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- Abstract

We present a model of fermion masses based on a minimal, non-Abelian
discrete symmetry that reproduces the Yukawa matrices usually associated
with U(2) theories of flavor. Mass and mixing angle relations that follow

! from the simple form of the quark and charged lepton Yukawa textures are
therefore common to both theories. We show that the differifg representation
structure of our horizontal symmetry allows for new solutions to the solar and
atmospheric neutrino problems that do not involve modification of the original
charged fermion Yukawa textures, or the introduction of sterile neutrinos.

DISCLAIMER

llubﬁlty

para-

or
ndﬂlltyfothmm umpleumn,or

mmu"msuuma.um‘@:é&'ﬁw”“
or assumes any

§§§§

lh use not infringe vahly "
@u:mk Reference Im-.in o n;x J sterrhgll WY m Typeset using REVTEX

lheUn(tedShOu or any agency
Ih:ui. The views dam muslﬂlyym\e or
mﬂedﬂueofﬂnl!nlhd pvannuaotmy-gmcytlueof. e

*fefo@physics.wm.edu
tcarone@physics.wm.edu

¥ebed@jlab.org



I. INTRODUCTION

One path toward understanding the observed hierarchy of fermion masses and mixing
angles is to assert that at some high energy scale all Yukawa couplings, except that of the top
quark, are forbidden by a new symmetry G that acts horizontally across the three standard
model generations. As this symmetry is spontaneously broken to smaller subgroups at suc-
cessively lower energy scales, a hierarchy of Yukawa couplings can be generated. The light
fermion Yukawa couplings originate from higher-dimension operators involving the standard
model matter fields and a set of ‘flavon’ fields ¢, which are responsible for spontanecusly
breaking Gy. The higher-dimension operators are suppressed by a flavor scale M, which
is the ultraviolet cut-off of the effective theory; ratios of flavon vacuum expectation values
(vevs) to the flavor scale, (¢)/My, provide a set of small symmetry-breaking parameters
that may be included systematically in the low-energy effective theory. Many models of this
type have been proposed, with G s either gauged or global, continuous or discrete, Abelian
or non-Abelian, or some appropriate combination thereof [1). Non-Abelian symmetries are
particularly interesting in the context of supersymmetric theories, where flavor-changing
neutral current (FCNC) processes mediated by superparticle exchange can be phenomeno-
logically unacceptable [2]. If the three generations of any given standard model matter field
are placed in 2®1 representations of some non-Abelian horizontal symmetry group, it is
possible to achieve an exact degeneracy between superparticles of the first two generations
when G is unbroken. In the low-energy theory, this degeneracy is lifted by the same small
symmetry-breaking parameters that determine the light fermion Yukawa couplings, so that
FCNC effects remain adequately suppressed, even with superparticle masses less than a TeV.

A particularly elegant model of this type considered in the literature assumes the con-
tinuous, global symmetry Gy = U(2) [3-5]. Quarks and leptons are assigned to 2®1 rep-
resentations, go that in tensor notation, one may represent the three generations of any
matter field by F° + F3, where a is a U(2) index, and F is Q, U, D, L, or E. A set of
flavons is introduced consisting of ¢q, Su, and Aup, where ¢ is a U(2) doublet, and S (4) is
a symmetric (antisymmetric) U(2) triplet (singlet). If one assumes the pattern of vevs

g-(0) =(0) w @(20),

which follows from the sequential breaking
U©2) 5 U(1) % nothing , (1.2)

then all fermion masses and Cabibbo-Kobayashi-Maskawa (CKM) mixing angles can be
reproduced, More specifically, the pattern of vevs in Eq. (1.1} yields a Yukawa texture for
the down quarks of the form

0 d]é’ 0
YD ~ —-dle’ dgf daé N (1‘3)
0 d4€ 1

where ¢ & 0.02, ¢ ~20.004, and d;, ..., d, are O(1) coefficients that can be determined from
Ref. [5). Differences between hierarchies in ¥p and Yy can be obtained by embedding the
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model in a grand unified theory [5]. For example, in an SU(5) GUT, one obtains differing
powers of € and ¢ in the up quark Yukawa matrix by assuming that S,y transforms as a 75;
combined GUT and flavor symmetries prevent Ag, and Sy, from coupling to the up and charm
quark fields, unless an additional flavor singlet field £ is introduced that trausforms a8 an
SU(s) adjoint With (Z)/M; ~ ¢, it is possible to explain why mg = my imp = A4 2 A2 2
while my 12 m 12 m, = A% 1 A% 12 1, where A = 0.22 is the Cabibbo angle. The ratio m,/m,, 1s
assumed to be unrelated to U(2) symmetry breaking, and is put into the low-energy theory
by hand.

