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Abstract. We briefly review! the overlap formalism for chirel gauge theo-
riea, the overlap Dirac operator for massless fermions and its connection to
domain wall fermions. We describe properties of the overlap Dirac operatot,
and methods to implement it numerically. Finally, we give some examples
of quenched calenlations of chiral symmetry bresking and topology with
overlap fermions.

1. Overlap formula for the chiral determinant

In the overlap formalism [1], the chiral determinant is obtained by em-
bedding the Weyl fermion inside a Dirac fermion through a many-body
problem. Let H* be two many-body Hamiltonians

Ho- -l (D)

TTalk given by Urs M. Heller st the workshop “Lattice fermzionn and structure of the
vacuum”, October 5-9, 1999.xi Dubna, Russia.
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Let |0+} be the ground states of H* obtained by filling ail the positive
energy states of Y. Then

det G(A) & (0 — |0-H)a @

“Proof”: |0—) is obtained by filling all the positive energy states of s,
and [0+) by filling all the positive energy states of H¥. They are of the
form:

0=} : ('1]) o and |04} : Rl: ((\/#i+ﬁ:‘k+ ﬂl)“b) - O

where ClCu), = puy, and Ny is the normalization.

The overlap formula is formal and needs to be regulated. It is valid
only in the limit m — oo and ooe should think of m as & pre-regulator.,
The formula is strictly valid only for ratios of determinants gince there is a
gauge feld independent normalization in the formula.

H+ need not have an equal number of positive and negative energy
states and this bappens for topelogically non-trivial gange ficlds, where the
difference between the pumber of negative and positive energy states of HY
is 20. Thea det C(A) = 0! Furthermore,

©O-laf ..al 04} or 0o, a4gl0H) (4)

will be non-zero, for @ > 0 or Q < 0, respectively, resulting in fermion
number violation. Potenital anomalies reside in the phase of [H-). We will
be concerned only with vector gauge theories, where only [{0— [0+)]? etters
and the apomaly i3 trivially cancelled in this case.

2. Lattice regularization
On the lattice H™ — Hy = 5 remains unchanged, whils
B(I) - (8(73
HY — HE = Hufm) = mDo(-m) = (PG00 By em) ©
where C(I/) in the naive lattice discretization of C{A) and B{l/) is the
standard Wilson term {with r = 1).
[0-) is still & in (3). Let V = (: '6) be the unitary matrix that
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diagonalizes H}, with the first and second “biock-column™ spanaing the
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snbspaces of positive end negative eigenvalues, respectively. Then, for a
vector theory,
0 — 18432 = det adet at. (6)

This can be obtained ns the determinant of the everlap Dirac operator (2]
_1 +
Do =3 1+ 2wetti})] o)

where e(z) denotes the sign function. To see this consider,

oredl(s Do DG Y o

Since V is unitary we have detV = det 4/ det ol and hence we obtain
det Doy = detadstal . (9}

The averlap Dirac operator can be generalized to the massive case

1
Doy() = 5 [14 -+ (1 - wpme(H)] (10)
where —1 < u < 1 is related to the fermion mass by [3}
my = Zp (1 + O(a?). (1)
The propagator for external fermions is given by
D7) = (1 - W)™ [DRM) - 1], (12}
ie it hay a contact term subtracted, which makes the massless propagator
chiral: {D~1(0), s} = 0.
A massless vector gauge theory can alse be obtained from domain wall
fermions {4], where an extra, fifth dimension, of infinite extent is introduced.

In the version of ref. [5), one can show [6] that the physical {light} fermions
contribute log det Dpw to the effective action with the 4-d action

an=% 1+ﬂ+(l—#hsch(—%logT)] (13)

where T is the transfer matrix in the extra dimension and L, its size. As
long as log T # 0 we obtain in the limit as L, — oo

Dow —»%[l+p+ (1 = )y~ log T)]. {14)
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“T'his is just the massive averlap Dirac operator up to the replacement H,, —
~logT. It s easy to see that in the fimit a, — 0, where a, is the lattice
spacing in the extra dimension (set o 1 above}, ene cbiaing —jogT =
Hy {1 + O(a,)}-

3. Some properties of the overlap Dirac operator

In many ceses it is more convenient to use the hermitian version of the
overlap Dirac operator {10):

Holt) = 5Dorls) = 3 [(1 4w + (L - )lB)]. (15)
The massless vorsion satisfies,
{Ho(0), 1} = 2H3(0). (18)

It follows that [H2(0), 7] = 0, i.e. the eiganvectors of H3(0) can be chosen
a3 chiral. Since
Hi(p) = (1 - ) HH(0) + 47 (17}

thia holds also for the massive case.

The only sigenvalues of H,(0) with chiral eigenvectors are 0 and +1.
Each eigenvalue § < A2 < 1 of H3(0) is then doubly degenerate with
apposite chirality eigenvectors. In thia basis H,{p) and Dov{p) are black
diagonal with 2 x 2 blodka, £.g

) 1=+ (1-pWI=A
Dov: (—((1-,5‘)})\@—' BT N )

= (é fl). (19)

For & gange field with topological charge ) # 0, there are, in addition,
1Q| exact zero modes with chirality sign(Q), paired with eigenvectors of
opposite chirality and eigenvalue 1. These are also eigenvectors of Ho(g)
and Dy (p):

Dt (50) @ (1)

where

depending on the sign of Q.

