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Abstract

In the adiabatic approximation, most of the effects of ¢4 loops on spec-
troscopy can be absorbed into a static interquark potential. I first develop
a formalism which can be used to treat the residual nonadiabatic effects as-
sociated with the presence of nearby hadronic thresholds for heavy quarks.
I then define a potential which includes additional high energy corrections
to the adiabatic limit which would be present for finite quark masses. This
“improved” adiabatic potential allows a systematic low energy expansion of

the impact of thresholds on hadronic spectra.



1. INTRODUCTION

The valence quark model is surprisingly successful at describing mesons and baryons
as q7 and gqq systems moving in effective potentials. The surprise comes in part because
hadrons are so strongly coupled to their (real and virtual) decay channels that each nearby
channel ought to shift a hadron’s mass by Am ~ Typica, thereby totally disrupting the
valence quark model’s spectroscopy.

A simple resolution of this conundrum has been proposed in a series of papers {?,7]
examining the effects of “unquenching the quark model”, i.e., allowing extra gg pairs to
bubble up in valence quark states. This bubbling dresses the valence hadrons with a certain
class of meson loop diagrams {?]. (These papers also address how the OZI rule {?] survives
unquenching; in this paper I will exclusively consider flavor nonsinglet states for which such
OZl-violation is not an issue.) The proposed resolution is an extension of the idea [?] that
in the absence of light quarks the heavy quarkonium potential V#iebatic(r) ~ byr is the
adiabatically evolving ground state energy Ey(r) of the purely gluonic QCD Hamiltonian in
the presence of a static color triplet source @ and color anti-triplet sink Q separated by a
distance r . Once ny light quarks are introduced into this Hamiltonian, two major changes

occur:

1. Eo(r) will be shifted to En,(r) by ordinary second order perturbation theory, and

2. E,,(r) will no longer be isolated from all other adiabatic surfaces: once pair creation
can occur, the Q§ flux tube can break to create states (Q9)a(¢Q)s with adiabatic
energy surfaces that are constant in r at the values ¢, + €5 {€; is the i** eigenvalue of

the Qg system, with the heavy quark mass mg subtracted).

Despite the latter complication, in the weak pair creation limit the flux-tube-like adiabatic
surface E, (r) can be tracked through the level crossings that occur when E;, (r) = €, + €5

and identified as the renormalized QQ adiabatic potential Vikabetie(r) = E, (r). In Ref. 7]
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it is shown that for large r, V,:‘I‘"“b"“‘(r) remains linear, so that the net effect of the pai
is simply to renormalize the string tension. Since quark modellers determined their strix
tension from experiment, the quark model heavy quarkonium potential already included t,
effect of meson loops to leading order in the adiabatic approzimation, i.e., b, = b, &
physical string tension.

Note that a similar renormalization occurs at short distances: in lowest order af® -
o™ = 121/[(33 — 2n,)In(Q?/ Acp)) The renormalization of the string tension by ¢ loo]
is quite similar, though complicated by the existence of the open channels corresponding
adiabatic level crossings. It should also be stressed that the possibility of subsuming «
loops into b,, only occurs if one sums over a huge set of hadronic loop diagrams (real ar
virtual) [?]. No simple truncation of the sum over loops, as is often attempted in hadron
effective theories, is generally possible. Consider, for example, the simplest orbital splitti
a2(1320) ~ p(770). Summing the Am,; associated with the known decay modes of these stat
would totally change their absolute masses and violently alter their splittings. Preservii
them requires a large renormalization of the string tension and summing over loop grap:
involving many high mass (i.e., virtual) channels. The reason is that ¢g creation inside tl
original QQ state is dual to a very large tower of (Q§)a(¢Q)s intermediate states.

Although the renormalization Vjpdiebetic —, Vodiabatic will capture the bulk of the effect
“unquenching” in heavy quarkonia, E,,(r) deviates quite substantially from linearity ne
level crossings [?] . Both this fact and explicit modelling suggest that for phenomenological
relevant quark masses substantial nonadiabatic effects will remain after renormalizatio
and in particular that states near thresholds to which they are strongly coupled should 1
expected to deviate from their potential model positions. This paper is devoted to developir
a method for addressing these residual effects. This is straightforward as mg — oo, but
will show that for finite mgq it is essential to go beyond the naive adiabatic approximatic

”

to define an “improved” interquark potential which includes the high energy part of tl

corrections to the adiabatic limit.



