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I. INFRODUCTION

Description of simple hadrons in terms of quark-gluon degrees of freedom has
long been an active area in physics. With the advent of Jefferson Laboratory,
which operates at intermediate energies and therefore probes the structure of
hadrons, there are new opportunities %0 test simple theoretical descriptions of
quark interactions. The first natural step in this direction is a thorough un-
derstanding of how to treat the relativistic quark-anti quark bound state prob-
lem. In this context, NJL inspired models have gained popularity in recent years
[1,2]. The common goal of these works is to bridge the gap between nonrela-
tivistic quark models and more rigorous approaches, such as lattice gauge theory
or Feynman-Schwinger calculations. While the Euclidean metric based calcula-
tions are inecreasingly popular, their applicability, because of the extrapolations
involved, is only limited to light bound states such as the pion and kaon. There-
fore, it is important to develop Minkowski metric based models which can be
used over a wider scale of energies. One such work using the spectator formalism
was developed in Ref. [1]. In those works a relativistic generalization of the linear
potential was developed and the pion was shown to be massless in the chiral limit.
However, the calculations involved some approximations and related conceptual
problems. In this work we improve and simplify the model presented in those
works and address in detail some of the conceptual issnes related to confinement.

If a quark-antigeark pair (referred to collectively as “quarks”} is confined to a
meson bound state with mass g, then the bound state can not decay into two free
quarks, even if the sum of the quark masses is less than the bound state mass.
This trivial statement can be realized by two possible mechanisms: either (a) the
quark propagators are free of timelike mass poles, [2] or (b) the vertex function of
the bound state vanishes when both quarks are on-shell. In this work we prove
that the Gross equation supports the second mechanism of confinement. - The
first mechanism, which is commonly used in Euclidean metric based calculations,
is a stronger constraint since it forbids any free quark states. On the other hand,
the Gross equation allows one of the two quarks in a meson to be on-shell, but
insures that the matrix element which couples the bound state to two free quarks
vanishes. The spectator formalism facilitates the use of the Minkowski metric,
and the confinement mechanism of this approach has a closer resemblance to
nonrelativistic models.

" The organization of the paper is as follows: In Sec. Il we review the formal-
ism for nonrelativistic confinement in momentum space. In Sec. III we outline
the general philosophy of the spectator approach to the treatment of confined
systems, examine the implications of confinement for the scattering amplitude,
and prove that the relativistic linear potential used in earlier works automatically
insures that g4 — ¢ + § vanishes at the momentum where decay of the state into

two physical quarks would otherwise be kinematically possible. The treatment is
first presented for scalar particles, and then generalized to fermions. In Sec. IV
we construct quark mass functions that have the correct chiral limit and preserve
asymptotic freedom. Qur numerical results for pseudoscalar hound states are
presented in Sec. V, and some conclusions are given in Sec, VI,

II. NONRELATIVISTIC CONFINEMENT IN MOMENTUM SPACE

‘We start by reviewing the discussion of confinement within the context of the
nonrelativistic Schrédinger equation given in Ref. [1]. We will denote potentials
in coordinate space by V and in momentum space by V. The nonrelativistic
linear potential is :

V() = or. 2.1)

This potential can he constructed from familiar Yukawa-like potentials in two
different ways:
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These various potentials are shown in Fig. 1 for the illustrative case of ¢ = 0.1
and ¢ =0.2. . B

Note that the two potentials Vz{r) and Vi (r) both approximate the linear
potential V{r) when » << 1/e, but that these two approximate potentials behave
very differently at large r. The potential Vi(r) — 0 at large r, so that, strictly
speaking, it does not confine particles at all. This potential always permits
scattering, although when ¢ ig small the scattering is strongly resonant, and the
wave function is significant at small r only for energies near one of the allowed
resonances. The width of these resonance states becomes narrower, and their
wave function approaches that of a bound state, as ¢ — 0. In contrast, the
potential ¥(r) — 1/e as + — o0 and therefore binds particles with energies
E < 1/e. As e — 0 this potential does not permit scattering; it has a spectrum
of bound states only. '

Yet for sufficiently small ¢, it should be possible to move freely from one of
these potentials to the other, and the results obtained with either form should
be equivalent. We will return to this later in this section. Now we follow Ref. [1]
and work with V¢ given in Eq. (2.2b).

The momentum space form of this potential can be written
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FIG. 1. The linear potential in coordinate space for ¢ = 0.1 and ¢ = 0.2. The solid

line is Vs(r), the dashed line is Vz.(r), the dotted line is Va(r), and the dot-dashed line

is V(r). For “small” r < 1/¢ (the region inside the small box) V4 (r) and Vs (r) are both
approximately equal to or.

ila) =l Vit - [0 va)] (23)

where
Vala) = -l 24)
Aq“‘ (q2+€2)25 ('}
Note that the second term (the “subtraction term”) insures that
[#an@=o, (2.5)

which is the momentum space form of the statement that Vir = 0) = 0. The
Fourier transform of V4 is, for finite ¢,

a0 = [ ke 4Vt - (26)
:-ge_: ~e 2%0( u%) , @.7)

and the subtraction term cancels the singular 1/e term insuring that the linear
part of the potential has the correct behavior in the Hmit as € = 0 and that it
vanishes at the origin {r = 0). Now, adding a constant potential V¢

Vor)y=-C :
Vela) = - (278 (@)C, (2:8)

to the linear potential (2.3}, and inserting the total potential into the momentum
space Schrédinger equation gives o

[% - E] ¥(p,po) = - / égT;cha(p — k) [®(k, po) — ¥(p,p0)] + C ¥(p, po),
(2.9)
where mp is the reduced mass, E is the binding energy, and pg is an eige-lnmlue
given by .
pi =2mgE. : (2.10)
The constant potential is used to adjust the energy scale.

While Eq. (2.9) was derived for the linear potential with the specific choice
of V1 given in Eq. (2.4}, it is instructive to consider it in its most general form



where Vy4 is an arbitrary function. From this point of view, the role of the second
term in square brackets in Bq. (2.9) (which arises from the subtraction term), is
to insure that the coordinate space potential V4 (r) is redefined so that it is zero
at the origin; ie. Eq. {2.9) is a standard Schrédinger equation for the potential

Vi(r) = Va(r) - Va(0). (2.11)

Looking at it this way, we see that any potential Va(r) for which Valro)—Va(0) =
co, for some 1o, gives a confined system when used with Eq. (2.9). For example,

even the choice of a pure Coulomb-type interaction for V4,

Valr) = —%, (2.12)

would give confinement. The subtraction term forces the interaction to vanish at
the origin, which requires an infinite shift in the energy (just 2s in the case of the
linear interaction) forcing the interaction to go to infinity at large distances. The
role of the subtraction is an essential part of introducing confinement. This trivial
point is worth emphasizing because when we arrive at the relativistic equation,
the subtraction term will prove to be just as crucial as it was in the nonrelativistic
Schrodinger equation.