We remark that from eigenvalnes/vectors of H2{0} those of both Hy(u}
and Dy, {p) are easily obtained. There is no need for & non-herritian eigen-
value,/vector solver! For example, the Ritz algorithm [7] will do just, fine.

4. Small eigenvalues and the chiral condensate

In the chiral eigenbasis of H2(D) the external propagater takes the block
diagonal form with 2 » 2 blocks

. t (1A% —a/T-XF
DY) ,\2(1_#1)+#=(f\‘\/1_,\3 p(t—A’))‘ &0

and, in topologically non-trivial background fields the || additional blocks,
depending on the sign of Q),

G « ¢D e

We thus find in a fixed gauge field background

- Q1 2u{1 — X3}
U= ++ —— 23
G = 5+ st = @)
and averaged over gauge fields we get the condengate. It is dominated by
the small {nob-zero) eigenvalues and in the thermodynamic limit, where
the first term vanishes, it is given by the density of eigenvalues at zerq,
A+,
With our normalizations we find for all chiral vectors [b}

sElfD ] 18 = BB Vo with ity =) . (29)

This ensurea the relation yrxy = 2{th4) for every configuration, and, in fact,
for every chiral random source used in a stochastic estimation of condensate
and chiral susceptibility x.. For such stochastic estimates, we always work
in the chiral sector with no zero-modes.

5. Implementations of the overlap Dirac aperator

In practice, we only need the application of D{u) an & vector, D{u)¢,
and therefore only the sign function applied to a vector, £ H,.)¢. Since we
need the sign function of an operator (a large sparse matrix) this is still a
farmidable task.
Methods proposed for this computation are:
—~ A Chebyshev approximation of ¢(x) = —£x over some interval {4, 1] [8].
For amall § & large number of terms are needed,
— A [ractional inverse method using Gegenbauer polynomials for # [8].
This has a poor convergence since these polynomials are not optimal
in the Krylov space.
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Figure 1. Phote of the aptima) rational function approximation te «{x) for vazious order
polynomials,

- Useamebnsedmethodtommpute-j;, basad on the sequence
generated for the computation of 1 [10].

— Use a rational polynomial approximation for e{z) which can then be
rewritten aa a Bum over poles:

P(=?)
e[z}f—zW:,‘,} =m(00+;;fc:—bk‘) (25)

The spplication of ¥ + e(Hu,)y can be dane by the simultaneous
solution of the shified linear systema [11]

(HR+b)de=9, x=Holood+3_ cads) (26)
k

One such approximation, based on the polar decomposition [12], was
introduced in this context by Neuberger [13]. We use cptimal ratio-
nal polynomials [14}. The accuracy of this approximation is showa in
Fig. 1.
We note that in all methods listed above, one can enforce the accuracy
of the approximation of e(z) for small z by projecting out the loweat few
eigenvectors of H,, and adding their correct contribution exactly.

e(Ha) = 3 e P ARl HIP, P = 1-3 )l
= @n

To invert DD for overlap fermions, we have, generically, an outer
CG method (a 4-d Krylov space search) and an independent inner search

T
-
17 T
F om=12
o L
2= mm= 1
1wt s .
sn 3
= 0t
- |
3 i
) i
[Tl §
PP I i | -
14 P 14

.0 25
[avda)

Figure 2. The appraach of p{0; m} to the contiouum Limit in the quenched theory.

method for e(H )} — maybe CG again. For domain wall fermions, on the
other hand, a 5-d Krylov space search method is nsed. It may pay off to
try to combine inner and auter CGy for overlap fermions by reformulating
them into & 5-d problem [15, 16].

8. Main problem for Overlap and Domain Wall fermions

For topology to change, we must create dislocations. These produce small
modes which foroe the spectral gap of H,{m)} to be closed. The density
of zero eigenvalues of Hy(m), p{0;m), is non-zero in the quenched case,
but rapidly decreasing with decteasing coupling [17]. Very roughly, we find
p{0;m)/e3? ~ e~ as shown in Fig. 2.

The existence of amall eigenvalues hampers the approximastion accuracy
and convergenee propertics of implementations of e(H,). Eigenvector pro-
jection both increases the accuracy of the approximation and decreases the
condition number, e.g. of the inner CG.

The existence of small eigenvalues has implications also for domain wall
fermions. One can show that the spectrum of — log T(m) of Eq. (13) around
zero is the same as the apectrutm of Hy,(m) [1]. While the small eigenval-
ues of —log T'(m} don't appear to canse algorithmic problems for domain
wall fermions, they can induce rather strong L, dependence of physical
quantities, and causing hence the need for large L,.
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¥ i pic apectral density for all three spsembles. For
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7. The Dirac spectrum, chiral condensate and chiral Random
Matrlx Theory

Up to & scale, given by the infinite volume chiral condensate T = {§4),
RMT predicts that the rescaled density of eigenvalues
1 z
= lim —p| = 25
psta) = Jim 7o () (28)

is universal, dependent only on the symmetry propetties, number of dynam-
ical flavors, and the number of exact zero mades (the topologicsl sector),
but not the form of the potential in the random matrix theory, or low
energy effective Lagrangian {18]. These are three classes of random ma-
trices datermined by their aymmetry properties: orthogonal, unitary, and
symplectic.

