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Abstract

A. Orbit Correction System Optimization: Recipes for optimizing an orbit
correction system configuration at the design level are presented. Linear
algebraic tools are applied to various flavors of response matrices to
uniformly control unobservability, uncorrectability, and response matrix
singularity. Application at Jefferson Lab is discussed. B. Orbit Correction
at Jefferson Lab: Unique challenges posed by orbit correction, as well as
algorithms and tools developed at the CEBAF accelerator at Jefferson Lab
are discussed. C. Orbit Interpretation and Virtual Monitors: A new
approach to developing an orbit correction package with software structural,
algorithmic and operational advantages is introduced. It consists of an orbit
interpretation module, a virtual monitor module, and a generic steering
engine. Mathematical formulation, algorithms prototyped and tested on
simulated and real data, and future possibilities are discussed.

1 INTRODUCTION

Orbit correction has been among the most studied problems of accelerator control. Algorithms have
been developed at various laboratories to meet specific demands. Some of these algorithms, such as
MICADO [1] or SVD [2], have found much wider applicability than was originally envisioned, and
are approaching the status of universal steering engines through their many reincarnations.

The main purpose of this report therefore is not to introduce one more steering algorithm, but
rather to present a formalized approach to orbit error and correction, with steering engines being one
(important) link in the larger process of accelerator system design, operation and improvement. From
this approach we are able to formulate orbit correction issues in an analytic framework, and develop
quantitative design criteria, recipes for system optimization, and tools for visualizing and controlling
various types of errors under a single unified scheme, even before orbit correction is applied.

The unique design and physical constraints of the CEBAF accelerator at Jefferson Lab imposed
special demands on orbit correction, which inspired most of the studies presented here. Application
of these tools and general experience on orbit correction at CEBAF will be discussed throughout this
report. Despite their somewhat parochial origin, these tools were developed with the most generic
orbit correction system in mind, and should be universally applicable regardless of the specifics of a
given system. '

Throughout this report extensive use will be made of response matrices, which characterize not
only the linear behavior of the orbit correction system, but also, when generalized, the error-induced
orbits and the unobserved effects of orbit correction. Complete knowledge of these generalized
response matrices affords quantitative predictions on the global performance of an orbit correction
system, and ability to control errors at a higher level. The advantage of response matrices over more
intuitive methods, such as betatron phase counting, in analyzing orbit correction problems should also
be noted, in that the former can always give unambiguous answers in otherwise ambiguous situations.



Orbit correction can fail for a number of reasons. We can nonetheless place the blame on either
of the two fundamental causes: design flaw (static) and run-time system breakdown (dynamic). These
are listed in Table 1.1'. A good orbit correction algorithm should successfully handle problems
related to response matrix degeneracy and input error, and provide insight into dynamically generated
uncorrectability. It is however advisable, and usually unavoidable, to address static unobservability,
response matrix singularity, and uncorrectability by re-configuring the orbit correction system.

Table 1.1
Problems Encountered in Orbit Correction (Anywhere)
PROBLEM SYMPTOM SOURCE EXAMPLE
Response matrix Excessive correction Static Redundant correctors
degeneracy Unobserved orbit error Dynamic Missing monitors
Fundamental Over-sensitivity Static BPM deficit by design
unobservability Poor reproducibility Dynamic Missing monitors
Fundamental Large residual orbit Static . Corrector deficit by design
uncorrectability Dynamic Corrector Limit
Misalignment / Injection error
Unaccounted kick
Error in input data | Undetectable orbit error Dynamic Bad BPM calibration
Model error Breakdown of correction | Dynamic Quadrupole gradient error
Failure to converge Multipole components in dipole

The very act of steering impacts parameters other than orbit at the beam position monitors
(BPM). These parameters are important for machine performance in general, and crucial for the
successful operation of CEBAF due to its unique operational requirements. Table 1.2 shows a list of
such parameters relevant to CEBAF, the area of relevance, their impact on machine performance, and
the agent responsible for coupling them to the monitored orbit. The number of recirculations (5) in
the linacs is small enough to make simultaneous multiple pass steering possible, and large enough to
make it almost a necessity. This is also included in Table 1.2.

Table 1.2
Generalized Orbit Correction Scenarios (at CEBAF)
OBJECTIVE AREA IMPACT COUPLING
Energy calibration Arc Energy/path length/ | Dispersion & energy
dipole string/setup | feedback
Angle control Re-injection Baseline setup Betatron propagation
Spreader/Recombiner | ~ -
Path length control Spreader RF synchronization | Betatron propagation
Recombiner '
Dispersion control Spreader/Recombiner | Energy stability Chromaticity
Orbit at unmonitored Septum magnets Baseline setup Betatron propagation
locations Between dipoles o
Multiple pass orbit Recirculation linac Baseline setup Common steering
Spreader/Recombiner elements

In Section 2 a complete recipe based on extended response matrices is given for eliminating
static configuration flaws in an orbit correction system with minimal set of elements, thus optimizing
the balance between performance and economy. Application at CEBAF is discussed. In Section 3 we
describe the special challenges posed by orbit correction at CEBAF, and the tools developed to meet
them. In Section 4 a new algorithmic scheme is introduced with a more global approach, taking into
account the underlying orbit, sources of error, and generalized constraints. Out of this approach a
self-contained orbit interpretation and control program emerges with software structural, algorithmic,
and operational advantages. The errors of Table 1.1 are revisited under this formalized scheme.

