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Abstract

We investigate the behavior of the one body propagator in SQED. The self energy
is calculated using three different methods: i) the simple bubble summation, ii)
the Dyson-Schwinger equation, and iii) the Feynman-Schwinger represantation.
The Feynman-Schwinger representation allows an exact analytical result in the
quenched approximation. It is shown that, while the exact result produces a real
mass pole for all couplings, the bubble sum and the Dyson-Schwinger approach
iv. ainbow approximation leads to complex mass poles beyond a certain critical

.:upling. The model exhibits confinement as a basic property of the four-point
function without implying a lack of a mass pole in the propagator.



I. INTRODUCTION

The nature and implications of particle confinement remain one of the mys-
es of QCD. It is clear that confinement implies that quarks and antiquarks
not be separated from each other at large distances (as demonstrated by lat-
: calculations [1,2]). An essential consequence of this is that a bound state
not decay into its constituent quarks even if the decay is kinematically al-
ed. Such a decay will certainly be prevented if the dressed quark propagators
not have any real mass poles. This possibility has been investigated, and of-
implicitly assumed, within the context of Dyson-Schwinger Equations [3-6].
wever, this condition is not necessary; an alternative point of view is that
confinement is not due to the lack of mass poles but through the exchange
sraction between the constituents forming the bound state {7-9]. In Ref. [9],
authors have shown that a relativistic generalization of the nonrelativistic
sar interaction leads to a bound state vertex function that vanishes when both
ticles are on shell. According to this result, the correct nonrelativistic limit
ors the vanishing of the vertex function when both particles are on-shell, rather
n the lack of physical mass poles.
Clearly the structure of the one-body propagator deserves a closer look and
10re rigorous understanding is needed to clarify what the Dyson-Schwinger
ults mean. In this letter we study the one-body propagator in the context of
ssive scalar QED in 0+1 dimension. The simplicity of this toy model field
ory allows one to obtain an analytical solution for the dressed mass by using
Feynman-Schwinger Representation (FSR) [10-14]. The FSR is an approach
ed on Euclidean path integrals similar to lattice gauge theory. In this approach
path integrals over quantum fields are integrated out at the expense of in-
ducing path integrals over the trajectories of the particles. In the quenched
yroximation the FSR approach sums up all possible interactions excluding the
15 with “quark” loops. Therefore the FSR approach provides us the means to
t and understand how much of the physics is included in the Dyson-Schwinger
lation with rainbow approximation. The rainbow approximation corresponds
using bare interaction vertices and a bare exchange field propagator. At the
er extreme, one may consider the dressed mass as obtained by a simple bub-
summation. This method sums fewer diagrams than the other two. In Fig. 1
typical diagrams involved in all three approaches are displayed. In the next
tion we briefly discuss how the dressed mass is obtained in each one of the
ee methods mentioned above, and how the results compare with each other.
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FIG. 1. Various interactions included in each approach are shown. The Feyn-
man-Schwinger approach includes all diagrams except the ones with loops of charged
particles.

II. SCALAR QED

Massive scalar QED in 0+1 dimension is a simple interaction that enables one
to obtain a fully analytical result for the dressed and bound state masses within
the FSR approach. In this section we compare the self energy result obtained by
three different approaches; namely the simple bubble sum, the Dyson-Schwinger
equation, and the Feynman-Schwinger representation. The Minkowski metric
expression for the scalar QED Lagrangian in Feynman gauge is given by

1 1 1
Lsqep = —m?x* — ZFZ + §u2A2 - 5(6A)2

+ (B, — ied,) X" (0" + ieAP)x, (2.1)

where A represents the gauge field of mass u, and x is the charged field of mass
. The field tensor F is zero in 0+1 dimensions, and the dynamics is described
by the gauge fixing term (0A)%. The presence of a mass term for the exchange
field breaks the gauge invariance. Here the mass term was introduced in order to
avoid infrared singularities which are present in 0+1 dimension. For dimensions
larger than n = 2 the infrared singularity does not exist and therefore the limit
1t = 0 can be safely taken to restore the gauge invariance.