II. THE FORMALISM IN THE ADIABATIC LIMIT

To dea! with violations of the adiabatic approximation, we can closely imitate the normal
methods of mass renormalization. For very massive quarks Q and Q, the effects of all
hadronic loop graphs can be subsumed into

2.

Vjadiabatic(y) __ ysadiabatic(y) 4§~ Ay adiabatic(y) (1
af

ny

where Vgdiabatic(r) is the “purely gluonic” static QQ potential, and AV2g*!<(r) is the shift
in this static potential generated by the channel af8. Here the subscript on V%ot is used
to denote that it is purely gluonic; we have suppressed additional labels to identify which
gluonic adiabatic surface V4% represents (the normal meson surface, the first A = +1
hybrid surface, etc.) since our discussion applies identically to them all. For the low-lying
thresholds of interest to us here, AV2f*b#<(r) will typically have a strength of order Agcp
and a range of order A516'D~ This range arises because ¥,(7o) and ¥(,g) are localized
at relatively small |Fq| and |F,g| for low-lying states so that for large r the production of
such states by the point-like creation of a ¢q pair is strongly damped by the rapidly falling
tails of their confined wavefunctions; conversely, for small r the created ¢ and g are easily
accommodated into the “heart” of their respective wavefunctions.

Let us now compare the adiabatic Hamiltonian for the QQ system

2
Hegiabatic = 'L + V:;i iobatic (2)
21Q0

(with p;; the reduced mass of m; and m;) with the two channel Hamiltonian H(*? that is
the penultimate step in generating Hodiapatic in the sense that all channels except aff have

been integrated out:

P adiabati adiabati 9
(aB) 2nqq + V"/ fabatie — Aval"a * H (o)
H = o 92 (3)
H(aﬁ) —Lzl‘aa + €x + €3

where Hgfﬁ) is an interaction which couples the QQ system to the single channel (Q)a(9Q)s

with the matrix elements dictated by the underlying pair creation Hamiltonian Hgﬁ . In the
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adiabatic limit we must recover Hogigeatic from H(®8), but H*#) contains the full dynamics o
the coupling of the QQ system to the channel a3. With the superscript H(® we are making
explicit that H(*9 has the channel a3 removed from the QQ adiabatic potential and addec
back in full via H("za). We could in general remove any subset of n channels from V,2debetic
and add them back in dynamically as part of an (n + 1)—channel problem. In the limit o:
taking all channels we would recover the original full unquenched Hamiltonian. However
since our treatment is in lowest-order perturbation theory, the effects of the individua
channels are additive, and Eq. (??) with just an individual channel (af) selected for study
is sufficient for our purposes.

Note that the hadronic multichannel version of our unquenched Hamiltonian is an ap-
propriate representation of ¢g pair creation in a confined system. When the pair is created
the (QdqQ) system has three relative coordinates which we may take to be 5, the separa
tion between the center of mass of meson # and that of meson a, and the two intramesor
coordinates g = 77 — o and g = 7y — fg. Since we ignore the residual (Qg)a — (¢Q);
intermeson interaction, the eigenstates of this sector are confined (Q§). and (¢Q)s mesons ir
relative plane waves, corresponding to the entry H-f,‘;p ) in Eq. (77), i.e., with p, canonically
conjugate to 5 the three quantum labels (5, a, §) replace the three labels (7, 7, 7).