We know that Eq. (2.9) confines the quarks because it was derived from a
coordinate space equation which confines, but it is instructive to see in a simple,
direct way how confinement can be demonstrated directly from the momentum
space equation. To see this, first congider the case when € = 0, let ¢ be small
but nonzero, and rewrite the Schrédinger equation

2 . 8
[ B 0] waia) = [ Va1 Ballo), @19

where, for the linear potential introduced above,
Va(0) = -=. (2.14)

[For simplicity, we will sometimes refer below to Eq. (2.13) as the bound state

form of the equation.] In coordinate space, the potential V4 (r) approaches zero
at large r, as Hustrated in Fig. 1. Hence scattering will take place only if the
Lh.s. of this equation has a non-trivial solution, which requires

P 2 PR+ 2meVa(0) =p? . (2.15)

Note that this implies that

_ 2
E= 52 4, (2.16)

2mpg €
as € — 0, showing that no scattering can take place for finite energies. At energies
below 1/¢, only bound states can occur. This is the demonstration we seek.

" Even though Eq. {2.13) shows that there is no scattering when € — 0, it is still
instructive to write & scattering equation for finite €. To this end it is convenient
to replace Vi(r) by its counierpart, Vs(r) defined in Eq. {2.2a). This potential
has no subtraction, so its momentum space Schrédinger equation is simply

[2::1_7 — E] ‘I’S(P,Pn) = — / %Vs(p - k) lI’S(l‘:"pﬂ) . (217}

This will be referred to as the scaftering form of the equation.

As stated above, we will assume that the {wo equations (2.13) and (2.17) give
equivalent results when ¢ is very small. Their equivalence is clear on physical
grounds, since there is very little difference, on a sub-atomic scale, between s
barrier which is a mile thick and one which is infinitely thick. To emphasize this
point, Fig. 2 compares the short distance behavior of the potentials Vg, Vi, and

Vo(r) = Vilr) = Vs(r). (2.18)

As e = 0 for a fixed range of r, Vo = 0 and Vg = Vi However, a careful mathe-
matical treatment of how these two equations approach the limit as ¢ — 0 presents
some subtle jssues [3,4] which we defer to a subsequent paper. Qur arguments in
the remainder of this section are based on simple physical considerations.

In connection with the scattering form (2.17) we introduce a scattering state
wave function defined by :

¥
Ts(p, ) = (20 8%~ p) - TR MSOR) (219)
PP

where Mg is the half off-shell scattering amplitude, and p" = pi. The wave
function {2.19) has the form of the usual scattering wave function, with the &
function describing the asymptotic plane-wave part. We have chosen to multiply
this plane-wave part by a (small) parameter 5. This parameter can be removed
by dividing the wave function and the half off-ghell scattering amplitude by #, so
it is, strictly speaking, an arbitrary scale factor, However, if we wish to compare
the scattering solutions to {2.17) with the hound state solutions to (2.13), it is
necessary to choose 1) so that the wave functions are wavecompare.fig, and this
will require that # be very small. Such a comparison is only possible at certain
energies {close to the bound state energies) where the scattering solutions are
resonant and therefore much larger at small r than at large r. In general, at

7
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FIG. 2. The potentials Vs{r) (upper solid line), Vi (r) {dashed line), or {dot-dashed
line), and V5(r} (lower solid line) in coordinate space for ¢ = (.1 and ¢ = 0.2.
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FIG. 3. Comparison of possible wave functions ¥ 4(r) {falling dotted line) and ¥5(r)
(heavy solid line). [For reference, the potentials Vs (r) (thin solid line) and Vi (r) (vising
dotted line) are also shown.] The normalization is chosen so that ¥4 + ¥g, making
the plane wave tail of ¥¢ (shown in the box} small. In this example 5 ~ 0.05.



other energies, Eq. (2.17) will have nonresonant solutions that can not be large
at small . Only the resonant solutions of the scattering form (2.17) will converge
to the bound state solutions to Eq. (2.13), and for these n is very small. The
non-resonant solutions to the scattering form are confined to the large r region,
and move off to infinity as ¢ — 0. This complicated limiting process will be
summarized by the equation

Ts{p,po) < Talp,po), (2.20)

where the « symbol means that the spectrum. of resonance scattering states
obtained from (2.17) converge to the bound states obtained from (2.13), and the
nonrescnant solutions to (2.17) can be ignored because they contribute only at

infinite energy.
With this insight, we substitute the scattering wave function (2.19) into the
Schrédinger equation (2.13), giving

Ms(p,p')=nVe(p - p') — 2mn / (—;%:gvs (p—-k) %-(-IE’P—%') . (2.21)

Alternatively, we may work directly with the bound state form (2.13} of the
equation. In this case we make the replacement

_2mp Ma(p,p) (2.22)

'I'A(p,pﬁ) = pz __pg

and, substituting this into Eq. (2.13), obtain the following equation

Kl oy [Malkp)  Ma(p,p)
(271_)3VA(P k) k2 _p% p2 _p% )

Following the argument developed above, in the limit ¢ — 0 (and 5 — 0) the two
amplitudes Me and M4 should be equivalent. In the notation of Eq. {2.20}

Ms(p,p’) ¢+ Ma(p,D')- (2.24)

We will find it convenient to use Mg when ¢ is very small but nonzero, and to
use M4 when we want exact confinement (¢ = 0). Only Eq. (2.23) has a well
defined mathematical limit when ¢ — 0. In our subsequent development we will
assume that either Mg or M4 may be used with equivalent results.

