
  

C++ II

Bálint Joó (bjoo@jlab.org)
Jefferson Lab, Newport News, VA

given at 
Jefferson Lab Graduate Lecture Series

July 19, 2006

1



  

Recap from Last Time

We discussed C or Fortran 77 in C++

basic types, loops, conditionals, references & pointers

native arrays ARE pointers

classes

private data, public functions

Information hiding and encapsulation

inheritance

of functions and data

virtuality (overriding base class members properly)

pure virtuality (specifying interfaces)



  

Recap of Inheritance

An inheriting class 

gets copies of the functions and data of the base 
class. Private data 

is called a derived class

To manipulate a derived class as if it was the base 
class (polymorphism) we must declare override 
functions to be virtual. Base classes provide default 
implementations

When an overriding function cannot provide a default 
we declare it pure virtual ( = 0 ) - it is an interface



  

Modularizing the code

We don't want to write large 'mammoth' programs

We would like to split the code up into small pieces

eg: 1 or 2 files per class

a few short main file to 'drive it all'

C++ features for supporting this:

Separating declarations from definitions

Include guards 

Separate compilation

O/S features:  object files, libraries



  

Name mangling

How do we distinguish between functions that have 
the same name?

void foo(int x) in class X

void foo(double x) in class X

void foo(int x) in class Y 

C++ 'mangles' the names into something unique

_ZN1X3fooEi  - class X, void foo(int x)

_ZN1X3fooEd – class X, void foo(double x)

_ZN1Y3fooEi – class Y, void foo(int x)



  

Preventing Mangling

Useful for calling/providing non C++ routines 

we write C++ routines with extern “C” 

can be used from C or assembler

we can call C/Fortran/Assembler routines

we declare them as extern “C” 

extern “C” {
   void foo( double x)  { cout << x;  }
};

We can stop the compiler from mangling a name:



  

Qualification/Disambiguation

Mangling is great for the compiler for internal use 
but not for humans

We can instead disambiguate by using the :: qualifier

void X::foo(int x)

void X::foo(double x)

void Y::foo(int x)

We can separate declaration and definition of 
functions in classes using the disambiguator

Move the declarations to separate files for reuse



  

Example – separate compilation

class X { 
  public: 

void foo(int x) { cout << x ; }
void foo(double x) { cout << x; }

};

#ifndef CLASSX_H        /* Trigger guard. So it is included */
#define CLASSX_H        /* only once. */

class X {               // Declarations only  
  public:

void foo(int x);    // Declaration – no function body
void foo(double y); // Declaration – no function body

};
#endif                  /* End of trigger guard */

#include “classX.h”     // Include the declarations

#include <iostream>
using namespace std;

void X::foo(int x) {  cout << x;  }    // Definition
void X::foo(double x) { cout << x; }   // Definition

 now move declarations into file classX.h:

and now move definitions to file classX.cc :

originally was:



  

Example continued

#include <iostream>
using namespace std;

#include “classX.h”   // Include the declarations from the .h file

int main(int argc, char *argv[])
{
    X class_X;       // Can now use the classes in the .h file
    class_X.foo(5);
}

Compile as:

g++ -o program main.cc classX.cc

Or can do it piecemeal:

g++ -c classX.cc  (This makes an object file: classX.o )

g++ -o program main.cc classX.o  (Link it together)

file main.cc:



  

Libraries

Can compile classX.cc into a library (UNIX/Linux)

g++ -c classX.cc

ar -cru libclassX.a class.o

ranlib libclassX.a

Install 

libclassX.a into /foo/lib/libclassX.a

classX.h    into /foo/include/classX.h

Use library as
g++ -I /foo/include -o program main.cc -L/foo/lib -lclassX



  

More about Libraries 

This is technically compiler specific but is mostly 
standard on UNIX

-I flag tells compiler in which directory to look for .h 
files for inclusion

-L flag tells compiler/linker in which directory to look 
for libraries (libX.a files) for linking

-l flag tells compiler which libraries to link to the 
program 

-lfoo will try to link libfoo.a ('lib' prepended '.a' 
appended internally 



  

Summary of Physical Modularization

Classes allow modularization of concepts

Separation of declarations and definitions allows

separate compilation

physical modularisation into

“include files” (.h files)

libraries  (libXXX.a files)

True for other languages too 

eg separate compilation in C etc.

