

C, ++?

Bálint Joó (bjoo@jlab.org)
Jefferson Lab, Newport News, VA

given at
Jefferson Lab Graduate Lecture Series

July 5, 2006

1

Hello World

File: hello.cc
#include<iostream>

using namespace std;

int main(int argc, char *argv[])
{

cout << “Hello World” << endl;
return 0;

}

Make it run:

Compile: g++ -o hello hello.cc

Run: ./hello

Output: Hello World

What does it all mean

int main(int argc, char *argv[]) { ... }

signals this is the main program (PROGRAM)

program goes between { } (BEGIN/END)

statements punctuated by semicolons (;)

cout << “Hello World” << endl;

Write “Hello World” and newline to std output

return 0;

Return an error code of 0 to indicate success

Compiling

g++ -o hello hello.cc

.cc file is the C++ source

-o hello means put compiled program into 'hello'

this step

turns hello.cc into object file (Compilation)

turns object file into executable (Linking)

intermediate object file is removed

More about this process much later.

Variables & Basic Types

Variables: Things we can assign values to and
manipulate by name (eg: print them)

#include <iostream>
using namespace std;

int main(int argc, char *argv[])
{

// Signed Integer (FORTRAN: INTEGER)
int fred=5;
cout << “Fred has value “ << fred << endl;

// Single Precision Floating Point (FORTRAN: REAL)
float george = 2.5;
cout << “George has value “ << george << endl;

// Double Prec. (FORTRAN: DOUBLE PRECISION REAL)
double jim=2.5; // Double precision floating point value
cout << “Jim has value ” << jim << endl;

// C++ String
string mike = “A string of text”;
cout << “Mike has value “ << mike << endl;

}

Syntactic notes

Comments (for your own info. Ignored by compiler)

Single line:

// All characters following slashes ar comment

Multi line

/* Comment starts here and goes on

 onto the next line */

Declare and Define Variables where you need them

No need to declare all up front like FORTRAN/C

Helps program readability

Basic Types

Integer types: eg int

Signed: char, short, int, long, long long

Unsigned: unsigned char, unsigned short, etc

Numeric types: eg float, double

No native Complex type like FORTRAN

Boolean Logic values

bool (can have values true or false)

Pointers/References – get onto these later

Does size matter?

Chief difference between char, int, etc:

size in memory, therefore numerical range

On 32 bit architectures typical sizes are

unsigned char : 1 byte, represent an ASCII character

unsigned short : 2 bytes (0 – 64K)

unsigned int : 4 bytes (0 - 4G)

unsigned long : 4 bytes (represent memory word)

float: 4 bytes (resolve up to 6-7 digits)

double: 8 bytes (resolve up to 14 or so digits)

Signed integer types: lose 1 bit for sign

Things to do with variables

Assignment / Re assignment (= operator)

int i = 5;

int j = 6;

int i_again = i; // i_again is assigned value of i

i = 4; // old value is now forgotten, i_again is still 5

Expressions

int sum = i + j; // sum is assigned value of 11

int product = i * j; // product is 30

int int_quotient = i / j ; // int_quotient is 0

Integer division and remainder

Integer division may be strange at first

int i = 12;

int j= 8;

int quotient = i / j; // quotient = 1

int remainder = i % j; // remainder = 4

Floating point division is more like your calculator

float f = 12;

float h = 4;

float float_quotient = f / h; // Qoutient is 1.5

Logical values and operations

Boolean logic values represented by bool-s

bool true_value = true;

bool false_value = false;

Conditional expression:

Equality (==) : bool are_a_and_b_equal = (a == b);

NOT (!) : bool not_true = (! true);

Inequality: bool are_a_and_b_different= (a != b);

AND (&&): bool a_and_b = (a && b)

OR (||): bool a_or_b = (a || b)

Loops I

While Loops (DO WHILE)

while(conditional expression) {

 // Body between the curly braces

}

If conditional is false at start, body never executed

Example:
int i = 0;

while(i < 10) {
i+=1; // Increment i by 1.