When ¢ = 0, the inhomogeneous term vanishes and there exist bound states
only. We introduce the wertex function -y defined by

Ma(p,p') = —2mp ] (2.23)

_2mry(p.m) (2.25)

Ya(p,po) =
(2, 7o) P -

10

The Schridinger equation for the vertex function, restoring the constant interac-
tion term, is

B Bk ¥k, po)  ¥{p,po)
e, po) = —sz/WVA(P -k} K —p2 T2 _;%

+2mR0 ¥(p, 1)

. 2.26
P’ — P 2.26)
Next, look at this equation when p? — pg. To this end first write

¥ po} = Yoo, po) + (P* - 25) R(p,20), (2.27)

and then substitute this into Eq. (2.26) [with ' = 0 for the moment), giving

: & 1 1 '

¥{p,po) = —2mpy(po, Po) / WVA(F’ ~k) |z e g
&£k

—2mpg (Q_W’-Vﬁ(p - %) [R(k,po) — R(p,po)] - (2.28)

All terms on the r.h.s. of this equation should be regular as p? — pf. Because
of the subtraction, the term involving R is finite, and, because of our choice of
o, only one of the two remaining terms is zero if ¢ is finite

lim ] Ok Valp—k) _ o (Eiz@p”) —+ finite
p?—p}

273 K-} €2 \4p2 +¢2
&k Valp k) o ( 1 )
Lim /-——-—-——— =—— lm | ——=}—2x. 2.29
p=1-w3 (27)? p%-p} € piopi \P?~ D} (2.29)

Hence the subtraction term will be singular unless

¥(po,po) = 0. | (2.30)

This condition also insures that the constant term is not singular. We will discuss
the physical interpretation of this result in the next section.

HI. CONFINEMENT IN THE SPECTATOR FORMALISM
A, Introduction

At this point it is very tempting to generalize the nonrelativistic linear po-
tential Eq. (2.3} by simply replacing the three vector q by a four vector g

11
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FIG. 4. One of the two-channel Gross equations for the bound state vertex furction
T'. In this figure the x means that the particle is on the mass-shell.

vaig%hawy—wmx[f¢wnw]+@ﬂ%%@a (3.1)

This, seemingly obvious, generalization will not reduce to the correct nonrela-
tivistic limit because of the unconstrained behavior of the [ dg} Va(g') integral.
Lacking a four dimensional expression for the linear interaction that reduces to
the correct nonrelativistic limit, we rephrase our question: Can one find a covari-
ant equation that reduces to the Schrddinger Eq. (2.26) with o linear interaction?
Fhe confining relativistic bound state equation should be a relativistic general-
ization of Eq. (2.26). '

A covariant equation with the correct nonrelativistic limit is the Gross equa-
tion [5,6]. If the two quarks have unequal masses my > mg, the one channel
equation may be used. It has the feature that the four dimensienal loop integrals
are constrained so that the heavier constituent (with mass m; in this example)
is restricted to its positive-energy mass shell (provided My > 0; see Ref. [7]).
However, if the particles have equal mass (my = ma = m) and the mass Mg of
the bound state is comparable to m, a symmetrized two channel equation should
be used. This is illustrated in Fig 4. In this case an average of the contribu-

tions in which either particle 1 (channel 1} or particle 2 (channel 2} are on their .

positive-energy mass-shell are included, and this leads to a set of equations in
which the two channels are coupled. The symmetrized two-channel equation has
been used previously to describe of low energy NN scattering [8]. Finally, if the
masses are identical and the bound state mass is very small (ie. Mp << m),
as in the chiral limit, then a four chennel equation is needed. The four channel
equation is a symmetrized version of the unsymmetrized two channel equation
used in Ref. [1]. One of the purposes of this paper is to improve on this previous
work. :

12

B. One channel scaltering equations for scalar quarks

We will begin with the one channel equaticn. The momentum and mass of
the quark are py and m,, the momentum and mass of the antiquark are pa and
mg, the total momentum is P, and the relative momentum is p, where

P =p +pz = {Mpg,0}
1
p=3 (m —pa) - (3.2)

The quark will be on mass-shell, and the symbol p} will be used to denote
the particle on its pesitive energy mass-shell, (ie. pf? = m} and (pf)o =
Ei(p) = +/m? +p?). The scattering amplitude M{p],pa, pi™, ph) is denoted
Mii(p,p’, P), or in the one channel case where there can be no confusion, simply
by Mp,p', P). Then, introducing a relativistic generalization of the potential
Vg, the one channel equation for the scattering of scalar “quarks” (m; > my)
can be written

i - [ _ 2mymg g VS(p’k:P) MS(](,]J',P)
MS(IJ,P :P) == ?]VS(D,]J aP) (2_”_)3 El(k) mg »L (P uk?—)2

2mEC MS(p, P‘)p}

(3.3)
mj - (P—py)?
This equation is the relativistic generalization of Eq. (2.21).
Alternatively, the bound state form of the scattering equation is
2mymg [ Pk [ Malk,p', P) Malp,p', P)
Malp,p', P) = — L8 Vip,k, P ’ - L
BB = | mEm PR [y m-e-pp
2maC !
My MA(p-:P 7P) (34)

mi -~ (P - p{)?
This is the analogue of Eq. (2.23) and has a smooth limit as ¢ — 0. The kernels

Vs and V4 will be specified later (see Eqgs. (3.16) and (3.17) below). Equations
(3.3) and {3.4) wiil be our starting points for this section.

C. One channel bound state equation for scalar quarks

In the vicinity of a bound state of mass Mg, or a very narrow resonance with
mass and width Mg = Mg + M, the scattering amplitude has the form -

13



I'x(p, Mp)Tx{p', Mg)

i
P)=—
MX(PuP, ) Mg_Pz

+Rx(p, Mp), (3.5)

where X = A or §, depending which of the two forms (3.3) or (3.4) we are using.
If € is finite and we are using Eq. (3.3), the width M # 0. If we use Eq. (3.3)
the width is zero for all states WLth mass below some critical mass M, — oo as
e— 0.

Substituting the form (3.5) into either Eq. (3.3) or Eq. {3.4), and equating
residues at the pole (real or complex) gives the bound state equations for the
vertex functions I'x:

Fs(k: MB)
~ (Mg — k)?

d*k VS(P; ka MB)
(@) Ex (k)
2m, C I's(p, Mp)

m3 - (Mp - pl)?’
&k Valp, k, Mp)
(2m)3 E; (k)
FA (k: MB)
X
~ (Mg — k)?
217113 CFA(p, MB)
— (Mg —pf)?
where we use a mixed notation with Mg denoting both the mass and the four
vector {Mp, 0}, the difference being clear from the context.

As with the seattering amplitudes, the two vertex functions are equivalent in
the limit € — 0

Te(p, Mp) = —2mymy

(3.6)

Ta(p, Mg) = —~2myms

FA(pv MB)
—(Mp —pf)?

(3.7)

Ts{p, Mp) «+ Talp, Mp), (3.8)

but the vertex function "4 is more convenient to calculate in the Hmit € — 0.

D. Normalization condition

The bound state equation and the normalization condition for the bound state
wave function can be derived from a nonlinear form of Eq. (3.3) [9]. In this paper
the derivative Vg /P, = 0 in the rest frame, so the result is

w_ O @k [Ts(k, Ms) Ts(k, Mp)
= ﬁ/ (27)3 Eq (k) { —(P—K) } . (3.9)

14

In view of the relation (3.8) this relation can also be written

9Pk - I‘A(k,MB)PA(k,MB)}

a%/ @y Bl {

—(P_k+)2
_ / @k Tatk, Mp) 2P - kf)* Talk, Mp) (3.10)
(27)3 Ex (k) (m3 — (P - BD2)" l

This is a familiar result, which will be generalized to the spin 1/2 case later.