In this letter we show that the properties of the U(2) model Ieadmg to the successful
Yukawa textures described above are also properties of smaller discrete symmetry groups.
To reproduce all of the phenomenological successes of the U(2) model, we require a candidate
discrete symmetry group to have the following propermes

e 1, 2, and 3 dimensional representations.
¢ The multiplication rule 2@2=3®1.

» A subgroup Hy such that the breaking pattern Gy ~ Hy — nothing reproduces the
canonical U(2) texture given in Eq. (1.3). This implies that an unbroken H;-symmetry
forbids all Yukawa entries with O(¢’) vevs, but not those with O(e) vevs.

In the next section we show that the smallest group satisfying these conditions is a product
of the double tetrahedral group T” and an additional Z; factor. Since U(2) is isomorphic
to SU(2)xU(1), it is not surprising that our candidate symmetry involves the product of
a discrete subgroup of SU(2), 7", and a discrete subroup of U(1), Z;. At this point, the
reader who is unfamiliar with discrete group theory may feel somewhat uneasy.! We stress
that the group T” is in fact a very simple discrete symmetry, a spinorial generalization of
the symmetry of a regular tetrahedron (see Section II). It is worth noting that the charge
assignments in the model we present render T' a nonasnomalous discrete gauge symmetry,
while the Z5 factor is anomalous. Models based on non-Abelian discrete gauge symmetries
have yielded viable theories of fermion masses, as have models based on discrete subgroups
of anomalous U(1) gauge symmetries [1]. In the latter case it is generally assumed that the
U(1) anomalies are cancelled by the Green-Schwarz mechanism in string theory [6]. It is
interesting that our model turns out to be a hybrid of these two ideas.

One of the virtues of the model discussed in this letter is that it allows for elegant
extensions that explain the solar and atmospheric neutrino deficits, while maintaining the
original quark and charged lepton Yukawa textures. This distinguishes our model from
the modified vérsion of the U(2) model presented in Ref. [7]. Preserving the U(2) charged
fermion textures is desirable since they lead to successful mass and mixing angle relations
such as |Vip/Vis| = (/mu/m,, which are ‘exact’ in the sense that they contain no unknown
O(1) multiplicative factors. Since we succeed in explaining solar and atmospheric neutrino
oscillations without sacrificing the predictivity of the original model, we need not introduce
sterile neutrinos, as in Ref. [8]. However, we do not try to explain simultaneously the more

!For a review of basic terms, see Ref, 11},



controversial LSND results [9] in this paper. We will consider versions of our model that
include sterile neutrinos in a longer publication [10].

II. THE SYMMETRY

We seck a non-Abelian candidate group Gy that provides the 21 representation (rep)
‘structure for the matter fields described in the previous section. In order for the breaking
of Gy to reproduce the U(2) charged fermion Yukawa texture in Bq. (1.3}, one must have
flavons that perform the same roles a8 ¢,, Su, 8nd A in the U(2) model. Since these are
doublet, triplet, and nontrivial singlet reps, respectively, we require G; to have reps of the
same dimensions. Nontrivial singlets appear in all discrete groups of order < 32 [12], so we
seek groups Gy with doublet and triplet representations.

The order 12 tetrahedral group T, the group of proper symmetries of a regular tetrahe-
dron {which is also the alternating group A4, consisting of even permutations of four objects},
is the smallest containing a triplet rep, but has no doublet reps. A number of groups with
orders < 24 possess either doublet or triplet reps, but not both (See, for example, [12]).

It turns out that two groups of order 24 possess both doublet and triplet reps. One is the
symmetric group Sy of permutations on four objects, which is isomorphic to the group O of
proper symmetries of a cube as well as the group T of all proper and improper symmetries
of a regular tetrahedron. §; possesses two triplets 3%, two singlets 1%, and one doublet 2.
However, in this case one encounters another difficulty: The combination rule for doublets
inS;i8s 202 =2&1" & 1%, which implies that the triplet flavon cannot connect two
doublet fields such as those of the first two generations of Q and U. Thus, Sy is not suitable
for our purposes. _

The unique group of order < 32 with the combination rule 2 ® 2 D 3 is the double
tetrahedral group 7", which is order 24. The character table, from which one may readily

generate explicit representation matrices, is presented in Table I. Geometrically, 7" is the

group of symmetries of a regular tetrahedron under proper rotations (Fig. 1). These sym-
metries consist of 1) rotations by 27/3 about an axis connecting a vertex and the opposite
face {Cs), 2) rotations by 7 about an axis connecting the midpoints of two non-intersecting
edges (C%), and 3) the rotation R by 2r about any axis, which produces a factor ~1 in the
even-dimensional reps, exactly as in SU(2). Indeed, this feature is a consequence of T' C
SU(2), and the rotations C; and C; sre actually of orders 6 and 4, respectively. Also, 7"
is isomorphic to the group SL,(F;), which consists of 2 X 2 unimodular matrices whose
elements are added and multiplied as integers modulo 3.