}

cout << i << endl; // should print 10

Loops II:

Do loops: (REPEAT UNTIL)

do {

// Loop body

} while (conditional);

Similar to while-loop but Loop Body is guaranteed to
be executed at least once

int input = 0;
do {

cout << “Enter the number a number greater than 5” << endl;
cin >> input; // Read an integer

} while (input <= 5);

Loops III

For loops (DO i=...)

for(initial setup; continue condition; end action) {

// Body

}

Typical use:

for(int = 0; i < 6; i++) {
// Start with i=0, repeat the loop while i < 6,

 // increment i at the end of body.

// i does not exist outside loop

cout << i;
}

For loops

for loop is equivalent to specialised while loop
{ // Scope unit so i doesn't go outside the loop

int i = 0;
while(i < 5) {
 cout << i << endl;
 i++;

 }
// i goes out of scope (disappears) here

}

Is exactly equivalent to:
for(int i = 0; i < 5 ; i++) {
 cout << i << endl;
}

Can use more complex initialisations/conditions/end
of loop actions. For loop is a syntactic convenience

Conditional Execution

Either or actions (depending on condition)

if (condition) {

 // Body to execute if condition is true

}

Example:

int i;
cin >> i ; // Read the integer

if (i > 0) {
cout << “ You have entered a positive integer” << endl;

}

Conditional Execution II

Example

if(condition) {
 // Body if condition is true
}
else {
 // Body if condition is false
}

If – Else

int i;
cout << “Enter an integer “ << endl;
cin >> i ;

if (i < 0) {
cout << “ Negative value entered “ << endl;

}
else {

cout << “ Nonnegative value entered” << endl;
}

Conditional Expression IV

If-else if-else

Example:
int i;
cout << “Enter an integer “ << endl;
cin >> i;

if(i == 0) {
cout << “ You entered zero “ << endl;

}
else if (i < 0) {

cout << “ You entered a negative number “ << endl;
}
else {

cout << “ You entered a positive number “ << endl;
}

Switch statements (Case statements)

can combine cases by omitting 'break'

execution falls through to next case (DANGEROUS)

int i = 0;
cout << “Enter a number” << endl;
cin >> i;

switch (i) {
 case 0: cout << “You entered 0” << endl;

 break;

 case 1: cout << “You entered 1” << endl;
 break;

 default: cout << “You entered something else other than (0 and 1)”
 << endl;

 break;
}

Select between a set of enumerated cases:

Case Statements II

Common mistake: forgetting the break before
default

int i;
cout << “Enter a number “ << endl;
cin >> i;

switch(i) {
 case 0: // No 'break'

 case 1: // No 'break'

 case 2: cout << “You have entered 0 or 1 or 2” << endl;
 break;

 default: cout << “You have entered something else << endl;
 break;

}

Rope to hang yourself with:

Case Statements: Final Word

Semantics of case statement are complicated

Easy to screw up

C++ obfuscation: declaring variables in one 'case' has
effect on 'other' – use {} to set scope

Best to avoid using case at all – there are other,
better methods

Functions

Collect frequently used statements into a function

C/C++ equivalent of Fortran FUNCTION and
SUBROUTINE.

Has one single return value

this can be “void” - to mean no return value

First example of

Code modularisation (factoring)

Code re-use

Examples:
#include <iostream>
using namespace std;

void printUsage(void)
{
 cout << “ Type: ./myprog “ << endl;
 return;
}

int sumInt(int from, int to)
{
 int ret_val=0;
 if(from == to) {

return from;
 }
 else {
 int start=0, end=0;
 if(from < to) {

 start=from; end = to;
 }
 else {
 start=to; end=from;
 }
 for(int i=start; i <=end; i++) {
 ret_val += i;
 }
 }
 return ret_val;

}

int main(int argc, char *argv[])
{
 if (argc != 1) {

printUsage();
 return 1;
 }

 int start=4, end=6;
 int sum = sumInt(start, end);

 cout << “Sum is “ << sum << endl;

 start=6;
 sum = sumInt(start, end);

 cout << “Sum is “ << sum << endl;
 return 0;
}

call

return

call

return

parameter arguments

return type

Argument Passing

C/C++ - standard way: “pass by value”:

void foo(int a, float b)

foo() gets COPIES of a and b

changing a and b inside foo() does not change them
outside foo.