E. Symmetrized two channel equation for equal mass scalar quarks

¥ the quarks have equal mass (m; = mz = m}, and the bound state mass
is positive and not too small, a symmetrized two channel equation is needed,
The two chapnels will be labeled 1 and 2 depending on whether the quark or
antiquark is on mass-shell, and the symbol pi" denotes that the particle is on
its positive energy mass-shell, (ie. pf? = m® and pf = E{p) = /m? + p2).
Starting from Eq.(3.7), and suppressing the Subscrlpt A, the vertex functions for
the two channels are denoted

Ti(p, Mg) =T(p},pa),  T:(p,Mp)=F(p,p}). (3.11)

With this notation, the symmetrized two channel equation for equal mass scalar
“quarks” with a confining interaction can be written

5o )= -y [ L8

QmC Ti(p, Ms)

Lijlk,Mpg) Ti(p,Ms)
m? — (P—kf)?  m?~(P-pf)?

) .12
“P-5P (12
where £ and 7 label which of the two quarks is on-shell, and
= i+1 :
Ef = {B(k),(-)" k) (3.13)

is the momentum of the on-shell quark., Note that the strength of the Vj; term
has been multiplied by 1/2, reflecting the fact that the interaction is an everage
of the strengths in two channels which are equal in the nonrelativistic limit. This
equation uses the same subtraction for both the { = j and the ¢ # j terms. This
prescription differs from that previously used in Ref. [1]. In this work the kernel
below will not, in general, be singular when # 3 7, and the subtraction used above
is sufficient to preserve the nonrelativistic limit (see helow).

15



In order to complete the description we need to specify the form of covariant
interaction Vi;. A natural choice that reduces to the correct nonrelativistic limit
is [1]

Vij(?; k) = VA(Qij) = "_'(qj_;_s_%g)g 3 (314)
i

where the four-momentum transfer depends on whether or not { = j:

ah = gy = (B(k) - E(p))° - (k - p)°

s = B = (Mp — E(k) - E(p))* — (k-+p)*. (3.15)
A similar form could be used for the kernel Vs (which we will not need)
Vis(p k)=V.( ) =8 CHNE (3.16)
R | R '

However, the form (3.14) has two drawbacks. First, at large p ~ k the kernel
converges slowly, and the equation is ultraviolet divergent. In Ref. [1] a form
factor was introduced to regularize this divergence. Second, using this form it is
difficult to regularize the infrared (¢° = 0) singularities that appear in the ¢ = (
limit. In the nonrelativistic case the infrared singularity occurs only at q = 0
and can be regulated by the § function subtraction in Eq. (2.3). However, in the
relativistic case infrared singularities eccur not only when ¢* = 0, but also (for
the ¢ # j kernels) when the momentum transfer is light-like, so that ¢° = 0 but
g* # 0. These “off-diagonal” singularities are not regulated by the subtraction
term, and their removal spoils the simplicity of this approach [1].

Since the role of V4 is to model the linear interaction, and the principle
requirement is that it reduce to the correct nonrelativistic limit, both of these
problems are eliminated very simply if V4 is defined as follows

8mo
Valge)) = ———® 3.17
(‘bj} qgj Y- Q£j)4/P4 ( )
where F is the total four-momentum of the bound state. This form has the
following advantages:

{i) the depominator is not singular unless both ¢ and P - g are zero, so the
singularities are restricted to ¢* = §;

(ii) no ultraviolet regularization is needed;

(iii} the interaction does not depend on the hound state momentum P in the
bound state rest frame; and

16

(iv) it has the correct nonrelativistic dependence on ¢,

One disadvantage of the form (3.17) is its dependence on the total momentum
P of the pariicle pair. However, since since this kernel confines particles in pairs
that can not be separated, they are naturally associated as a pair and we do not
view this as a serious limitation. Another feature of the form (3.17) is that its off-
diagenal couplings are singular only when W = 2E(p) (because k + p = 0 also).
This is only possible for excited states and, as we will prove below, confinement
requires the vertex function to be zero at this point, controlling this singularity
automatically.

The introduction of the definition (3.17) considerably simplifies the solution
of the relativistic equations (3.12), but will introduce electromagnetic interaction
currents if the photon four-momentum is not zero. These will be discussed in a
subsequent paper.

Both Egs. (3.7) and (3.12) have the correct nonrelativistic limit with con-
finement. Consider the one-channel Eq. (3.7) first, and let m; and ms — co.
Then the energy transferred by the on-shell quark, Ei(k) — E1(p) — 0 and
Va{g1) —+ Va(q). Furthermore, if Mg = mg +m; + E, then to first order in the
small quantities k* and mgE, the relativistic propagator reduces to

1 o MR

mo{k? - 2mpE)’
and substituting this into Eq. (3.7) gives Eq. (2.26). In the two channel case
11 —> ¢iz 88 m — co and the kernels V3; — Vj2. Since the subtraction in the

two channels is also identical, the contributions from the two channels are equal
and the coupled equations reduce to the single Eq. {2.26).

(3.18) |

7.2
mj — k3

F. Proof of confinement

While one can visualize the potential in the nonrelativistic case and get a
picture of the physics, it is less possible to visualize the covariant interaction.
What are the criterie with which one can judge whether a given interaction really
confines? If the particles are bound in a state of total mass larger than the sum
of the masses of the constituents (Mg > my + ma), the bound state could in
principle decay into free constituents. Confinement prevenis this from happening
in one of two possible ways: (i) the quark propagators will not have any physical
mass poles [10], or, as we will now prove for this model, (ii) the vertex function
wilt vanish when the quarks are simultaneously on-shell.

The proof is identical to the nonrelativistic proof given above and we will
summarize it only for the one channel equation. Setting C' = 0, the one channel
bound state Eq. (3.7} can be written
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FIG. 5. The confinement condition for the Gross vertex function.

Ca(p, Mp) = —2mimz f ?22)‘%{?63 [P"(k’ Ms) __If;g(p’MB) ] (3.19)
&k Valp, ) 7K
+2mimala(p, M5) (27)8 By (i) {(mz e (ng yy } .