The main goal of this paper is to describe the relation between the eigenvalues of the

adiabatic Hamiltonian (??) and the dynamic Hamiltonian (?7?). If we define

1 ad m
o P2 ( ]
0 ﬂi—;; +ét+¢€g
and
u _ - Av;giabatic Hggﬂ) 5
pert = @ ( ]
Hiap) 0

and denote the QQ eigenvalues of Hy and H® by E? and Ef“ﬂ ), respectively, then since
HE@P) = H, 4 Hpert, by second order perturbation theory AE,-("ﬂ ) = Ei("ﬂ ) E? is given by



|(aﬁ(®|H(ap)|V’3)]2 (6)
(Ea + €ﬁ+ 2"05)
=_-A E:ldiabatic(aﬂ) +A E;iynamu:(oﬁ) , (7)

AEP = ~(lava i) + [ o

where [/5) is the i** eigenstate of Hy. This simple egquation is the main focus of this paper. It
represents the correction to the adiabatic approximation for the QQ energy eigenvalues from
a full dynamical versus an adiabatic treatment of the channel (¢f). In what follows I will
first show explicitly that AE,-("‘” — 0 as expected in the limit mg — oo. I will then define an
improved effective potential V,f;""' oved which incorporates “trivial” high energy corrections
to the adiabatic approximation, but which is essential for incorporating threshold effects in
a systematic low energy expansion for finite mq.

I begin by defining precisely AV2g@ete in Eq. (7?). If |aB(p)) denotes an (afj) state

with relative coordinate 5, then as mg — o0

(aB(P) HEIQQ()) = cap(7)8*(5 — 7) 8

since the QQ relative coordinate is frozen in the adiabatic approximation by definition and

since T — fg — p as mg — co. Thus

(QQF )| avagateseiQQ() = [ & (QQ"""'”"L‘:”"Zi‘j"jﬂ?‘”"'QQ(m (©)
= 6%?’—1"‘)% (10)
= 8(7" - AV giabatic(r) (1)

and s0 by definition
AEZHRAD) = (G| AVgiseelyg) (12)
e

I now show how AE'fd iabatic(of) approximates the true shift

eB(@)HEZs 1)1

‘(‘°+‘/’+2‘3_g

A E?!I"“"'”C(O’ﬁ) = / d3 (1

even for “nearby” thresholds as mg — oo. Denote by (v); the expectation value of t|
variable v in the state {¢§). In the limit mg — oo, each of %, b(r);, and ﬁ;; vanish
like (5‘—,‘5—")'/ 3Aqcp and so is small compared to ¢, + €s which is of order Agep. (In tl
general power law potential c,r", they each behave like (%ﬁ%‘-’-)"/ "+2Aqcp, i.¢., they vani:
for any confining (n > 0) potential). For 53:_,7’ this statement is nontrivial: it relies on tl

behavior of the numerator of Eq. (??). Using Eq. (7?), which is valid so long as mg — o
A = L [ gBrei-o, ‘

(@B(DIHER|QQE) = s [ #re®Deuy() (

= apF - @) , S

80 | — q] must be of order Agep even though |p} ~ (A} opmg)'/3 — 0o since &g is a lig

quark object. After writing E? = %;% + b{r);, we can therefore Taylor series expand:

AEHmamicad) o _(

) [ PaltaB@IHE WP

€xt+€g
(1+(1 eﬂn% 8+ x
=) [ [ / b 55" )00(5" ~ DeaplF - D

U+ =L bty (u

Noting that
[ & 2as(® = cap(@) (a
and that except for the & the factors of the integrand are slowly varying functions, we ce

approximate
Cap(5) = cap(0)8%(8) + - - - (2

to obtain



AE:lynamiC(aﬂ) (lcob(o)l )/d3p|¢0(ﬁ)| 1 + ( 1 [(p )‘ — + b(T),] 4. ) (21)

€a + €3
(O i+ () @)
[ p AP
/ &p o e feﬂ) (23)
o [ OO
[ e Y

This expression differs slightly from AEX**“®® in Eq. (27): it has [caa(F)I? — |cap(0)[.
However, I&LE‘?)II—: -1~ (—3—)2/ 3 which is negligible as mg — oo compared to ——
(Lqm%‘l)l/ 3 which we retained. (The physics behind this approximation is simply that |cas(7)[*

c¢,+cp

reflects light quark scales while |y§(7)|? reflects short distance scales as mg — 00.) Thus to

leading order as mq — oo, AEebetclof) _ A pé ynamicleB) 45 we set out, to prove.