C++ addition: “pass by reference”

void foo2(int& a, float& b)

int& is a C++ type called an integer reference

changing a and b in foo2() also changes the variable
they refer to outside foo2

References

A C++ reference type is an 'alias' to something. A
kind of handle if you will. You can treat it as the
thing which it is referencing:

#include <iostream>
using namespace std;

int main(int argc, char *argv[])
{

int x = 5; // The original
int& x_ref = x; // x_ref is a reference to x
x_ref++; // Increment the variable to which x_ref refers

 cout << “x is now ” << x << endl; // Should print x is now 6
cout << “x_ref is “ << x_ref << endl; // Should print x_ref is 6

 return 0;
}

C Style Arrays

C only really supports 1D arrays

declare array using []:

float foo[5];

declares a contiguous array with 5 elements

foo[0] foo[1] foo[2] foo[3] foo[4]

foo

Eg:
 float foo[5];
 for(int i=0; i < 5; i++) {
 foo[i] = 6;
 }

Array length has to be a constant expression
(not a variable)

Array indices always start at 0.

Sets every element to 6

Extra Array Dimensions

A 2D array is notionally an array of 1D arrays

float f[2][3];

f[0][2] f[0][3] f[1][0] f[1][1] f[1][2]f[0][1]

Array of 2 elements, each of which is an array of 3 floats

Rightmost index runs fastest (Row Major Order)

Opposite to FORTRAN

Can Slice ie refer to just f[0]

Arrays declared like above are contiguous in memory

Pointers

Data items take space in memory

Think of computer memory like an array. Each item
of data occupies some elements of this array.

float f[1]

Contents of int variable: a

float f[0]

address 1:

address 2:

address 3:

address 4:

... and so on

 Each datum has a location
also known as an address

Example: a has address 1
 f[0] has address 3
 f[1] has address 4

 A special type of variable
that holds an address is called
a pointer variable

Setting Pointers with the address operator

A pointer to a type is denoted by the type followed
by an *

pointer to an int is denoted int*

pointer to a float is denoted float *

float f[1]

Contents of int variable: a

int* ap (address 1)

float f[0]

address 1:

address 2:

address 3:

address 4:

... and so on

float *fp (address 3)

Address of a variable:
& operator
int* a_ptr = &a;

means: set the contents of a_ptr (which is
an integer pointer) to the address of int a
or: make a_ptr point to a

De-referencing pointers

We can get at the value at the end of the pointer by
using the * operator;

int* a_ptr = &a; // Set a_ptr to the address of a

// Set a_copy to the value at the end of a_ptr

int a_copy = *a_ptr;

(*a_ptr)++; // Increment value at end of a_ptr

NULL pointer (Pointing to nothing)

Special value: 0 in C++

De-referencing a NULL pointer is an error.

 Arrays and Pointers II

Array is just a pointer

int foo[5];

int* f = foo; // f now points to foo[0]

int foo2D[5][3];

int** f2D = foo2D; // f2D points to foo2D[0]

and foo2D[0] is just a pointer to foo2D[0][0]

*f = 5; // Sets f[0] = 5

*(f + 1) = 6; // Sets f[1] = 6

foo[0] foo[1] foo[2] foo[3] foo[4]
foo

Passing by Pointer to a function.

We have seen 'pass by value' to a function

give a COPY of the value to the function

We have seen 'pass by reference' to a function

give a COPY of a REFERENCE

We can also 'pass by pointer'

eg to pass an array:

void foo(int *f); // A function that takes an int *

But function won't know how big the array is

Example: Square Norm of a vector

#include <iostream>
using namespace std;

double norm2(double *vector, int length)
{
 if (vector == 0) {
 cerr << “NULL Pointer argument” << endl;
 exit(1);
 }
 double ret_val = vector[0]*vector[0];
 for(int i=1; i < length; i++) {

 ret_val += vector[i]*vector[i];
 }
 return ret_val;
}

int main(int argc, char* argv[])
{

double vec3[3] = { 3.2, 4.1, 5.6};
 double n = norm2(vec3, 3);

cout << “|| vec3 || = “ << n << endl;
}

Expecting an array (double *), with length in 'length'

Could have written
(*vector)*(*vector)
but would be harder to read

Static Array Initialisation

Function Call

Sanity check. Make sure vector
is not a NULL pointer

Message:
 C and C++ always pass native arrays by pointer. Native arrays ARE pointers

Congratulations

You can now program Fortran (77)
in C++

Grouping Data, Data Structures

Previous example. Would be nice group together the
array and size. This can be done using C structs

struct MyVector {

double vector*;

int length

 };

At this point the pointer is uninitialised.