Libraries from vendors typically delivered this way



  

Namespaces

Suppose you want to use a class called vector

BUT you already have a different class also called 
vector that behaves differently from your class?

OR you may want to write a function called

void print(int x)

BUT there is already a function in a library  called

void print(int x)

which prints x in a different way from how you want



  

Namespaces

Clearly it is just the names of the functions/classes 
that clash

Solution 1: Use a different name -> avoid clash

Solution 2: Use a namespace

A namespace is: 

An extra level of indirection on names

different from classes (no objects are involved)

it just allows you to modularize the space of your 
function or class names



  

Namespace Example

#include <iostream>
using namespace std;

namespace Foo {
    void print(int x)  { 

cout << “Foo has one way of printing x: x = “ << x << endl;
   }
};

namespace Bar { 
    void print(int x)  {
        cout << “A different way to print: x is “ << x << endl;
    }
};

int main(int argc, char *argv[]) { 
int x = 5;

Foo::print(x);
Bar::print(x);

return 0;
}



  

Namespaces

You can put anything with a name into a namespace

functions, classes, globals, structs etc

You can get at names in the namespace using ::

like before, it qualifies the name 

There is a default namespace which needs no 
qualification 

You can import from one namespace into the default 
one using the: using namespace incantation

I/O functions live in namespace 'std'



  

Another namespace example

#include <iostream>
using namespace std;  // Import names from std into default namespace

namespace Foo {
    void print( int x )  { 

// Note I don't need std::cout because 'std' has been imported
cout << “Foo's way of printing x: x = “ << x << endl;

   }
};

namespace Bar { 
    void print(int x)  {

    // But I can explicitly qualify std
        std::cout << “A different way to print: x is “ << x << endl;
    }
};

using namespace Foo;
int main(int argc, char *argv[]) { 

int x = 5;

print(x);     // Will call Foo::print(int x)
Bar::print(x);

return 0;
}



  

Careful when using using

If you import two namespaces that have the same 
names in them into the default namespace you may 
still get a clash

// Namespace clash example. Import both Foo &Bar

using namespace Foo;
using namespace Bar;

int main(int argc, char *argv[]) { 
int x = 5;
print(x); // Error: Ambiguity

return 0;
}

C++ compiler produces error

Use full qualification (eg Foo::print) to remove  
ambiguity 



  

What's the use of namespaces

Protection

Put your code in a namespace 

isolate it from the names other packages use

Makes your package more reusable too

Your names less likely to clash with other names

Hide implementation details when not using classes

eg: in QDP++ we have QDPIO::cout 

like std::cout except on a parallel machine only one 
processor writes



  

“It all works except in exceptional cases”

Occasionally unexpected conditions can occur

Index out of range in []

Failure of new

Inability to open a requested file

Failure to convert one type to another type (casting)

How to deal with this?

Print error message and exit (as seen in examples)

return an error status code (eg new returns 0)

“throw” an “exception”



  

What does it mean to “throw an exception”
Program flow halts

An object representing an exception is created

This object is propagated up through the calling 
functions until someone “deals with it” 

dealing with it is called “catching the exception” or 
handling the exception

execution continues from the handler

If the exception is not handled by our program, the 
C++ runtime environment's handler catches it and 
then the program terminates



  

Example

double& MyCheckingVector::operator[]( int index )
{

if ( index >= size )  {
    std::string error_message=”Index out of range”;
    throw error_message;

       }

      return vector[ index ];
}

int main(int argc, char *argv[])
{

MyVector vec(3);

vec[0]=1.0;  vec[1]=2.0; vec[2] = 3.0;

try { 
   vec[5] = 5.0;