Since the first quark is on-shell, the second quark is on its pesilive energy mass
shell when the magnitude of the relative three-momentum |p| = py is

\/M§+p8+\/m%+p3=MB. (3.20)
This occurs when p3 is given by
aME g = [ME — (my +mp)?} [M§ — (1 —ma)’] . {3.21)

" As in the nonrelativistic case, the singularity at p = k is integrable, and hence
the second term on r.h.s. of Eq. (3.19) will be singular at p = po P = po (where
P is 2 unit vector in the direction of p) unless

T(po, Mp) =0. {3.22)

Therefore, the vertex function vanishes when both particles are on their mass
shell. This condition is illustrated diagrammatically in Fig. 5.

Note that the subtraction term in Eqs. {3.12) and (3.19) plays two central
roles: {i} it regularizes the singular interaction at p = k and and makes it zero
at r = 0, and (ii) it is singular when pI — m2, forcing condition (3.22). The
subtraction term is essential to the self consistent description of confinement. As
in the nonrelativistic case the proof did not depend on the specific form of the
interaction.

We now discuss how confinement affects the stability of bound states under
external disturbances.

G. Excitation of bound states

A consistent description of confinement implies that two free quarks can not
be liberated from a bound state, even under the influence of an energetic external
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FIG. 6. The Born term, which can not exist if the quarks are confined.

photon or other probe. This requirement implies that the usual Born term (shown
in Fig. 6) is either cancelled by the rescattering term, or is a diagram that does
naot exist in the formalism. If the Born term does not exist, the rescattering term,
illustrated in Fig 7, must be zero if the final state quarks are ali on-shell. How
are these restrictions buili into the formalism?

When particles are confined there are no free two-particle states and the two-
body propagator must always include an infinite number of interactions. Since
there are no free particle states, a perturbation theory for confined particles
built around the free propagator can not be constructed. This feature is built-in
automatically if the two body propagators satisfy Aomogeneous integral equations
with no free particle contribution.

To illustrate these ideas we review the formalism for the scattering amplitude,
and its relation to the two-body propagator. - It is convenient to work with the
scatbering form of the equation. In operator notation, Eq.(2.17) is:

Mp, o', P)y=9V(p,p) = V(p,k)Golk, X', PYM(K',p, P) :
=9V(p,p) — M(p, k, P)Go(k, k', P)V(¥',5'), (3-23)

where Go(k, k', P) is the free two body propagator [containing a factor of ¢*(k —
k], integration over d®k and d%% is implied, and we have dropped the subscript
S for simplicity. The parameter 7 was introduced in the discussion following
FEq.(2.19) and is very small, approaching zero as € =+ (.

Now the dressed propagator, G is related to the scattering a.mphtude M by

G(p, p’,P) = CG()(p,P’,P) - Go(p,k, P)M(k: k',P)Gu(k',p"P) » (324)

where (, t0 be determined, is a parameter proportional to the strength of the free
particle scattering. If the potential confines there should be no inhomogencous
term and ¢ = 0. To determine ¢ and the equation for &, substitute (3.23) intc
(3.24) giving .
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FIC. 7. Can an external photon probe disintegrate the bound state?

G(p: p,r P) = CGﬂ(pap,s P} - nGU(ps k) P)V(k-: k:)Gﬂ(k’apt P)
+G0(p)kJP)V(k} k:)GD(kfrk”aP)M(kﬂakmaP)GO(kmspJ:P)
= (Golp, P, P) + ({ — ) Go(p, e, P)V{k, k")Go (K'; 0", P)
=Go(p, k. P)V (&, k")G(K',p', P) . {3.25)

The second term is eliminated by choosing { = 1, and gives familiar equatlons
for the dressed propagator

G(p,', P) = 5 Golp,p', P) — Go(p, k, P}V (k, K)G(K,p', P )
= HGO(pap aP) G(p:k P V(k k’)Go{k{,p 3 (326)

where the second form parallels the second form of Eq. (3.23).

The interpretation of equations (3.24) and (3.26) for the dressed propagator
follows from the interpretation of Eq. (3.23) for the scattering amplitude. As
¢ -+ 0, the parameter 1 — (0 and the inhomogeneous term vanishes. In this limit
both the scattering amplitude and the propegator satisfy homogenecous eguations.

The inelastic scattering amplitude can be obtained from the dressed propa-
gator by striping off the final free propagators, and is [6]

I(6,P,) = G5 (0, %, P+ )G(&,p', P + q)J(P -+ 0, P¥(P)
= {1+ M(p, X, P+ 0)Galk,p', P+ 9) } J(P + ¢, PYE(P).  (3:27)

Here the first term proportional to # is the Born term shown in Fig. 6, and we
see that there is no Born term in the limit of exact confinement (le. 7 = 0).
Furthermore, in the presence of confinement the scattering matrix satisfies the
same homogeneous equation satisfied by the bound states [Eq- (3.23) with 7 = 0],
and an extension of the proof given in Subsec. F above shows that the scattering
matriz in Fig. 7 must be zere if both final state quarks are on shell.

We have constructed a self- consmtent description of confinement within the
context of relativistic field theory.
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H. Generalization to Fermions

If the quarks have spin., the kernel in the spectator equation will be an operator
in the Dirac space of the two quarks. This operator can be written

3 .
k) = Z [a 7] ng]_ O,',?, %_Ep, "5) 3 (3.28)

i=1

where the Dirac matrices (0, which operate on the Dirac indices of particles 1
and 2, describe the spin dependent structure of quark-antiquark interaction. The
a; are parameters determined either empirically (by fitting the spectrum}, from
lattice calculations, or from the theory. In this paper we consider only three
possible spin structures: scalar Gy; = 1, pseudoscalar Oz; = 755, and vector
Oz; = 7,;/2. With this notation the one channel spectator equation for spin 1/2
particles with constant masses m; >>> my Is given by

00, ) = - [ g 3o W Oatm + 0 { TR o 40,

(3.29)

where the quark has mass m; and is on shell, so that &2 =m? = pf %, and the
antiquark has mass my. Therefore, the momentum transfered by the interaction
is

Gt =K = (Bap) - Bi(R)) ~ (p-K)* =4q. (3.30)

As in the nonrelativistic case, we consider a kernel composed of linear, con-
stant, and one ghton exchange (OGE) pieces. The interaction kernel for the linear
part of the potential, Vi, is

3
Vi (p, k) = Z oepi On 052VL(P, k):
i=1 .
1
= (aaﬂl Bz + apsrs1ysz + 4 o fnu'ré‘) Viip: k), (3.31)
where Vi, (p, k) is .
V. s
Viip, k) = Valau (0, 8) ~ Ea (k)6 (p = &) / d%’—%?,)—)) . {332
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FIG. 8. Propagator poles in the complex ko plane.