Q: What does it point to? Where is the array?

A: Nowhere! You don't want to mess with it yet.

Initialising the Struct

Can write a function to do this:

void initVector(MyVector& vec, int length)

{

 vec.vector = new int [length];

 if(vec.vector == 0) {

 cerr << “Couldnt allocate vector” << endl; exit(1);

 }

 vec.length = length;

}

Tries to grab space for a vector
of length integers. Returns

pointer to space or 0 if
unsuccessful

The . lets you refer to parts of
a struct

So What's new ?

Pointer can be initialised using the 'new' keyword

Allocates memory for the object and returns a
pointer to its location.

new is typed (as opposed to C's malloc)

float *f = new float; // returns float *

int *f = new int; // returns int *

array allocated with ' new [] '

int *int_array = new int [10];

new returns 0 poiner or throws exception if
requested memory is not available

Delete

Automatic variables are cleaned up when you reach
the end of the variable scope

{ // Start new scope unit

int x=5;

} // Scope unit is ended. x disappears, its memory is

 // reclaimed

Memory allocated with new does not get cleaned up
automatically. You must explictly free it using delete

int *i = new int; delete i;

int *i = new int [10] ; delete [] i;

Automatic variable created and
initialised

regular delete

array delete

Memory Leaks (not delete-ing after new)

On my laptop I reached want=536870912

then the program crashed – it was out of memory

This is called a memory leak. An insiduous bug

#include <iostream>
using namespace std;

int main(int argc, char *argv[])
{

int want = 2;
int *pointer;
while (true) {
 cout << “Want is “ << want << endl;

pointer = new int [want]; // No Delete []
want *= 2;

}
}

Try the following:

Back to our vector

We used new in initVector()

So we need a destroyVector() to clean up or we
suffer a memory leak.

void destroyVector(MyVector& vec)
{

if(vec.vector != 0) {
delete [] vec.vector;

 }
vec.length = 0;

}

We can think of other things to do with our vector:

set all elements to zero, copy the contents of other
vectors into mine, change vector size etc.

Danger!!!

Resize operation is quite complex:

need to set new length

can do this by assigning new length to vec.length

But it is NOT enough – array must be resized too

But the user has NO PROTECTION (he or she is free
to erroneously reset length)

Would be better to

not let the user change length explicitly

provide a function to resize correctly.

Towards Object Orientation

Objets – Beyond simple structures

Group functions (initVector, destroyVector, copy,
resize etc) together with the data (Encapsulation)

Hide the actual data so user doesn't manipulate it
erroneously (Information Hiding)

There are two other Object Orientation Aspect

Inheritance (shared behaviours)

Polymorphism (treating different objects without
regard to their type) – We'll get onto these later.

Look at the first two now

The MyVector Class (First C++ Attempt)

class MyVector {
private:

double *vector;
int length;

public:

 // Constructor (initFunction)
 MyVector(int size) : vector(new double [size]), length(size) {}

 // Destructor (clean up function)
 ~MyVector(){ delete [] vector; length=0; }

 // Want to know length of vector for loops, but can't touch it
 // because it is now private. Here I return a copy.
 int getLength(void) const { return length; }

 // Array indexing – so I can treat vector like an array
 // This allows me to change the value in the vector (LHS of =)
 double& operator[](int i) { return vector[i]; }

 // Array indexing – this is read only access (RHS of =)
 const double& operator[](int i) const { return vector[i]; }

};

The internal parts (member fields) are now
private. Only functions in the class can touch
them. These constitute the state of MyVector