    }
catch( const std::string& e) { 

std::cerr << “ Caught exception: “ << e << endl;
    }
       // execution continues here after catch

vec[6] = 6.0;

return 0;
}

create a string object
to represent error

and “throw” it

“try{} catch{}”  block
means we expect an exception

may be thrown.
execution goes into “try”

the thrown “error message” is
“caught” in the catch clauseUncaught exception 

(no try{} catch{})
Handled by runtime (crash)



  

Exceptions are typed

Exceptions throw objects of concrete types/classes

Can have many catch() {} clauses to deal with  
different exceptions

catch(...) matches any exception (catchall)

try {
MyVector foo(5);
foo[5] = 10;

}
catch( std::bad_alloc ) { // Handle allocation failures 

cerr << “new() failed” << endl;     exit(1);
}
catch( const string& e ) { // Handle an exception raised as a string

cerr << “Caught a string: “ << e << endl;  exit(2);
}
catch( ... ) { // Handle all other kinds of exceptions

cerr << “Some (unknown) exception occurred” << endl ; exit(3);
}
       



  

More about exceptions

The exceptions are objects belonging to classes

string, std::bad_alloc, std::bad_cast etc

Can have hierarchy (inherit from each other)

eg: c++ standard exception (std::exception) is a base 
class of a hierarchy of exception classes

The subject can get quite complex

When should we throw exceptions?

should we return a status code instead?

“Throw exceptions in exceptional situations!” see books



  

Templates

Let us return to MyVector

it uses an array of doubles

but I may want to use floats (for whatever reason)

or even have vectors of integers.

Do I really have to duplicated the code for the  class 
for each internal type? 

I wish I could just “magically” replace the internal 
types somehow

YOU CAN! Using Templates



  

Templated Class

template< typename T > // T is what can be replaced later by a type
                       // of your choice
class MyVector { 
private:

T* vector;
int length;

public:

  // Constructor (initFunction)
  MyVector(int size) : vector( new T [size] ), length(size) {}

       
  
  // Destructor (clean up function )
  ~MyVector(){ delete [] vector; length=0; }

  // Want to know length of vector for loops, but can't touch it
  // because it is now private. Here I return a copy.
  int getLength(void) const { return length; }

  // Array indexing – so I can treat vector like an array 
  // This allows me to change the value in the vector (LHS of =)
  T& operator[]( int i ) { return vector[i]; }
 
  // Array indexing – this is read only access (RHS of =)
  const T& operator[]( int i )  const { return vector[i]; }

};
                 



  

Using the templated class

#include <iostream>
using namespace std;

#include “myVector.h” // Put the myVector code into file myVector.h
                      // We include the definition here

int main(int argc, char *argv[] ) 
{

MyVector<double> newVecD(3);    // A vector of doubles is created

MyVector<float> newVecF(3);     // A vector of floats is created

MyVector<string> newVecS(2);   // A vector of strings

newVecs[2 = “String 1”;
    newVecS[3]= ”String 2”;

for(int i=0; i < newVecS.getLength(); i++) {
   cout << “newVecS[“ << i << “] = “ << newVecS[i] << endl;

    }

}



  

 Template functions

You can also template functions 
template < typename F >
void print( const F&  f) {

f.printMyself() ;
}

In this case the class F has to have a member 
function F::printMyself()

This is so called 'duck typing' 

“If it walks like a duck and looks like a duck it is 
probably  a duck”

Otherwise the compiler will report an error



  

Specialization

Can specify special behaviour depending on the 
template type (sort of a template version of a virtual 
function).