In this work we employ a pure scalar linear interaction, o, = 1,¢p, = a, = 0,
but in later calculations the coeficients «; will be determined empirically. The
one gluon exchange and constant interactions will be pure vector

Vola) = Yur 12 V37 (Q)

Vel@) = v 75 € (3.33)
where
vy i
Vg le) = —-(¢" - q—z)Vy(Q)
g, 1 d167%/3

(3.34)

@ g% — A? In(7 + |¢?|/ Myop)

where d = 12/(33—2Ny) = 12/27, the color factor of 4/3 has been included, A = 1
GeV, 7 = 2, and Agep = 200 MeV. In previous work [1] quark propagators with
congtant masses were used. In this work we parametrize the quark propagator
by :
() = ——— (3.35)
m(p)— §
where m{p) is a mass function for the quark, to be defined later.

K the constituents are identical or close in mass and the equations are to
be applied to the description of nearly massless bound states, the four chenne!
equation should he used. Numerical solutions the four channel equation will be
presented in this work.

The four channels are defined by the constraints in the four-momenta k;
and ks arising from the requirement that both the quark and the antiquark be
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constrained to both their positive and negative energy mass-shells. A formal way
to obtain the equations is to integrate over the internal energy ky hy averaging
the contributions from the quark and antiquark poles in both the upper and lower
half ko complex plane, as illustrated in Fig. 8. This averaging is needed to ensure
charge conjugation (particle-antiparticle) symmetry, and leads to four coupled
equations. However, even though the form of the equations is obtained in this
way, we emphasize that the equations are theoretically justified by the argument
that the singularities in the interaction kernel omitted in this procedure tend to be
cancelled by other higher order terms which would otherwise have been neglected,
and that this leads to covariant equations with the correct nonrelativistic limit.
The inclusion of the negative energy poles, neglected in other applications of the
symmetrized equations {8], is required in cases where P — 0 [1].
The four constraints are conveniently identified by the notation

k§ = (sE(k), (-) k). (3.36)

which generalizes that introduced in Eq. (3.13). Here the superscript s = +
denotes either the positive or negative energy mass shell constraints. Then, in-
troducing the projection operators

AlR) =m{k)}+ ¥, o (3.37)
and defining the four channel vertex funetions

rg(pa MB) = F(pfam)
I'5{p, M) = L{p1, p3), (3.38)

and wave functions
_ A@DTI(p, Mp)A(—p2)

1 (p, Mp) m(pz)z —p%
lI';(p’ MB) = A(pl)gfé;,)‘:ff);;(“pg) H (3-39)

permits us to write the four-channel spectator equation in the following compact
form

&k
Tip, Mp) = — ;er/ W{V}?{P) k) [¥7(k, Mp) — ¥:(p, Mp)]

— 26438, VI (b — kv, ¥k, MB}%} — Cva ¥ (0, Mp)v*, (3.40)

23



where the r.h.s. of the equation now sums over both positive and negative energy
contributions {r = =) from each quark (f = +). The Kronecker 8;;4,, func-
tions restrict the one gluon exchange interaction to the diagonal channels (where

the same particle is on the same mass shell before and after the interaction). '

Inclusion of the one gluon exchange in off-diagonal channels leads to numerical
instabilities, which in principle can be handled by using more grid points in nu-
merical integrations. Restricting this interaction to diagonal channels eliminates
these singulariiies from the gluor propagator.

I. Charge conjugation invariance

The final iask is to show that Eq. (3.40) is invariant under the charge conju-
gation operation

T(p1,p2) = CT" (p2, p1)C " . {3.41)

This is done by proving that both T and I'C satisfy the same equation.
First note that, when particle 1 is on shell, interchange of p; and p; gives

f(pa MB) = I‘(p;)m) -3 F(pZ!pg) = I“g("ps MB) (342)
and is equivalent to 1 & 2 and p > —p. Then

wi(p, Mp) = 3T (—p, Mp)C™
T3(p, M) = C¥T(—p, Mp)C . (3.43)

Finally, the Dirac direct products 1 @1, -y, @ v#, and -y @y are invariant under
€. Hence, changing k — —k and performing the transformations (3.41) and
(3.42), shows that Eq. (3.40) is also invariant. Therefore the charge conjugation
eigenstates, labeled by n = +

Té{p, Mp) = T{(p, Mp) + nT3 (p, M5), C (3.44)

. are solutions of the equation and charQe conjugation symmetry is proved.

J. Dynamical quark mass

The dynamical quark mass function is the solution of the Dyson-Schwinger
equation. In NJL-type models, this ene-body equation for the spontaneous gen-
eration of quark mass and the two-body bound state equation for a state of zero
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mass become identical in the chiral limit (when the bare quark mass is zero). In
this limit the quark mass function and the bound state wavefunction for a mass-

- less pseudoscalar bound state are identical, and spontaneous symmetry breaking

agsures the existance of a massless pseudoscalar bound state.

In this paper we adopt a slightly different approach. We will first choose -
a convenient mass function, and then reguire that the fwe-body equation for a
massles pseudoscalar bound state automatically have a solution when the bare
quark mass is zero. In this cage the quark mass function and the wave function
for the massless Goldstone boson will not be identical, but at least the existence
of the Goldstone boson in the chiral limit is assured. We will define the quark
masgs function of flavor f by

my(p) = m} + e(m}) f(p), (3.45)

where m‘} is the current quark mass of flavor f, and f(p) is a universal function
defined by ' ' :

1
10 = e (3.46)
The function c(m?} can be thought of as a polynomial in powers of m?. This
is the typical structure of the mass function which is usnally obtained from the
solution of the one body equation.

The reason for not solving the one body equation, in our case, is two fold.
The first problem is the difficulty of incorporating one gluon exchange into the
one body equation. Because of the on-shell constraint in the loop momenta, the
one gluon exchange interaction leads to an ultraviolet divergence. The second
problem is associated with our choice of infrared regularization of the linear
interaction. The infrared singularities are regulated by the P - ¢ term in the
denominator of the linear interaction Eq. (3.17), and this would imply that the
resultant mass function is a function of two arguments, i.e. m = m(p?, p?). This
is unacceptable, and rather than forsaking important features of the model such
as confinement and asymptotic freedom, we choose to model the quark mass
functions.

The form (3.45) guarantees that at large momenta, quark masses go to their
current quark mass values as dictated by asymptotic freedom. In the chiral limit
the guark mass reduces to

myx(p) = (0} F(p) (3.47)

We fix the constant ¢{0) by requiring that the pion bound state equation, using
the mass function {3.47), give a massles solution. This insures that a massless
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pion exists in the chiral limit when m‘} = 0. Next we choose a value for the
light current quark mass, m% = mY, and fix c(mY) so that the two-body equation
gives the correct value for the physical pion mass. This also fixes the value of
the on-shell quark mass away from the chiral limit. Similarly, we chovse m2 and
fix e(m?) by fitting the keon mass. For three flavors it is therefore sufficient to
have a function e(m ?,) which is a polynomial of order 2 in m%. As new flavors
are introduced the order of the polynomial accordmgly can be increased.