T' has three singlets 1% and 1%, three doublets, 2° and 2%, and one triplet, 3. The
triglity superscript describes in a concise way the rules for combining these reps: With
the identification of £ as £1, the trislities add under addition module 3. In addition, the
following rules hoid: ,

1@8R=R®1=R foranyrep R, ' 2®2=3@1,' @1
208=302=20¢2t02", 33=30301"017a1". 1)

Trialities flip sign under Hermitian conjugation. Thus, for example, 2@2  =3®1% and
@2e2 =341t . «

One must now determine whether it is possible to place a sequence of vevs hierarchically
in the desired elements of the Yukawa matrices. Notice if G; is broken to a subgroup Hy that
rotates the first generation matter fields by a common nontrivial phase, then H; symmetry
forbids all entries with O(¢) vevs in Eq. (1.3). Therefore, we require that the elements of
G/ defining this subgroup have two-dimensional rep matrices of the form dieg{p, 1}, with
p = exp(2nin/N) for some N that divides the order of Gy and some integer n relatively
prime with respect to N. This form for p follows because reps of finite groups may be
chosen unitary, and must give the identity when raised to the pdwer of the order of Gy.
Such elements generate a subgroup Hy = Zy of (y. Whether such elements exist in Gy
can be determined since the rep of any element can be brought to diagonal form by a basis
transformation, while the eigenvalues p, 1 are invariant under such basis changes.

Even if a given clement C € G ;‘ has the diagonal form diag{ps, p2}, pi = exp(2min/N)
{and thus generates a subgroup, Z§, of Gy), a phase rotation of the form diag{p,1} can
be achieved if the original Gy is extended by forming a direct product with an additional
factor Zy. We then identify H; as a subgroup of Z§ x Zy. We choose one element of the
additional Zy to compensate the phase of the 22 element of C, and similarly for the other
elements of the Z§. The element corresponding to C in Gy x Zy then effectively acts upon
the doublet as diag{exp[2ni{n; —np)/N}, 1}, and the remaining symrmetry i8 Z/got(N,jn; ~nal)-
In the case that {n; —ny] and N are relatively prime, this reduction amounts to forming the
diagonal subgroup Zf of Z§ x Zy. Similar arguments apply to the singlet and triplet reps.

In the particular case of Gy = T, one finds elements C that generate either Z; or 23
subgroups, By introducing an additional 2, {with n = 2 or 3) one can arrange for a Z,
subgroup that affects only the first generation fields. In the case of Z,, the nontrivial element
of the diagonal subgroup is of the form diag{—1,1}, which leaves the 11 and 22 entries of
the Yukawa matrices invariant. The incorrect relation m, = m, then follows. On the other
hand, Z, prevents an invariant 11 entry, so we are led o adopt

The reps of G are named by extending the notation for 7" to include a superseript indicating
the Z; rep. These are the trivial rep 0, which takes all elements to the identity, and two
complex-conjugate reps + and —. Like the trialities, these indices combine via addition
modulo 3. We adopt the convention that the T’ x-Z5 reps 1%, 1+~ 17 20~ 2+ and
270 are special, in that these singlet reps and the second compenent of the doublets remain
invariant under ZP. Thus any 21 combination of these reps is potentially interesting for
model building,

IIL. A MINIMAL MODEL

The minimal model has the three generations of matter fields transforming as 2% @ 1%
under Gy = T" x Z;. The Higgs fields Hy,p are pure singlets of Gy and transform as 1%,
Given these assignments, it is easy to obtain the transformation propertm of the Yukawa
madrices,

Yoo~ ([3‘2&3 +10~] {2:?) . v (31) -
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Eq. (3.1) indicates the reps of the flavon fields needed to construct the fermion mass matrices.
They are 1%, 2°%, and 3, which we call 4, ¢, and S, respectively. Once these flavons
acquire vevs, the flavor group is broken. We are interested in a two-step breaking controlled
by two small parameters ¢, and ¢, where

) ;
T @ Zy ~=+ ZP 5 nothing . 3.2)