This is called “Template specialization”
template < typename F >   // Deals with arbitrary type F
void print( const F&  f) {

f.printMyself() ;
}

template<>                              // Deals only with doubles
void print( const double& d) {

cout << d;       // Special case: for doubles use <<, not printMyself()
}

Template matching order: for some type T

first check specializations for match

then try more general case



  

Multiple templates, value templates

#include <iostream>
using namespace std;

template<typename T, int N>  // N is a Value template
class MyVector {
private:
  T vector[N];  // N known at compile time, so can do automatic allocation
public:
  T& operator[](int i) {
    return vector[i];
  }
  int getSize() {
    return N;
  }
};

typedef MyVector<float,4> Float4Vec;   // Different templates -> different classes
typedef MyVector<double,3> Double3Vec; // sctually different types

int main(int argc, char *argv[]) 
{
  Float4Vec f;

  f[0]=0;  f[1]=1; f[2]=2; f[3]=4;

  for(int i=0; i < f.getSize(); i++) { 
    cout << "f[" << i<< "]=" << f[i] << endl;
  }
}



  

Template Type Magic

We can do surprisingly many things with templates
template< typename T >
class DoublePrecisionType {         // Note: Empty Body (Base case)
};

template<>
class DoublePrecisionType< float > { // Specialisation for floats
public:

typedef double Type_t;           // Double prec type of float is double
};

template<>
class DoublePrecisionType< double > { // Specialisation for doubles
public:

typedef long double Type_t;       // Double prec type of double is long 
};                                    // long double

int main( in t argv, char *argv[] ) 
{

 DoublePrecisionType<float>::Type_t  really_a _double;  // Type computation
 DoublePrecisionType<double>::Type_t a_long_double;    

 DoublePrecisionType<int>::Type_t  an_error; // General class has no Type_t;
}

Templates & compiler do computation on Types!!



  

A glance in the direction of...

Generic Programming

DoublePrecisionType<T> is a so called “Traits Class”

Uses templates and type definitions to provide 
information (traits) about the class T

Can do more sophisticated things with templates...

... but sadly beyond the scope of this lecture

Templates and generic programming underlie several 
important C++ libraries: Boost, Pooma, MTL etc

and of course also: QDP++ and Chroma for lattice 
QCD



  

The Standard Template Library (STL)

A set of templated classes for various kinds of 
useful advanced data types (ADTs)

Vectors

Maps 

Sets

Lists

Mostly containers and their manipulation

Look here first if you need an ADT

Details  at eg: http://en.wikipedia.org/wiki/Standard_Template_Library



  

Vectors

A 'growable' vector
#include <iostream>
#include <vector>

using namespace std;
int main(int argc, char *argv[])
{

vector<int> v;
v.push_back(4);
v.push_back(5);
v.push_back(6);

for(int i=0; i < v.size(); i++) {
cout << “Element v[“ << i << “]=” << v[i] << endl;

       }

for(vector<int>::iterator iter=v.begin(); 
        iter != v.end(); 
        iter++ ) {

       cout << *iter << endl;
}

}



  

STL iterators

An iterator is a uniform interface to the elements in 
an STL container

Abstracts away indexing

vector<int>::iterator iter = v.begin();  // first element

vector<int>::iterator iter = v.end(); // last element

Pointer like behaviour

*iter; // value of the iterator

Move amongst elements using  

iter++ (forward),  iter-- (backward)



  

STL Maps

A Map is an associative container to store pairs of 

keys (indices, not necessarily a numerical ones) AND

values belonging to the keys

keys have to be unique (no duplicates keys)
#include <iostream>
#include <map>
using namespace std;

int main(int argc, char *argv[])
{
  map<string, int> the_map;  // The key type is string, the value type is int
  the_map[ “foo” ] = 5;
  the_map[ “bar” ] = 6;

  cout << “the value associated with bar is “ << the_map[“bar”] << endl;

  for( map<string, int>::iterator iter=the_map.begin(), iter != the_map.end(), iter++) {
        //                      Key                           Value

   cout << “String: “ << (*iter).first << “ Int: “ << (*iter).second << endl;

     }
}



  

Notes on maps

We don't know what underlying container is

Depends on the implementation of STL

can be a tree – logarithmic retreival 

Iterator ordering is implementation dependent

Keys are not assumed to be ordered

Ordering can be order of insertion

Or order of tree traversal (eg: alphabetic etc)

Use to implement Factories



  

Factory I: The particles

#include <iostream>
#include <map>
using namespace std;

// The Particle Interface
class Particle {
public: 
  virtual const string getName(void) const = 0; // Pure virtual
  virtual double getMass(void) const = 0;
};