A. The bubble sum

The bubble sum is the simplest subset of all diagrams contributing to the self
ergy. The Euclidean expression for self energy in 0+1 dimension is given by
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The dressed propagator corresponding to this self energy is

1

Aq(p) = PimitSp)

(2.3)

he dependence of M on the coupling strength e can be obtained from the
lution of the on-shell condition

m2 + Sp(iM), (2.4)

hich must be real if the dressed mass is to be stable. Therefore, for massive
JED, the equation determining the dressed mass takes the following form
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B. The Dyson-Schwinger equation

The Dyson-Schwinger Equation is usually solved in the rainbow approxima-
on. This is due to the fact that a completely self consistent determination of
1e interaction vertex is impossible. The one body Dyson-Schwinger equation in
\inbow approximation is given by
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The structure of this equation is very similar to the earlier bubble sum expression
Eq. (2.2). The main difference is the momentum dependence of the dressed mass.
The coordinate space form of the dressed propagator is

800 = [ 32 (3 ) = v 0

Therefore the ground state mass pole of the one-body propagator can be extracted
using

. d
M=- Th_r)noo ﬁlog[Ad(t)]. (2.8)

C. The Feynman-Schwinger representation

In the FSR approach the field theoretical path integral expression for the
one-body propagator is transformed into a quantum mechanical path integral
over trajectories of the particles [10,13]. The FSR expression for the one body
propagator is given by

G(0,T) = / ds / (’Dz)oTexp[iK[z,s]—V[z]], (2.9)
where
K[z,5] = (m® +ie)s — i /01 dr 2%(1), (2.10)
Viz] = % / dr () / dr' 5(r") A(z(r) — 2(+)), (2.11)
A(z) = / ‘Z‘gpzefuz - e;':zl, (2.12)

where A(z) is the interaction kernel. K|z, s] represents the mass term and the
kinetic term, and V[z, s] is the interaction term. Due to the simplicity of work-
ing in 1 dimension, the integral of the self interaction Eq. (2.11) can be done
analytically

Viz] =

2 _ o—uT
T [1 - l—e—] (2.13)
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here the boundary conditions were chosen to be 2(0) = 0, and 2(1) = T. In
gher dimensions the result of this integral depends on the trajectory of the
irticle. However in 1 dimension all trajectories contribute equally, which is
hat makes the 1 dimension calculation analytically do able. Next, the path
tegral over z can be evaluated after a discretization in proper time. Since the
ily path dependence in the propagator is in the kinetic term, the path integral
rer z involves gaussian integrals which can be performed easily by using the
llowing discretization

(D)or — (N/4ns)N/*TIN 7! / dz; . (2.14)

he s integral can be evaluated by the saddle point method giving
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his is an exact result (in quenched approximation) for large times 7. The
-essed mass can easily be obtained by taking the logarithmic derivative of this

tpression. Therefore, the one-body dressed mass for SQED in 0+1 dimension
:cording to the FSR formalism is given by

&2

M= —. 2.16
aving outlined the calculation of the dressed mass in three different approaches,
e next compare the results obtained by these methods.

III. DISCUSSIONS AND CONCLUSIONS

The kind of diagrams included in each method discussed above is displayed
| Fig. 1. The main difference between the Dyson-Schwinger and the Feynman-
chwinger diagrams is the crossed diagrams. These diagrams involve photon
nes that cross each other. The FSR approach also includes all possible four-
oint interaction contributions while the rainbow DSE only includes the tadpole
rpe four-point interactions. In principle all four-point interactions can also be
icorporated into the simple bubble sum and the rainbow DSE.

