution 2: Use a namespace

A namespace is:

* An extra level of indirection on names
* different from classes (no objects are involved)

* it just allows you to modularize the space of your
function or class names

Namespace Example

#i ncl ude <i ostreanr
usi ng nanespace std;

nanmespace Foo {
void print(int x) {
cout << “Foo has one way of printing x: x = “ << x << endl;
}
1

nanespace Bar {

void print(int x) {
cout << “A different way to print: x is “ << x << endl;
}

b

int main(int argc, char *argv[]) {
int x = 5;

Foo: : print(x);
Bar::print(x);

return O;

"
L
w
L] "
I“
L]
.‘=
|=
L]
-
L
“”
-

Namespaces

:
-
-
L=
ap
E
=
I'E .
2
%

You can put anything with a name into a namespace
* functions, classes, globals, structs etc

You can get at names in the namespace using ::
* like before, it qualifies the name

There is a default namespace which needs no
qualification

You can import from one namespace into the default
one using the: using namespace incantation

I/0 functions live in namespace 'std’

Another namespace example

#i ncl ude <i ostreanr
usi ng nanespace std; // Inport nanmes fromstd into default nanespace

nanmespace Foo {
void print(int x) {

/'l Note | don't need std::cout because 'std' has been inported
cout << “Foo's way of printing x: x = “ << x << endl;
}

1

nanmespace Bar {
void print(int x) {
/1l But | can explicitly qualify std
std::cout << “Adifferent way to print: x is “ << x << endl;

}

usi ng nanespace Foo;

int main(int argc, char *argv[]) {
int x =5

print(x); [l WIIl call Foo::print(int Xx)
Bar::print(x);

return O;

Careful when using using

* If you import two namespaces that have the same
names in them into the default namespace you may
still get a clash

/| Namespace cl ash exanple. |Inport both Foo &Bar

usi ng nanespace Foo;
usi ng nanespace Bar;

int main(int argc, char *argv[]) {
int x = 5;
print(x); // Error: Anmbiguity

return O;

)
* C++ compiler produces error

:
-
-
L=
ap
E
=
-T'E .
3
%

w
L] "
'I’==I
I“

1 lll.
.I=
|=
L3
-

L

-‘”

«
I
-
¥

* Use full qualification (eg Foo::print) to remove
ambiguity

What's the use of nhamespaces

* Protection
* Put your code in a nhamespace
* isolate it from the names other packages use
* Makes your package more reusable too
* Your names less likely to clash with other names
* Hide implementation details when not using classes

* eg: in QDP++ we have QDPIO::cout

* like std:icout except on a parallel machine only one
processor writes

"It all works except in exceptional cases”

* Occasionally unexpected conditions can occur

* Index out of range in []

* Failure of new

* TInability to open a requested file

* Failure to convert one type to another type (casting)
* How to deal with this?

* Print error message and exit (as seen in examples)

* return an error status code (eg new returns 0)

* "throw" an "exception”

)

What does it mean to "throw an exception’

* Program flow halts
* Anobject representing an exception is created

* This object is propagated up through the calling
functions until someone “deals with it"

* dealing with it is called "catching the exception” or
handling the exception

* execution continues from the handler

w
L] "
I“
L]
.I=
|=
L]

-

L

-‘”

-

:
S
-
L=
ap
E
=
-T'E -
2
%

* If the exception is not handled by our program, the
C++ runtime environment's handler catches it and

then the program terminates

Example

create a string object

to represent error
doubl e& MyChecki ngVector::operator[](int index) and “throw” it

if (index >=size) {
std::string error_nessage="1ndex out of range”;
t hrow error_nessage;

}

return vector[index];

_ }
y B int main(int argc, char *argv[]) “try{} catch{}” block
. = N { means we expect an exception
e : M/Vector vec(3); may be thrown.
L] u;‘ = - [11 L
_H E vec[0]=1.0; vec[1l]=2.0; vec[2] = 3.0; execution goes into “try
=
=..E try {
=‘,‘.;. vec[5] = 5.0;
. ,E } -
w- catch(const std::string& e) {
h;g' std::cerr << * Caught exception: “ << e << endl;
o)
”.~ /| execution continues here after catch
vec[6] = 6.0, the thrown “error message” is
return O: Uncaught exception “caught” in the catch clause
} (no try{} catch{})
Handled by runtime (crash)

w
L] "
'I’==I
L] “
.I=
" =
- w
L
r 3 ”
«
-

Exceptions are typed

:
-
-
L=
ap
E
=
-T'E .
3
%

* Exceptions throw objects of concrete types/classes

* Can have many catch() {} clauses to deal with
different exceptions

* catch(...) matches any exception (catchall)

try {
MyVect or foo(5);
foo[5] = 10;
catch(std::bad alloc) { // Handle allocation failures
cerr << “new) failed” << endl; exit(l);
catch(const string& e) { // Handl e an exception raised as a string
cerr << “Caught a string: “ << e << endl; exit(2);
}
catch(...) { // Handle all other kinds of exceptions
cerr << “Sone (unknown) exception occurred” << endl ; exit(3);