III. AN IMPROVED QUARKONIUM POTENTIAL

Eq. (7?7) provides the deviation AE‘("B ) of the energy of the state i from its value in
the true adiabatic potential V,:’/""“”"“c due to the residual dynamical effects of the channel
(Q)al(qQ)s. While AE}“” ) 0 as mqg — oo, and while large “random” mass shifts
will come from the impact of strategically placed low mass channels, the full shift AE; =
Yo AE,»(“ﬂ ) for finite mg will in general receive a significant accumulation of contributions
from distant high mass channels which therefore need to be treated more economically.

I will now show that it is possible to define an improved effective quarkonium potential
V,f;"”' oved which leads to energy shifts 6E,~(°m which vanish as €, + €g — 00 for any mq.
The price to be paid for this important feature is that the universal (flavor-independent)
adiabatic quarkonium potential V"""""“"'c must be replaced by a flavor-dependent effective
potential V’"“" oved huilt out of Vjpdabatic plus flavor-dependent contributions AV""’"‘"’Ed

The basic idea is very simple. For any mq (I will continue to refer to a QQ system since
the extension to Q,Q, with masses m; and m; is completely trivial), the shift in the energy

of the state |¢:, (mQ)) due to channel af is given by the generalization of Eq. (7?), namely
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Apfmeniseotng) [ o, NP8 @IHTy b ")
i - Eﬂ(mo) (6('"0) +é (ma) + 2

(25
2/: 8

where the superscripts (mg) denote quantities at finite mq in contrast to those previousl
defined for mg — oco. For & 4 anQ) + ;ﬁ-:; >> B} (mo), this can be written in the forn

(vnq)

(mQ) (mq)
. € * e >>E
8
A E,:lyvmmtc(uﬂ)(mq) l‘aa

A TN A ) (26

where

‘7 jatme)gtme) (7)) (alme) glma) (§)| HY
V(mo) / d (aB) 7) @ (af) @7

("'Q) + E(mo) + 7:;
is an mg-dependent but h/;; ('"Q))-independent effective potential operator. Eq. (??)
thus an optimized expression for the a8 contribution to an effective quarkonium potential
However, since it is in general nonlocal it is not a very useful representation for quark
models. I now show that the limit ¢\’ +6g"°) + ;3:—3 >> E'? (ma) Jeads naturally to a local
approximation to AV(""’) which should be identified with the effective potentials of quark

models. In a coordinate representation

AT 1,79 = [ g QA WA mB @) el 7 ) iy |QQ(P)

(mq) (mq) @
(ea @+ + Fne

(28)

- [ Ea &’ & QA H o™ 5™ (5)) (29)
&5 "-p)

@m)3 (e 4+ ) 4

e (almgtma) (5| H{,)1QQ(")

2p0p

= — [ 85" & QA HE e pma ) (30)
o=l -7

WW"‘"W“""’(@N W51QQ(M)

(mq)

where k% = 2u,5(ca @ + e('"o)) Since we need AV only over the distance scales corre-

sponding to low-lying Q@ states, in the limit being considered &|g/ ~ 5] >> 1 for confined

quarks of any mass so that



A T

P R @
and thus in this approximation Al./af;,"") AV5 where
( ) m
AV =~ ey (mq,) [ &0 QAF ) HE, latma) pma) 7)) (32)

(a‘"“”ﬁ‘"“”(ﬁ')lH Ha)1QQ() .

Next we note that in the approximation that the ¢g pair creation is point-like and instanta-
neous, HZ¥ connects QQ to a state Q§gQ with

- mQ

= gt my (53)

where 734 is the QQ separation g — fo inside the QFqQ state. Thus the finite mgQ gener-
alization of Eq. (??) is

(a™a3ma) (2)| HEIQQ()) = o (P (Faq — 7) (34)
= ("L - (35)

where
@@ " ol (36)

the right hand side being the function defined in the adiabatic limit by Eq. (??). Note
that c('"o)(f‘) involves at the microscopic level overlap integrals between |QQ(r)) and
|a{me) gtma)(5)) with wavefunctions & (75g) and ("'Q)(rqa) for finite mq, while cap(F)
involves the heavy quark limits ¥.(fyq) and 15(F,5) of these wave functions. Though in
most models the pair creation operator is taken to be point-like {?,?}, it need not be [?).
Nevertheless, one can always make a point-like approximation to this operator so that we

can use Eq. (??) to define a local approximation AV""’” oved to AV("'Q) where

me g l<G2@P

improved __ __ 3=t
AVeg = (mQ Tmy) o) +e§,"‘°’5 (F -7 (37)
= AV RS (R - 7) (38)
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Note that as expected
mg s |7
mqtmy) &y

mQ—+oo Av:gw'abatic(i,) X (40

AVEFR) = —( (39

!