In Fig. 2 we display all dressed mass results. The bubble summation develops
complex mass pole beyond a critical coupling e?,;, = 0.343 (GeV)?. At the
sitical point a ‘collision’ takes place with another real solution of Eq. (2.5),
rading to two complex conjugated solutions with increasing €%. This happens at
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FIG. 2. The function M (g?) calculated by the FSR approach, the Dyson-Schwinger
equation, and the bubble summation for values of m = ¢ = 1 GeV. According to the
bubble sum there is a critical point at gZ.;, = 0.34 (GeV)? beyond which the dressed
mass becomes complex. A similar result happens for the DSE. The FSR result is real
for all couplings.

M =149 GeV. It is interesting to note that the result obtained from the Dyson-
Schwinger Equation displays a similar characteristic. At low coupling strengths
the rainbow DS and the bubble results are very close and they converge to the
exact result given by the Feynman-Schwinger approach. As the coupling strength
is increased the DS result maintains a closer distance to the bubble result rather
than the FSR result. Similar to the bubble result the DS result develops a
complex mass pole at a critical coupling of €2, = 0.49 (GeV)%. There are
two important observations to be made from these results. (i) The dynamical
generation of complex mass poles in the rainbow DS and bubble approaches is
not an indication of confinement. These complex masses occur at large couplings,
when it might appear that some sort of confining phase transition has taken
place, but since the exact FSR answer shows no such behavior we are forced to
conclude that these complex poles occur simply because the subset of the possible
interaction diagrams included in these approaches is insufficient to qualitatively
reproduce the correct result. (ii) The nature of the rainbow DS result is closer



the bubble sum than the quenched FSR result.

Further insight follows from examination of the masses of two-body bound
tes. The simplicity of SQED in 0+1 dimension also allows one to get an
ilytical result for the two-body bound state mass. The total result is

62 62 62
sz(m-i-m)'*'(m'f'é—p—z-)—F:Zm, (3.1)

ere the first two terms are the dressed one-body contributions and the last
m is the contribution from the exchange interaction [12]. Hence there is only
e bound state, and the continuum spectrum does not ezist. In light of the fact
it we are working in only 1 time dimension the lack of a continuum is not
prizing, since the particles cannot move. In 0+1 time dimensions one would
;urally expect confinement simply because there is no room for quarks to break
e. However it is still interesting to note that confinement, which is unavoidable
0+1 dimension, is a basic property of the four-point function and it does not
ply the lack of physical mass poles in the one body propagator. This feature
similar to that used in Refs. [8,9]. Moreover, in QCD it would clearly also be
re appropriate to discuss confinement in the color-white sectors, e.g. for the
system, instead of for the single quark propagator.

The dynamical mass generation and binding contained in Eq. (3.1) is quanti-
ively similar to that of the generation of massless Goldstone bosons in QCD.
particular it is known that the pion mass m, is proportional to the current
ark mass m.,,

9 <9 >
my = My—F,
Ir

m™
iere < WP > is the quark condensate and f, is the pion decay constant. This is
ailar to the result found in Eq. (3.1). In SQED the positive shifts of one-body
1sses are exactly compensated by the negative binding energy created by the
change interaction. Therefore the total bound state mass is exactly equal to
2 sum of bare masses, and the bound state mass vanishes as the current particle
1ss vanishes. However in scalar QED particles do not carry spin. Therefore the
nilarity to the dynamical chiral symmetry breaking of QCD is only accidental.
Finally, the FSR formalism allows us to make the following observation about
2 significance of the vertex dressings of the interaction: If one starts with
assed masses given in Eq. (2.16) and uses only the exchange interaction to
lculate the bound state masses, the resultant bound state mass would have
en the same. This means that the vertex contributions do not change the
und state energy. This type of prediction underlines the potential usefulness
the FSR calculations. In principle, besides being a rigorous and powerful

(3.2)

tool for calculation of the nonperturbative propagators, the FSR approach can
also provide much needed information about the role of various vertices and
propagators. This information would be useful as input in other nonperturbative
approaches such as the Dyson-Schwinger equations.

This letter focused on a simple toy model, namely the SQED in 0+1 dimen-
sion. Through this simple model we have been able to compare various nonper-
turbative methods. More realistic applications of the FSR approach are under
study.
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