One way to Initialise Member Fields

returns a pointer

const double& return type
means: You can't change the

value of the reference returned
number returned is read only

const before function body means:
this function will not change my state

(it won't modify internal fields)

Using MyVector

We can now do some things with our vector:
#include <iostream>
using namespace std;

#include “myVector.h” // Put the myVector code into file myVector.h
 // We include the definition here

int main(int argc, char *argv[])
{

MyVector newVec(3); // A vector of length 3 is created

// Print the length of it – access member function using . like
 // a struct data member

cout <<”length is: “ << newVec.getLength() << endl;

// assign some values (using read/write indexing method)
 newVec[0] = 1.5; newVec[1] = 2.0; newVec[2] = 3.0;

 // Print out its elements
 for(int i=0; i < newVec.getLength(); i++) {

 cout << “Vec[“<< i <<”] =” << newVec[i]; // Read Only []
 }
 // MyVector goes out of scope. Destructor is called. Memory is

// cleaned up
}

What have we done
Encapsulation of data and manipulation

collected manipulation functions and data

Information Hiding

We have successfully hid the internal information

Private fields for the actual pointer and length

Protection

Array always allocated on creation – should not be null

I can't independently change the 'length' from outside
the class

What else have we done

Defined my own meaning for the [] operator

This is called 'operator overloading'

I can also overload =, *, +, - etc

This is an aspect of something called polymorphism

my arrays 'look and feel' like native arrays

Terminology:

MyVector is a class - A definition of behaviour and
data storage

newVector is an object - A concrete instance of the
MyVector definition

Classes & Objects: A standard example

Some more additions to the MyVector class

(can add these after the 'public:' in the class def'n)
void resize(int n)
{
 // destructive resize – array contents will be lost
 delete [] vector; // Delete old
 vector = new double [n]; // Allocate new
 if(vector == 0) {

cerr << “Failed to allocate vector in resize” << endl;
exit(1); // Allocation failure

 }
 length = n;
}

double norm2(void) // Compute square norm
{
 double sum=0;
 for(int i=0; i < length; i++) {

 sum += vector[i]*vector[i];
 }

return sum;
}

Using the new features

int main(int argc, char *argv)
{

MyVector vec(2);
vec[0] = 1.0;
vec[1] = 2.0;

cout << “Vector has square norm : “ << vec.norm2() << endl;

vec.resize(3); // Now change it to have length 3;
vec[0] = 1.0;

 vec[1] = 2.0;
 vec[2] = 3.0;

cout << “Vector has square norm : “ << vec.norm2() << endl;
}

Checking Array Bounds

Suppose I want to check that the user of MyVector
doesn't try to get an element beyond the length of
my vector. I could define a new class, which is
identical to my old class (with a different name of
course) and the indexing methods have safety checks

class MyCheckingVector {
private:

int length;
double *vector;

pubic:
MyCheckingVector(int size) : vector (new double[size]),length(size) {}
// All the rest: destructore and so forth

double& operator[](int i) {
 if(i < 0 || i >= length) {

cerr << “index out of range error” << endl;
 exit(1);

 }
 return vector[i];
 }
};

Inheritance

MyCheckingVector duplicates MyVector entirely,
just to replace two member functions

Duplication !

Duplication is the Root of All Evil! Should be avoided!

C++ provides a different way: Inheritance:
class MyCheckingVector : public MyVector {

MyCheckingVector(int size) : MyVector(size) {} // Call MyVector's constructor
}

This says: MyCheckingVector 'is a' MyVector and
can access all MyVectors public fields/functions

Constructor cannot be inherited. We provide it

Inheritance

Here we say: MyCheckingVector inherits from
MyVector OR

MyVector is the Base Class of MyCheckingVector OR

MyCheckingVector is a derived class of the Base
Class of MyVector

I can't inherit the constructor since the constructor
is the 'name of the class'

But I can call the constructor of the BaseClass

MyCheckingVector(int size) : MyVector(size) {}

Inheritance

I can refer to MyCheckingVector as if it was a
MyVector. In particular I can assign
MyCheckingVector to a MyVector reference:

#include <iostream>
using namespace std;
#include "myvector.h"

int main(int argc, char *argv)
{
 MyCheckingVector newVec(3);