// Two Particle Implementations
class Photon : public Particle {
public:
  const string getName(void)  const { return string("Photon"); }
  double getMass(void) const  { return 0; }
};

class Electron : public Particle {
public:
  const string getName(void) const { return string("Electron"); }
  double getMass(void) const { return 0.51100; }
};



  

Particles II: Building The Factory

// A function to 'create' a photon object
Particle* makePhoton(void) 
{
  return new Photon();
}

// A function to 'create' an electron object
Particle* makeElectron(void)
{
  return new Electron();
}

// The factory is a map between a string name and a creation function
//
// Particle* (*)(void) 
//
// is the C++ (proto)type of a function 
// which takes no parameters and returns a Particle*
// ie: our creation functions 
static map< string, Particle* (*)(void) > the_factory;

// Make association between names and creation functions
void setup()
{
  the_factory["ELECTRON"] = makeElectron; 
  the_factory["PHOTON"]   = makePhoton;
}



  

Producing WithThe Factory

int main(int argc, char* argv[]) 
{
  setup();  // Build the factory 

  // Read Particle Name from the user
  cout << "What Particle shall I create? " << endl;
  std::string particle_name;
  cin >> particle_name;

  // Create the particle of your choice with the factory
  // remember factory contains functions, which we have to call
  // hence the () at the end
  Particle* your_particle = the_factory[ particle_name ]();

  // Print properties 
  cout << "Particle Name: " << (*your_particle).getName() << endl;
  cout << "Particle Mass: " << (*your_particle).getMass() << endl;

  delete your_particle;
  return 0;
}

Try running the program with inputs: ELECTRON  or PHOTON
(for simplicity there is no checking that the value asked for is 
in the map. So using eg PION will cause this program to fail)



  

Use of factories

Maintain separately (in separate files)

The classes themselves

The method of creation (the_factory and setup)

Uniform creation of objects 

Extensible 

Write new classes as needed

Only need to update setup function with new creation 
 method

Main code using factory is unchanged



  

Design Patterns 

Factory is a technique that is commonly used in 
object oriented programming (Java too)

It is what is known as a design pattern

an idiom that solves a particular programming problem

not exactly an algorithm, not exactly a class

Design patterns originally catalogued by the so called 
“Gang of Four”: Gamma, Heim, Johnson & Vlissides in 
their classic book: Design Patterns: Elements of 
Reusable Object Oriented Software



  

Summary Of Lecture

We have recapped Classes, Objects & Virtual 
Functions

We introduced code modularisation through 
namespaces and separate compilation

Looked at Exceptions 

Introduced Templates and the STL

Introduced Design Patterns through an STL map 
implementation of an Object Factory



  

Topics for the interested

Building software ( make, autoconf, automake)

eg: R. Mecklenburg: Managing Projects with GNU 
Make (O'Reilly)

Templates, Template Metaprogramming, Generic 
Programming

Boost, Pooma and MTL Libraries (Google them)

D. Abrahams, A. Gurtovoy: C++ Template 
Metaprogramming: Concepts, Tools and Techniques 
from Boost and Beyond  (Addison Wesley)



  

More topics for the interested

Design Patterns and implementing them with 
Templates:

 Gamma, Heim, Johnson & Vlissides: Design Patterns: 
Elements of Reusable Object Oriented Software 

A. Alexandrescu: Modern C++ Design, Generic 
Programming and Design Patterns Applied 

Both Published by Addison Wesley

Other Object Oriented Languages

Python: An Object Oriented “scripting” language

http://www.phython.org



  

Software Design and Engineering

Hunt & Thomas: The Pragmatic Programmer: From 
Journeyman to Master 

Software Carpentry:

Lectures on Scientific Programming in Python at

http://www.swc.scipy.org

A lot of great books are available to you free of 
charge through the Safari Tech Bookshelf of the 
JLAB (eg: Most O'Reilly Titles)

http://www.jlab.org/div_dept/cio/IR/library/copyright1.html?site=safari

http://www.swc.scipy.org/