Since we have chosen a doublet rep for the first two generations that transforms as diag{p, 1}
under Z2, only the 22, 23, and 32 entries of the Yukawa matrices may develop vevs of Ofe},
which we assume originate from vevs in S and ¢. The symmetry Z2 is then broken by a
1% vev of O{¢'). The Clebsch-Gordan coefficients that couple a 1%~ to two 20~ doublets
is proportional to o3, so the ¢ appears in an antisymmetric matrix. We therefore produce
the U(2) texture of Eq. (1.3). Since the 1~ and 3~ flavon vevs appear as antiSymmetric
and symmetric matrices, respectively, all features of the grand unified extension of the U{2)
model apply here, assuming the same GUT transformation properties are assigned to 4, S,
and A, One can also show readily that the squark and slepton mass squared matrices are
the same as in the U(2) model.

1t is worth noting that we could construct completely equivalent theories had we chosen to -

. place the matter fields in reps like 2++®1% or 2-°®1%, which have the same transformation
properties under Z as our original choice. The reps 2°~ @ 1% are desirable in that they
fill the complete SU(2) representations 2 @ 1, if we were to embed 7" in SU(2). Since
anomaly diagrams linear in this SU(2) vanish (and hence the linear Ibafiez-Ross condition
is satisfied {13]), we conclude that 7" is a-consistent discrete gauge symmetry {14]. The
additional Z; may also be considered a discrete gauge symmetry, providing its anomalies
are cancelled by the Green-Schwarz mechanism. .

IV. NEUTRINOS

In this section, we show that the model presented in Section III can be extended to
describe the observed deficit in solar and atmospheric neutrinos, We consider two cases:

Case I: Here we do not assume grand unification, so that all flavons are SU(5) singlets.
This case is of interest, for example, if one is only concerned with explaining flavor physics
of the lepton sector. We choose

v~ 2" @1t (4.1)

Note that the only difference from the other matter fields is the representation choice for the
third generation field. The neutrino Dirac and Majorana mass matrices then have different
textures from the charged fermion mass matrices. Their transformation properties are given
by

v (SR e (B

Note that we obtain the same triplet and nontrivial singlet in the upper 2 x 2 block as in
the charged fermion mass matrices, as well as one of the same flavon doublets, the 2°; the

&

rep 1%~ is not present in Mgg, since Majorana mass matrices are symmetric. In addition we
obtain the reps 2+°, 1+, and 1-*, which did not appear in Eq. (3.1). New flavon fields can
now be introduced with these transformation properties, and their effects on the neutrfno ‘
physics can be explored. Let us consider introducing a single? new flavon ¢, transforming
as a 2+% and with a vev

wr~e(S) ~ e

where oy is the Clebsch that couples the two doublets to 1%, The intr_aduction of t.his
new flavon is the only extension we make to the model in order to describe the fleutrmo
phenomenology. After introducing ¢, the neutrino Dirac and Majorana mass matrices read

0 ‘116’ Iyroe’ nr%e'?' rariraee o€ \
Mg = —1é be lre | (Hp) , Mpg = rariryce T3€ 1€ A}.! , (4.4)
0 ke O T3¢ i€ 0

where Ap is the right-handed neutrino mass scale, and we have par?,metiarized the Q(l)
coefficients. Furthermore, the charged lepton Yukawa matrix including O(1) coefficients

reads
] (316; 0 ) ) '
Yy~ —c‘e' 3epe 36 | - (4.5)
0 e 1

The factor of 3 in the 22 entry is simply assumed at present, but originates from the Georgi-
Jarlskog mechanism [15] in the grand unified case considered later. )
The left-handed Majorana mass matrix My, follows from the seesaw mechanism

My = MLRM§§M§£ ! (46)
which yields \ o
' (£'/e)? e'fe €/e 2
Mg ~| €fe 1 1 '(%f’l“é‘* o @
e 1 1 L

where we have suppressed the O(1) coefficients. We naturally obtain large mixing between
second- and third-generation neutrinos, while the 12 and 13 mixing apgles are O(é/e).
However, taking into account the diagonalization of Yy, the relative 12 mixing ang.le can be
made smaller, as we discuss below. Explanation of the observed atmos;?henc neutrino ﬁm.ces ‘
by v, mixing suggests sin® 205 2 0.8 and 1073 S Amg; S 1072, while theasolm: x;eutrmg
deficit may be accommeodated assuming the small-angle MSW solution 2 x 1073 Ssin %312 S
1072 for 4 x 107% S Am?, S 1075, where all squared masses are given in eV2. We display

2Assuming more than one ¢, leads to the same qualitative results.
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below an explicit choice of the (1) parameters that yiedds both selutions simultaneoesly;
i Eore dystemathe global 4 will be presented in Ref. |10