 MyVector& baseclass_ref = newVec; // Treat MyCheckingVector as a MyVector

 baseclass_ref[0] = 1.0;
 baseclass_ref[1] = 2;
 baseclass_ref[2] = 3;

 for(int i=0; i < baseclass_ref.getLength(); i++) {
 cout << "baseclass_ref["<<i<<"]= "<< baseclass_ref[i] << endl;
 }

}

Inheritance

So far I have nothing new, just a different name for
my vector. Now I can add its own operator[]:
class MyCheckingVector : public MyVector {
 public:
 MyCheckingVector(int size) : MyVector(size) {}

 // MyCheckingVector's own indexing function
 double& operator[](int i) {

 // Show we are calling this checked []
 cout << "Checking" << endl;
 if(i < 0 || i >= getLength()) {
 cerr << "Index out of range error" << endl;
 exit(0);
 }

// vector is private, I can't touch it but I can
// call the public indexing method of the base class
// if the check is OK

 return MyVector::operator[](i);
 }
};

Inheritance

Almost successful. If I refer to MyCheckingVector
explicitly everything works:

#include <iostream>
using namespace std;

#include “myVector.h” // Put the myVector code into file myVector.h
 // We include the definition here

int main(int argc, char *argv[])
{

MyCheckingVector newVec(3); // A vector of length 3 is created

// Print the length of it – access member function using . like
 // a struct data member

cout <<”length is: “ << newVec.getLength() << endl;

// assign some values (using read/write indexing method)
// Prints “Checking”

 newVec[0] = 1.5; newVec[1] = 2.0; newVec[2] = 3.0;

 // Print out its elements
 for(int i=0; i < newVec.getLength(); i++) {

 cout << “Vec[“<< i <<”] =” << newVec[i]; // Read Only []
 }
 // MyVector goes out of scope. Destructor is called. Memory is

// cleaned up
}

Inheritance

But if I refer to it as a MyVector, it doesn't print
'Checking'.

#include <iostream>
using namespace std;
#include "myvector.h"

int main(int argc, char *argv)
{
 MyCheckingVector newVec(3);

 MyVector& baseclass_ref = newVec; // Treat MyCheckingVector as a MyVector

 // Doesnt print 'Checking'
 baseclass_ref[0] = 1.0;
 baseclass_ref[1] = 2;
 baseclass_ref[2] = 3;

 for(int i=0; i < baseclass_ref.getLength(); i++) {
 cout << "baseclass_ref["<<i<<"]= "<< baseclass_ref[i] << endl;
 }

}

Why Not?

Virtual Functions

Because MyCheckingVector now has two versions of
Read/Write operator[]:

One from MyVector()

called MyVector::operator[]

Used when referring to it as a MyVector&

Doesn't print 'Checking'

One from MyCheckingVector()

called MyCheckingVector::operator[]

Used when referring to it as MyCheckingVector

Does print checking

Virtual Functions

For things to work properly we need to call
MyCheckingVector::operator[] even when referring
to the object as a MyVector&

To do this we have to declare operator[] as 'virtual'
in MyVector:
class MyVector {
 // ... omit for lack of space on slide
 public:
 MyVector(int size) : vector(new double[size]), length(size) {
 cout << "MyVector::reating" << endl;
 }

 virtual double& operator[](int i) {
 return vector[i];
 }

Virtual Means: If a derived class overrides operator[] use the derived
class's version

Virtual Functions

With this change even referring to
MyCheckingVector as a MyVector& prints 'Checking'

How does this work?

default if operator[] is NOT
declared as virtual in
 MyVector or derived class
does not provide an
overriding version

MyCheckingVector

Base ClassVirtual
Function Table(vtable)

MyVector::operator[]:

Base Class Functions:

MyCheckingVector::operator[]

My Own Functions:

MyVector::operator[]

Points to my
own version if
operator[] IS
declared virtual
in MyVector

Virtual Functions

In the derived class is the 'vtable'. When referring
to it through the base class (MyVector) the
appropriate function is looked up in the vtable and
called. Virtuality adds the cost of the indirection

default if operator[] is NOT
declared as virtual in
 MyVector

MyCheckingVector

Base ClassVirtual
Function Table(vtable)