More about exceptions

* The exceptions are objects belonging to classes
* string, std::bad_alloc, std::bad_cast etfc
* Can have hierarchy (inherit from each other)

* eg: c++ standard exception (std::exception) is a base
class of a hierarchy of exception classes

* The subject can get quite complex

* When should we throw exceptions?

* should we return a status code instead?

Ill

* "Throw exceptions in exceptional situations!” see books

Templates

* Let us return to MyVector

* it uses an array of doubles
* but I may want to use floats (for whatever reason)

* or even have vectors of integers.

* Do I really have to duplicated the code for the class
for each internal type?

* T wish I could just "magically” replace the internal
types somehow

* YOU CAN! Using Templates

g
-E
=3
Sl
=1 |
:
=
»
=
=
=
§

"
L] L]

i“
L]

II=
l=
L
®
[WL

-
L
k- "

Templated Class

tenpl ate< typenane T > // T is what can be replaced |later by a type
/1 of your choice
cl ass MyVector {

private:
T* vector;
i nt | ength;
publ i c:

/'l Constructor (initFunction)
MyVector(int size) : vector(new T [size]), length(size) {}

/| Destructor (clean up function)
~MyVector(){ delete [] vector; |ength=0; }

/[l Want to know | ength of vector for |oops, but can't touch it
/'l because it is now private. Here | return a copy.
i nt getLength(void) const { return length; }

/1 Array indexing — so | can treat vector |ike an array
/1 This allows nme to change the value in the vector (LHS of =)
T& operator[](int i) { return vector[i]; }

/[l Array indexing — this is read only access (RHS of =)
const T& operator[](int i) <const { return vector[i]; }

Using the templated class

#i ncl ude <i ostreanp
usi ng nanespace std;

#i ncl ude “nyVector.h” // Put the nyVector code into file nyVector.h

[/ W& include the definition here

int main(int argc, char *argv[])

{ MyVect or <doubl e> newecX 3) ; /'l A vector of doubles is created
MyVect or <f | oat > newVecF(3); /'l A vector of floats is created
MyVect or <stri ng> newecS(2); /'l A vector of strings
newecs[2 = “String 17;
newecS[3]= "String 27;

for(int i=0; i < newvecS. getLength(); i++) {
cout << “newec§[“ << i << “] = << newecS[i] << endl;

Template functions

* You can also template functions

tenplate < typenane F >
void print(const F& f) {

f.printMself() ;
}

* In this case the class F has to have a member
function F::printMyself()
* This is so called "duck typing’

* "Tf it walks like a duck and looks like a duck it is
probably a duck”

:
-
-
L=
ap
E
=
-T'E .
3
%

.
L] L]
l“
o
.I=
l=
L3
-
L
-‘”
i
.
!

* Otherwise the compiler will report an error

w
L] "
I“
.I=
" =

- w

L

-‘”

«
-

Specialization

:
-
-
L=
ap
E
=
-T'E .
3
%

* Can specify special behaviour depending on the
template type (sort of a template version of a virtual
function).

* This is called "Template specialization”

tenplate < typenane F > // Deals wwth arbitrary type F
void print(const F& f) {

f.printMself() ;

t enpl at e<> /'l Deals only with doubles
void print(const double& d) {
cout << d; /'l Special case: for doubles use <<, not printMself()

)
* Template matching order: for some type T

* first check specializations for match

* then try more general case

Multiple templates, value templates

#i ncl ude <i ostreanr
usi ng nanmespace std;

tenpl ate<typenane T, int N> // Nis a Value tenplate
cl ass MyVector {
private:
T vector[N; // N known at conpile tine, so can do automatic all ocation
publ i c:
T& operator[](int i) {
return vector[i];