If My and ¥, are diagonalized by Mpy = V]V ¥o= PRI thes the nasisi
CHM matsix [s ghven by

V= U]V (4.8}

Wi aime o reprodece e 12 snd 23 mixing saghes, as well as the mtio 1° 5 dmdyfAmd; S
n.ﬁﬁlﬂlwt&ﬁtdﬂh Obtaining this mtio i sefficlent snee Ap i ol de
termined by symmetry comiderations sad moy be chosen feeely.  Assuming the previous
valuse ¢ = 002 and ¢ = 000 and the pacmmetor oo [Ty . .o lamies o P Bles oo Sl =
(0.5, 1.0, -1.2, 2.5, 1.0, 1.0, 1.9, 1.0, 1.0, 1.0, 1.0, 1.0}, we find:

%-m. ' MWy = B 107 sin® 28, =0, [4.8)

witheh fall ln the desired rasges, Whids all cer csallicsants am of natuesl size, wo bave
arranged for an {1(15%) cancellation between 12 mixing angles in I, and 1 to reduce the
mize of sin® 3 to the desired value.

Ciagag [f: Here wa sssame that the Byeom traseform nontrivially under an SU{G) GUT
groap, namely 4 = 1, 5 ~ 78, #~ 1, and E ~ 234. Note thas sincs H ~ ¥, the products
SH and AW tronsfoem ms a 95 and B, respectively, ultimately groviding a fsctor of 3
enbascament. in the 32 eniry of ¥y (the Gescgi-Jarskog mechanism). In sddition, two 234
doublets are introduced, d ond @y, Smoe the textune obimined foc the newirino mosses
by mdding cnly ooe extes doublet is mot viable. Both dewhlets &, Baes viva of the form
displaged in Eq. (4.3). Orecially, the prasmes of thess ton pew doubdets doss zod alter the
fiorm of any charged fermion Yulasm tecteme.

The neatrine Disae asd Majorans mass saisices sow take the Torm

B Iyt dgrae Fyet el Fef
Mg = {—he‘ L™ dyrye J {H} . Man = [r..,cel' et Fpe ] An {41
0 Lie O L LI ST ||

whills the charged fermion mass matrix fs the suee o s Bq. (4.05). Using Eg [4.5) one
obitkins the texiues

U
H:.:,H( r'.:u- IIE i*Jii—“‘E. {411}
i 11 A
1 we now choose (I, ... fg.ry,. oo Fgo0g, - ) = (=120, 1.0, 1.0, 05, 1.0, 0.5 1.0, 1.0, 1.0,

=20, 1.0, 1.0, 1.0, 1.0), we find

1
H =380, sy = 6x 107,  ain’ 2y = 0005 {4.13)

Agnin thiss valees (81 i the desiced ranges 1o explain the atmospheric mnd sclar nestring
deficits, assuming an appeopriake choice for Ag.

T

V. COMNCLUSIONS

In this letter we hiove shisn bew Lo repeodece the quick asd charged lepton Yokaen
textures of the U{2) model in their entirety, usng a minimal non-Abselian discrete symmetry
growp. We showed thet the represestation strucbens of T¥ o 25, in pirlsiilar iba exisbencs
af Lhren digiiwet 2-diswnsional irreducilde mpremsiations, sllows for mlutions to the slar
and almosprheric nmnuﬂlmlhulmmﬂrrimudmﬂnlﬂcdmphthugui
{ermion Yalknen textures of the U] model nor the introdwection nl'lldlt meutrinos. Tha
simgplicity of the symeseicy mrscture of our moded suggeals that & mom comprehensioe
investigstion of the spare of possdble models is justified. Work on alternstive seotrino
SeCLOrE -ﬂulmwlﬂﬁmﬂwmﬂwdhmﬂﬁmm hem
will ha presenbed sleswhere [10].
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- TABLES
Sample element E R _ C,CaR Cs Cc? C3R 3
Order of class 1 1 6 4 4 4 4
Order of element 1 2 4 6 3 3 6
1° 1 1 1 1 1. 1 1
1t 1 1 1 7 7 7 7
1 1 1 1 7 7 7 ]
20 2 -2 0 1 -1 -1 1
o2t 2 -2 0 9 -2 -5 n?
2- 2 -2 0 7 -7 - 7
3 3 3 -1 0 0 0 Q

TABLE 1. Character table of the dounble tetrahedral group 7'. The phase 7 is exp(2mi/3).
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FIGURES

FIG. 1. Geometrical illustration of the group 7". The rotations C; and Cj are defined in the
text.
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