MyVector::operator[]:

Base Class Functions:

MyCheckingVector::operator[]

My Own Functions:

MyVector::operator[]

Points to my
own version if
operator[] IS
declared virtual
in MyVector

Accessing data in the base class

MyCheckingVector couldn't access 'vector' and
'length' in my vector because they are private and
only the public functions are accessible in MyVector

If I change MyVector to make 'vector' and 'length'
protected instead of private MyCheckingVector can
access them directly

class MyVector {
protected: // Derived classes can
 // access these

double *vector;
int length;

public:
 // ... all the rest

};

class MyCheckingVector: public MyVector{
public:
 double& operator[](int i) {

if(i < 0 || i >= length) {
 cerr << “Index out of range”

 << endl;
 exit(1);

 }
 return vector[i];
 }
}

Inheritance: Initial Summary

Inheritance allows creation of hierarchies of related
classes

Polymorphism: Can use all derived classes as if they
were the base class (Liskov Substitution Principle)

Need virtual functions to ensure the derived class's
method is called even if it is refered to through the
base class. Base class can provide default behaviour

'protected' members accessible to derived classes

'private' members are only available in the class
where they are declared.

Pure Virtuality (Abstract functions/classes)

Often it does not make sense for the base class to
provide a default. But want to define a function to
specify an interface

electron
has a concrete mass
has a concrete spin

particle:
has mass, spin

photon:
has a concrete mass
has a concrete spin

'is a' 'is a'

abstract

concrete

Both electrons and photons are particles and both
have a concrete spin and mass. But we cannot
correctly provide a default spin or mass for particle:

Pure Virtuality for Functions

class Particle {
public:

// Pure Virtual Functions
virtual double getSpin(void) const = 0; // define but provide No
virtual double getMass(void) const = 0; // implementation or

 // default:

virtual ~Particle(); // Always call derived class's destructor
}

class Electron: public Particle {
public:

// No data. C++ default constructor/destructor is OK
double getSpin(void) const { return 0.5; } // spin 1/2
double getMass(void) const { return 0.510998903; } // Mass in MeV

};

class Photon : public Particle {
public:

// No data. C++ default constructor/destructor is OK
double getMass(void) const { return 0; } // Massless
double getSpin(void) const { return 1; } // Spin 1 boson

};

Particle has abstract members. Specifies an Interface
Electron and Photon specify the Implementation

Using Classes with Pure Virtual Members

I cannot create an actual 'Particle' instance because
some of its functions are abstract.

But I can use a Particle& or a Particle* to manipulate
Electrons and Photons.

void printDetails(const Particle& theParticle) // Reference to Abstract
{

cout << “Particle has mass : “ << theParticle.getMass() << endl;
cout << “Particle carries spin : “ << theParticle.getSpin() << endl;

}

int main(int argc, char* argv[])
{

Electron e; // Concreta
Photon gamma;
printDetails(e); //pass Electron to printDetails as a Particle&
printDetails(gamma); // do the same with the Photon

 const Particle& particle_ref = e; // Put an explicit particle
 // reference to Electron

printDetails(particle_ref); // And print it
}

Summary of Lecture

I have discussed

Basic Constructs (mostly C, a little C++)

Basic Types, Loops, Conditionals, Functions, Pointers,
Arrays and References

Classes and Objects

Inheritance

Protection and Virtual Functions

Interfaces and Default Implementations

Virtual and Pure Virtual Functions.

Next Time

Namespaces

demistifying 'using namespace std;'

Exceptions

Separating Declarations and Definitions

modularising the code by using multiple files

Standard Template Library taster:

vectors, maps and iterators

Templates ... if we have time

Books

If you'd like to read more there are some books out
there

C++ the Core Language

 Gregory Satir, Doug Brown, O'Reilly Nutshell series

good introduction to basic concepts

The C++ Programming Language (3rd Edition)

Bjarne Stroustrup

The definitive guide to C++ by its inventor

Free books online at

 http://www.freeprogrammingresources.com/cppbooks.html