-

int getSize() {
return N,

}
b

t ypedef MyVector<fl oat, 4> Fl oat 4Vec; /I Different tenplates -> different classes
t ypedef MyVect or <doubl e, 3> Doubl e3Vec; // sctually different types

int main(int argc, char *argv[])

FI oat 4Vec f:

" Exploring the Nature of Matter

f[0]=0; f[1]=1; f[2]=2; f[3]=4;

. —
=~
b
=
=
&=
/

==}

J

for(int 1=0; i < f.getSize(); i++)
cout << "f[" << i<< "]=" << f[i] << endl;

Template Type Magic

* We can do surprisingly many things with templates

tenpl ate< typenane T >
cl ass Doubl ePreci si onType { /'l Note: Enpty Body (Base case)
}

t enpl at e<>
cl ass Doubl ePreci sionType< float > { // Specialisation for floats
publ i c:
t ypedef double Type t; /'l Double prec type of float is double
b

t enpl at e<>
cl ass Doubl ePreci si onType< double > { // Specialisation for doubles
publ i c:
t ypedef | ong double Type t; /| Doubl e prec type of double is |ong
}; /'l 1 ong double

int main(int argv, char *argv[])

{

Doubl ePreci si onType<float>::Type t really a double; // Type conputation
Doubl ePreci si onType<doubl e>:: Type_t a_l ong_doubl e;

Doubl ePreci si onType<int>::Type t an_error; // General class has no Type t;

}
* Templates & compiler do computation on Typesl!

A glance in the direction of ...

* Generic Programming
* DoublePrecisionType<T> is a so called "Traits Class"

* Uses templates and type definitions to provide
information (traits) about the class T

* Can do more sophisticated things with templates...

* ... but sadly beyond the scope of this lecture

* Templates and generic programming underlie several
important C++ libraries: Boost, Pooma, MTL etc

* and of course also: QDP++ and Chroma for lattice
QCD

The Standard Template Library (STL)

* A set of templated classes for various kinds of
useful advanced data types (ADTs)

* Vectors
=‘~. ’ MGPS
EE » Sets
o
31— Lists
iy Mostly containers and their manipulation

* Look here first if you need an ADT

* Details at 69: http://en.wikipedia.org/wiki/Standard_Template_Library

Vectors

* A ‘growable’ vector

#i ncl ude <i ostreanp
#i ncl ude <vect or>

usi ng nanespace std,;
int main(int argc, char *argv[])
{

vector<int> v;

v. push_back(4);

v. push_back(5);

v. push_back(6);

for(int i=0; i < v.size(); i++) {
cout << “Elenent v[" << i << *]=" << Vv[i] << endl;
}
for(vector<int> :iterator iter=v.begin();
iter !'= v.end();
Iter++) {

cout << *iter << endl;

STL iterators

+

>

A 4

A 4

An iterator is a uniform interface to the elements in
an STL container

Abstracts away indexing

* vector<int>::iterator iter = v.begin(); // first element

* vector<int>::iterator iter = v.end(); // last element
Pointer like behaviour

* *iter; // value of the iterator

Move amongst elements using

* iter++ (forward), iter-- (backward)

STL Maps

* A Map is an associative container to store pairs of

* keys (indices, not necessarily a numerical ones) AND
* values belonging to the keys

* keys have to be unique (no duplicates keys)

#i ncl ude <i ostreanp
#i ncl ude <map>
usi ng nanespace std;

int main(int argc, char *argv[])

{
map<string, int>the_mp; // The key type is string, the value type is int
the map[“foo”] = 5;
the map[“bar”] = 6;

cout << “the value associated with bar is “ << the_map[“bar”] << endl;

for(map<string, int> :iterator iter=the map.begin(), iter != the map.end(), iter++) {
Key Val ue
cout << “String: “ << (*iter).first << “ Int: “ << (*iter).second << endl;
}

Notes on maps

* We don't know what underlying container is

* Depends on the implementation of STL

* can be a tree - logarithmic retreival

* Tterator ordering is implementation dependent

* Keys are not assumed to be ordered

* Ordering can be order of insertion

* Or order of tree traversal (eg: alphabetic etc)

* Use to implement Factories

Factory I: The particles

#i ncl ude <i ostreanp
#i ncl ude <map>
usi ng nanespace std;

/1 The Particle Interface

class Particle {

publ i c:
virtual const string getNanme(void) const = 0; // Pure virtual
virtual double get Mass(void) const = O;

b

/1 Two Particle |Inplenentations

cl ass Photon : public Particle {

publ i c:

const string getNane(void) const { return string("Photon"); }
doubl e get Mass(void) const { return O; }