To summarize, we have 6 mass parameters: m$,m2,¢(0), c{ms), c(m3), and
A. In practice we fix A at one GeV and choose the current quark masses m0,
and m? to be near the values expected by current theory. We then adjust the ¢’s
to give the a zero mass pion in the chiral limit, and a real pion and kaon with
the observed masses. This process is repeated for different values of the current
quark masses and the potential parameters o and ¢ until satisfactory values for
the constituent quark masses and the spectrum of excited pions is obtained. The
final values of the parameters will be given in the next section.

Having outlined the features of the model, we now turn our attention to the
details of the pseudoscalar bound state equation with spin.

IV. PSEUDOSCALAR CHANNEL

The bound state vertex function has the following structure

X = Xeolor @ Xflavor ® X.spin- (4.1)

The color space vertex function is a Kronecker delta function, 8,4, which reflects
the color singiet nature of the bound state. The flavor space vertex function is the
matrix J\}g in SU{3) matrix space, which chooses the right Havor combination of
the meson under consideration. Indices f, g refer to up down and strange quark
entries (u,d, s = 1,2, 3) of ), For example, [AF],q = [A*]12. For a general meson
type i, the bound state vertex function is

X, fg,cakir ko) = 8ea Moy Taplky, k). (4.2)

where a, # are Dirac indices (to be suppressed in the following discussion). The
most general form for the spin-space part of the vertex function for pseudoscalar
mesons is

Dk, k) :75{1"0 L Py + ETo +[E 7] Fs} , (4.3)

where F; = [';(k1, k) are scalar functions. The dominant contribution to the
bound state vertex function comes from the first term of (4.3),
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*Ti(p, Mp) =

D(ky, ko) = 5 Dok, k2) (44)

This approximation, which is exact in the chiral limit when P = 0 and m, = ma,
will be used for the pion and kaon bound states in this work.

Assuming (4.4), multiplying the four channel equations for pseudoscalar.
mesons by s, and taking the trace, gives the following approximate coupled
equations for pseudoscalar states

22/ 2«32E k}{

Vi (p, k) [F (k)15 {k, Mp) — F;(p)L'; (p, MB)]
+ 683505 Vo (p —~ k) F5 (k7)1 (K, MB)} + 2E,(p)CT (o, MB), (4.5)

where the four channel wave functions [ (p, Mg) are obtained from I'y as shown
in Eq. (3.38), and

mymalks) + k] - ke

Rl = ) 1]
my (kl)MQ + By - kg
Fy(ky) = ’ 4.6)
) = ) - R (
where m,(k") my(— k 7) = m;. For future reference we record the four-
momentum g (p1 k1)if exchanged between the two quarks. This depends

on the 1n1t1a] and final channel. The distinct cases are:

gGii— q;;’ = (rE(p) — sEk), p— k)

g15= (rB{p) + sE(k) — Mp, p— k)

gi= (Mg —rE(p) — sE(k), p—~K). (4.7)
The solution of Eqs. (4.5) for a realistic choice of the parameters will be discussed
in the next section. .

Before turning to this discussion, look at the coupled equations in the chiral
limit, when P = 0 and the dynamical quark masses are equal, so that m; (k) =
M2(k) m{k). In this limit, & = —ky, and expanding to order P - k] gives

mED) (P — k) + Kk -P—k*® 1—2mm' 1
- mA(P k)~ (P - K])? T 2—dmm! 2
where m = m(+kf) and m' = dm(k)/dk®|x2m2). Hence, using charge con-

jugation symmetry {3.41), the four coupled equations {4.5) reduce to only twe
equations in the chiral limit. These coupled equations are

Fi(k7) = = F3(k), (48)

27



.
Iy(p,0) = - / ﬁ;@w{h(ﬁ,@ Ty (k,0) - I {p, 0)]

+V_(p, k) [I'7 (k,0) — T} (p,0)] + 6V, (p ~ KT} (K, 0)}
+2CT} (p, 0}

- r;(Pa 0) == ] (Q,_ﬂ)ugzﬁﬁzk_){v'#(p’ k) [F;[k,O) - I‘;(P,O)]

+V_(p, k) [T (k,0) - T, (p,0)] + 6V,(p — k)T (K, 0)}

+2CT (p, 0}, (4.9)
where
Smro
Vilp, k) = . 4.10
k) = T B T B (10
Note that these two equations are symmettic under the interchange
I} & 21y, (4.11)

and hence reduce to one equation for I'y =T’} = 4I';

L) = - | ﬁ%{mmm £ V-.(p, k) + 6V, (p — B)] Tl 0)

= [Vilo, k) + V- {p, k)] Fx{P:U)} +2CT(p, 1), (4-12)

where the sign of the V_ term depends on the sign in the relation (4.11). Since
the g is even under charge conjugation symmetry, the plus sign is the correct
one to use.

Recalling Eq. {3.47), the energies E in Eq. {4.12) depend on the constant «(0)

B(p) = v/¢(0)2 f(p} + p?, {4.13)

and this is adjusted to insure that the Eq. (4.12) has a solution. Onee c(0)
has been fixed, Eqs. (4.5) are solved for various values of the bare quark masses
mY and the “mass functions” ¢(m}), and all parameters are adjusted to give a
reagonable spectrum.

Having outlined the features of the model we next present the results for mass
functions of quarks and vertex functions for bound states.
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FIG. 9. Quark mass functions ms(p) = M (p®) are shown for up/down, and strange
quarks. QOn-shell quark masses are my, g = 360 MeV, and m, = 588 MeV. At large
momenta quark mass values approach to mﬂ,d =5 MeV, and m2 = 100 MeV,