In Fig. 3 we show examples of the microscopic apectral density for all
three ensembles and compare to the analytic pradictions from RMT. With
overlap fermions we can probe topologically non-triviel sectors.

Similarly, there are predictiona in sach ensemble and topological sector
for the distribution of the lowest eigenvalue. Examples for the quenched
theary with overlap fermions are shown in Fig. 4. The E's extracted from
fits in different 1 sectors for each ensemble are consistent [19).

RMT also gives predictions for the finite mase and volume dependence
of the chiral condensate in the small mass large volume regime,

Eu(w) o _ps{z) v
”E =2u[a dzz"+u3 +E' (29

with u = gZV. Particularly interesting is the behavior at smali u:
E§VR()/E ~ —ulogn, TEOP)/E ~ 3(r—v), BEFEW/E ~u (0)

L]

Figure {. Plots of the distritution of the lowest sigenvaiue for sll throe spsemble in the
Jowest two topological sectors, The curves are fits ta the predictions frem rendom matrix
theary.

1t is very sensitive to the lowest eigenvalues, In quenched QCD, surprisingly,
EGOE(4)/E roes not vanish at 4 = 0 in this microscopic limit. Our data,
shown in Fig. 5 follow the predictions well [20]. Once again, with overlap
farmions we can probe topologically non-triviat sectors. The finite volume
corrections are quite large for overlap fermions: T is about a factor 7 smaller
than in the staggered case. This implics that for overlap fermions larger
volumes are needed to sec the microscopic regime.

8. Small elgenvalue distribution In quenched QCD above T,

We have studied the small eigenvalue distribution of the Dirac eperator
in the deconfined phase of quenched QUD. Sample distributions of small
(non-zero) eigenvalues are shown in Fig. 6 {21].

For averlap fermjons, we see the lower end of the bulk of the distribution,
then a dip, or even & gap, and then again small eigenvalues, below about
0.05. We focus on the small mades, & < 0.05. Our findings are summarized
in Tables 1 and 2. We see that both {n}/V end {Q%)/V seem to remain
finite and non-zero in the lacge volume limit for fixed 8, but they drop
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quickly as f, and henoe the temperature, is increased.
Looking in more detailed at the small modes we find

— Their number n is roughly Polsson distzibuted, P(n, {n}) = (a)}™e ! fnl.

Average and variance are approximately equal.
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TABLE 1. SU(3) data: n = ny+n_ with nt the number
of zera amd small non-zerc eigenvalues with chirality +.
& = ny —n.. 18 the topological charge. o, is I.Ile variance
of %. The volume normalizations for v and Q* are per
spatial 87 volume,

\mlume ] 127 x4 16" = 4

5. 75 5.85 8575 571 575 585
)V | 032 006| 428 |0s3 030 005
Py | 030 007 | a2 |p6s 033 005
{r}/an aen | @02 115 103 083

TABLE 2. 5U(2) data

volume B x4 [ 16 x 4

8 23 24 | 24 25
/v 0329 | 025 006
GV 031 {026 005
{r)foa 100 | 093 0%

= For fixed n, ny and r. are roughly binomially distributed.
These ohservations are consistent with interpreting the small modes to be
due to a dilute gas of instantons and anti-instantons, with ny and a_ their
numbers. 7 — || of the would-be zero modes mix due to their overlapping
and get small eigenvalues, while |Q) exact zero modes remain.

At finite temperature, instantans fall off exponentially, and so do the
fermionic zero modes associated with them. We consider a toy model of ran-
dotnly (Poisson and binomially) distributed instantons and anti-instantons,
inducing interactions of the form fge=U)/2 hetween the would-be zero
modes of every instanton — anti-instanton pair (3, 7} with separation d(i, 7).
Like sign pairs are assumed to have no interactions. This toy mode! repro-
duces all qualitative features of the small eigenvaiue distributions well for
D = 2, corresponding to D &= 1/(2T) [21].

9. Conclusions

The overlap Dirac operator has the same chiral symmetries as continuum
fermions. It has exact zero meddes in topologically non-trivial gauge ficlds.
It is therefore well suited for & study of the interplay of topology, with its
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associated exact zero modes, and chiral symmetry bresking, determined by
the density of small eigenvalues.

In the range of its validity the predictions of chiral random matrix theory
are well followed and confirmed by overlap fermicns, including the depen-
dence on topology, given by the number of exact zero modes.

A study of the small eigenvalues in quenched QCD above the deconfining
teansition temperature, T;., shows that topology, manifested by exact zera
modes, persists, Furthermore, & finite density of amall eigenvalues persists,
and their properties are well described by attributing them to the would-be
zero modes of a random dilute gas of instantons and anti-instantons.
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