Since, for any finite mg, AVi3™" ved(7) is a more accurate approximation to the effects o
HY than AVggiebetie(7), it is appropriate to improve Egs. (??) and (??) by defining

2

P
Hinpros = 50— + Voot (@1
and
2 ed tmproved 9§
H(aﬁ) _ | 2#qa + V""P"W ~AVes H(al’) (42
improved — 7 (mq) | _(mq)
HY (ap) 5—;5—; +ea  +€g

along with the analog of Eq. (7?)
§ E(aﬁ) = ( :‘)(mo)l AV‘:;-prde% (mq)) +A E;hﬁlamic(aﬂ) ) (43

The 6E§°’5 ) now approach zero both in the strict adiabatic limit mg — oo and also in th

limit e("'Q) + e(

>> Agep. They therefore allow a systematic low energy expansion o
the impact of thresholds on the spectra of light quarkonia. When using a string tension fi
to the spectroscopy of a particular system, there should be no practical difference betweer
employing the “adiabatic” and “improved” potentials, but we have seen that the “improved’
potential is required if one hopes to define, use, and systematically improve upon a quarl

model valid in all quark systems.

IV. CONCLUSIONS

I have presented here a formalism for calculating the nonadiabatic component AE’?” )
the mass shift of a valence state i from the hadronic loop process i — af — i, i.e., th

component of this process that cannot be absorbed into the renormalized heavy quarkoniun
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potential. The resulting formula was shown to have the expected property that AEfaﬂ) -0
as mg — oo. The formula is also very simple and, when combined with a pair creation
model like the flux-tube-breaking model [?] or the 3Py model [?], should provide a quick
method of estimating the influence of nearby thresholds on the spectra of heavy quarkonia.

I have also shown how to define an “improved” quarkonium potential which incorporates
nonadiabatic effects associated with high mass thresholds for any mq. When this potential
is identified with the quark model potential, the deviations 6E,-(°'B ) of the spectrum from the
potential model predictions due to thresholds have the property that they vanish both as
mq — 0o and also as the mass mad 4 eg"Q) of the threshold af gets large. This improved
potential therefore allows a systematic low energy expansion of the impact of thresholds on
hadronic spectra.

This improved quark model potential has the characteristic that it violates the rule of
flavor independence. While this rule is valid in the heavy quark limit and to leading order in
perturbative QCD for light quarks, violations are to be expected. Indeed, though obscured
by possible relativistic corrections, there are indications from quark models that the best
effective potentials are system-dependent [?].

An important step not taken here is to calculate the AE,(“B ) and 6E§°ﬂ) for selected
channels to assess numerically how rapidly each converges as éma) 4 eg'"’) - 00, and to
quantify the mg-dependence of V,f;""" oved Quark models seem to constrain this mass depen-
dence to be surprisingly weak. Assuming that the approach defined here passes quantitative
tests such as these, it will then be interesting to apply it to a number of outstanding phe-
nomenological issues. Among these are the threshold shifts in the ¢z and bb systems and
the A(1520) — A(1405) problem. It will also be amusing to study heavy-light systems to
see explicitly how groups of states conspire to maintain the spectroscopic relations required
by heavy quark symmetry (?] as mg — oo, and to quantify the importance of symmetry-
breaking pair creation effects residing in the 6E',-(°'ﬁ ) compared to their valence potential

model counterparts [?].
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Finally, I note that while this paper in couched in the language of the nonrelativistic
quark model, there is nothing in the proposed general framework that would prevent its

being transferred to either a relativistic quark model or to field theory.
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