TABLE I. Summary of results

Observable Calculated Experimental
M 140 MeV 139.6 MeV
g 320 MeV —

My 1118 MeV 13004+ 100 MeV
m 495 MeV 495 MeV
My 376 MeV —_

My = Mg 360 MeV —

ms 588 MeV —_
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V. RESULTS

TABLE II. Values of the parameters

The quark mass functions are shown in Fig. 9. The on-shell quark masses m;

are given in Table 1. At large momenta, the quark mass values approach the bare Parameter Value
quark masses m‘} shown in Table II. The other mags parameters and bound state my 5 MeV
parameters are also shown in Table II. The parameter A which determines the mP 100 MeV
scale of mass function was fixed at A =1 GeV and not adjusted during the fits. 0] 0.429 (Gev)®
The third line in Fig. 9 is the momentum p, and the intersection of this line with e(ml 0.400 (GeV)®
the quark mass function gives the constituent quark mass. e(m2) 0.657 {GeV)*®
Tn Figs. 10 and 11 the ground and first excited state vertex functions of the a 0.4 (GeV)*
pion are shown. Here we show the vertex functions as a function of the variabie ¢ : 0.4929
95 = sE(p) = spo. Note that po is positive for positive energy states (5 = +) A L Gev
and negative for negative energy states (s = —). Because of the symmetriza-

tion, the posiiive energy quark vertex function is the same as the negative energy
anti-quark veriex function up to an overall phase (+ for states even under charge
conjugation and — for odd states). Also note that the curves are not continuous
because the argument pg can not take values between {(—m,+m}. In Fig. 12 we
present the excited state vertex functions on a logarithmic scale. The location of . T y : . T T T
the first node is exactly where both quarks are simultaneously on shell. There-
fore, although kinematicalty allowed, the excited state of the pion can not decay
into a free quark-antiquark pair. This numerical result is ¢ conseguence of the
confinement condition (3.22).

In Fig. 13 we present the non strange-eta (the isospin zero ui + dd combi-
nation} ground state vertex functions. Note that these are odd under charge
conjugation. The kaon vertex functions are shown in ¥ig. 14. Since the kaon is
formed from a quark and antiquark of unequal masses, the particle-antiparticle
symmetry is lost and the negative and positive energy solutions have a differerent
shape and size. .

The mass function and the pion wave function in the chiral limit are shown
in Figs. 15 and 16.

—— gquark on—shell
- antiguark on—shell

T{p,}

VI. CONCLUSION

We have shown that a relativistic generalization of the Schrédinger equation
with Hnear interactiO{l leads to .the Gross equat.ic.m. It‘is not p.ossi'ble to write a 0'910_0 -8I.0 —6I.U _4_0 _é_o oio 210 410 610 81'0 10.0
Bethe Salpeter equation that gives the correct linear interaction in the nonrel- p, (GeV) '
ativistic limit. We have proved that the relativistic generalization of the linear ¢
interaction leads to vanishing vertex amplitudes when both of the constituents :
are on-sheil. This guarantees that the bound state does not decay to its con- FIG. 10. The four-channel vertex functions for the ground state of the pion.
stitwents. This mechanism of confinement follows from insisting on the correct ' -
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Node due to confinement
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I'IG. 12. The two positive energy vertex functions for the first excited state of the
pion. The second node is due to the excited state, and the first node assures that the

FIG. 11. The four-channel vertex functions for the first excited state of the pion.
. bound state does not decay.
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FIG. 13. The four-channel vertex functions for the non-strange . : FIG. 14. The four-channel vertex functions for the ground state of the kaon.
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FIG. 15. The ckiral limit of the quark mass function M (p®) = m,(p). The on-shell
quark mass is m, == 376 MeV. At large momenta quark mass funckion approaches (.
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FIG. 16. The chiral limit of the pion ground state vertex function.
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nonrelativistic limit. The model incorporates asymptotic freedom through the
inclusion of a vector one gluon exchange interaction, and quark mass functions
that approach the current quark values ai infinite momentum. There are no cut-
off’s or ad-hoc form factors involved, and the linear interaction involves only one
coupling parameter. The approach give a good description of the pion, kaon, and
eta.

It remains to use this formalism to describe the full meson spectrum.
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APPENDIX A: NUMERICAL METHGDS

Solutions of integral equations are performed by first discretizing the integrals

[ans@— 3w rla, (A1)

i=1

where w; are integration weights for grid points g;- In order to map the grid
points and weights from interval (-1, 1) to {0, o0) we use the arctangent mapping
(Ref. [11,12]) .

een (501)

y(ﬂi) = Rpin + ] 1 (Az}
4 T
1+ F Rmmtan (Z(l + m))
where
Rmed - Rmin

Reg= 75— ax Rmin . A3
¢ Reioz — Bmed (Rm ) ( )

It follows that
y(_l) = R‘ms‘n y(ﬂ) = Rmed 1 y(l) = Rmuz - (A4)

Therefore, one can safely control the range (Ruin, Rinas) and distribution (Rpeq)
of grid points. With this discretization procedure, continucus integral equations
are transformed into nonsingular matrix equations.
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The spectator equation is an eigenvalue problem, where the eigenvalue is the
mass of the bound state. The equation can be brought into the following form

[Har(pisp3} — 12(p;) = 0. (A8)

1

N
i=
where M is the bound stabe mass, and p; (4 = 1...N} are grid points in momentum
space. Therefore, H is an N x N matrix and ® is & vector of dimension ¥, which

leads to the following mabrix equation
[Hur —1]9 =0, {A6)

where M is unknown. Start by making an initial guess for M. In order to find
the ground state, one should start with an initial guess near the expected value of
the ground state mass. The next step is to see whether the initial guess leads to
a consistent solution. The most efficient way of checking whether a given matrix
has a specific eigenvalue is through the method of inverse iteration, as suggested
in Refs. [11,12]. First construct an arbitrary vector x° -

N .
=Y cd (A7)
i=1
where ®;, i = 1..N, satisfy
[Hu —wi]®; =0, (A8)

where wy, ¢ = 1..N are eigenvalues of the s matrix. It should be emphasized
that eigenvalues which are not equal to 1 have no physical meaning, for they do
not correspond to a solution of the equation (Eq. A6). Next, construct

1

= T 1" (A9}
Letting K operate on state ¥ n times produces
N c‘
x"=K"y® = ; (w—_tl)—n ®;. {A10)

When the number of iterations n is sufficiently large (usually around ten), the
dominant contribution to x™ comes from the eigenvector $; whose eigenvalue w;
satisfies [w; — 1] < Jw; — 1 forallé=1...j - 1,5+ 1--- N. Therefore,
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Using the eigenvector x™, which is proportional to €, the eigenvalue w; can be
found from

nt 7
wj = XT‘:I?,‘I— (A12)

XX
T w; is close enough to 1, then ene has a self consistent solution. This method has
the benefit of direcily singling out the eigenvalue closest to the initial guess, rather
than finding the largest eigenvalue as in the case of straight forward iteration.
Excited states can similarly be found by varying the initial guess M towards
higher values. There is only one matrix inversion involved. Distribution of the
grid points in momentum space is done by the arctangent mapping. The typical
number of momentum space grid points used in order to obtain stable solutions
is around 40.
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