};

class Electron : public Particle {

public:

const string getNane(void) const { return string("Electron"); }
doubl e get Mass(void) const { return 0.51100; }

};

Particles IT: Building The Factory

/1 A function to 'create' a photon object
Particl e* makePhot on(voi d)

{
}

/1 A function to 'create' an el ectron object
Particl e* nakeEl ectron(voi d)

return new Photon();

, {
; " return new El ectron();
}
ey
. —
“% /1 The factory is a map between a string nanme and a creation function
L o I
_HE /| Particle* (*)(void)
/]
= . .
"=tg /Il is the C++ (proto)type of a function
=',‘.;, /1 which takes no paraneters and returns a Particle*
' E /1l 1e: our creation functions
m'~ static map< string, Particle* (*)(void) > the_ factory;
h'%
" u /| Make associ ation between nanes and creation functions
i , voi d setup()

the factory["ELECTRON']
the factory[" PHOTON"]

makeEl ect r on;
makePhot on;

Producing WithThe Factory

int main(int argc, char* argv[])

Try running the program with inputs: ELECTRON or PHOTON
(for simplicity there is no checking that the value asked for is
in the map. So using eg PION will cause this program to fail)

{
setup(); // Build the factory
// Read Particle Nane fromthe user
cout << "What Particle shall | create? " << endl;
std::string particle_nane;
cin >> particl e_nane;
. ‘ . /| Create the particle of your choice with the factory
g . [l remenber factory contains functions, which we have to call
1 £ /'l hence the () at the end
“E Particle* your particle = the factory[particle _nane]();
& ol
.HE /1 Print properties
L =:-_- cout << "Particle Nanme: " << (*your _particle).getNane() << endl,;
= cout << "Particle Mass: " << (*your particle).getMss() << endl;
N — IS |
w E del ete your particle;
E. return O;
T H

Use of factories

* Maintain separately (in separate files)

* The classes themselves
* The method of creation (the_factory and setup)

* Uniform creation of objects
* Extensible

* Write new classes as needed

* Only need to update setup function with new creation
method

* Main code using factory is unchanged

Design Patterns

* Factory is a technique that is commonly used in
object oriented programming (Java too)

* It is what is known as a design pattern

* an idiom that solves a particular programming problem

* not exactly an algorithm, not exactly a class

* Design patterns originally catalogued by the so called
"Gang of Four": Gamma, Heim, Johnson & Vlissides in
their classic book: Design Patterns: Elements of
Reusable Object Oriented Software

"
L
w
L] "
I“
L]
.‘=
|=
L]
-
L
“”
-

=
Sl
ap
E
=
!.E a
=]
=
%

Summary Of Lecture

* We have recapped Classes, Objects & Virtual
Functions

* We introduced code modularisation through
namespaces and separate compilation

* Looked at Exceptions
* Introduced Templates and the STL

* Introduced Design Patterns through an STL map

:
-
-
L=
ap
E
=
I'E .
3
%

"
L
w
L] "
I“
L]
.‘=
|=
L]
-
L
“”
-

implementation of an Object Factory

Topics for the interested

* Building software (make, autoconf, automake)

* eg: R. Mecklenburg: Managing Projects with GNU
Make (O'Reilly)

* Templates, Template Metaprogramming, Generic
Programming

* Boost, Pooma and MTL Libraries (Google them)

* D. Abrahams, A. Gurtovoy: C++ Template
Metaprogramming: Concepts, Tools and Techniques
from Boost and Beyond (Addison Wesley)

More topics for the interested

* Design Patterns and implementing them with
Templates:

* Gamma, Heim, Johnson & Vlissides: Design Patterns:
Elements of Reusable Object Oriented Software

* A. Alexandrescu: Modern C++ Design, Generic
Programming and Design Patterns Applied

* Both Published by Addison Wesley
* Other Object Oriented Languages

* Python: An Object Oriented "scripting” language
* http://www.phython.org

Software Desigh and Engineering

* Hunt & Thomas: The Pragmatic Programmer: From
Journeyman to Master

* Software Carpentry:

* Lectures on Scientific Programming in Python at
* http://www.swc.scipy.org

* A lot of great books are available to you free of
charge through the Safari Tech Bookshelf of the
JLAB (eg: Most O'Reilly Titles)

* http://www.jlab.org/div_dept/cio/IR/library/copyrightl.html?site=safari

http://www.swc.scipy.org/