'Empirical model and adaptive algorithms are two solutions to model errors, which will not be covered here.



2 ORBIT CORRECTION SYSTEM OPTIMIZATION

As stated in Section 1, static steering problems arising
from configuration flaws are best addressed by system
re-configuration to ensure that the orbit correction sys-
tem performs at a desired level everywhere. In the fol-
lowing we present a proven set of recipes [3] aimed at
configuring orbit correction system with optimal bal- MCA| MAM | MEM
ance between performance and economy. Through this S
program the three static problems in Table 1.1, unob-
servability, response matrix singularity, and uncorrecta-
bility, are controlled uniformly to within tolerances de-
fined by operational needs.

responder

The essence of this program lies in extending the
scope of the response matrix beyond its description of

actuator

the real actuators (correctors) and responders (BPMs), 3 responder/actuator
to that of the “virtual” ones. A set of linear algebraic Figure 2.1
tools, SVD being among the most useful, can be readily Extended Set of Response Matrices

applied to such an extension, yielding insight into the -
global behavior of the orbit correction system. Fig. 2.1 shows, in addition to the real response matrix
M™, the extended response matrices, in dashed lines, constructed out of “virtual” actuators and
responders. As these matrices will recur throughout the report, they deserve more explanation’.

2.1 Extension to more general response matrices

2.1.1  Error-to-monitor response matrix M™

The error-to-monitor response matrix M™ summarizes the disturbance in any of the beam coordinates
at all monitors by all potential physical errors. The latter includes injection errors, magnetic field
errors, misalignments etc., and the actual matrix elements consist of optical transfer elements M,
M2, and Mis between error locations and monitors. .. In constructing M™ one must identify all
potential sources of errors the orbit correction system is designed to correct. To make M™ more
realistic, design tolerances on magnet and alignment-can be incorporated by scaling individual
columns of M™to reflect the design characteristic.

2.1.2  Error-to-all-location response matrix M™

The error-to-all-location response matrix M™ summarizes the orbit disturbance at all representative
locations caused by all physical errors described above. These representative locations, not tied to
any physical elements, should effect coverage of the beam line dense enough to capture all potential
orbit extremes. They will be collectively denoted by a set Ca, which typically consists of all the
electro-magnetic element locations, critical ends of drifts, and any user selected location of interest.

2.1.3  All-location-to-monitor response matrix M

The all-location-to-monitor response matrix M** summarizes the orbit disturbance at all monitors
caused by coordinate errors at all representative locations in the set CA.

2.1.4  Corrector-to-all-location response matrix M™

The corrector-to-all-location response matrix M summarizes the orbit disturbance at all
representative locations caused by all correctors.

ot

? For simplicity we describe everything in the x-plane only with conventional coordinate assignments of 1, 2, 5, 6
for position, angle, path length and momentum offset.



2.2 The optimization program

After establishing extended response matrices for a given hardware and optics configuration, we can
look into the global performance of the orbit correction system by applying various linear algebraic
tools to these matrices. The optimization program described in this section provides efficient,
quantitative and unambiguous answers that may elude intuitive inspection of the optical lattice or
numerical simulation. In addition a set of recipes establishes the path to reaching desired tolerances
on unobservability, response matrix singularity, and uncorrectability.

The program starts with a configuration of orbit correction system, namely, a set of correctors
and BPMs, out of which all extended response matrices are constructed. It proceeds to check for the
following configuration flaws and remove them iteratively in exactly the order given below™.

2.2.1 Monitor deficiency => Fundamental unobservability

This is the situation where well orbit induced by orthonormal Large undetectable
i i o in f ‘

behaved orbits at all monitors combination of errors orbit from MEA

cannot guarantee the same eve- error source propagation

rywhere. In other words, blind
spots exist making potentially
harmful orbit at some location
unknowable.

First the generalized er-
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BPM

AN | -
ror-to-monitor response matrix Orbit corresponding to
M™ is properly scaled to reflect small singular value of MM
design magnet and ahg.r%mer‘lt : Figure 2.2
tolerances. Unobservability is " Monitor Deficiency

indicated by the presence of —
null space vectors or very small singular values of M In;both cases the system fails to meet a nu-
merical criterion defined through operational requuements. The matrix M™ is singular value
decomposed (SVD) into ortho-normal combinations in the corrector space. Combinations
corresponding to singular values short of the numerical criterion are identified, indicating
unobservable error effects. The error-to-all-location response matrix M™ is then applied to these
combinations to get error-induced orbits at all relevant locations. The largest element in each of the
orbit vectors is identified and, if this number exceeds a second numerical criterion for acceptable
unobserved orbit, a new monitor is added at this element or its vicinity. The procedure is iterated
until M™ no longer has null space vectors or singular values smaller than the criterion. A typical step
leading to added monitor is shown in Fig. 2.2.

2.2.2  Monitor redundancy => Hardware excess & unjustified corrector requirement

The reason that we need to worry at all about too many monitors is that once the minimally
necessary set of monitors is achieved, adding more would not improve observability, and may even
place unjustified constraint on the correctors in the following step.

The program starts with the projection operator IT™* [3] associated with M™, which divides any
orbit vector into parts inside and outside the subspace spanned by the columns of M™. IT™ is applied
to all unit vectors in the orbit space representing unit offset at each BPM. The length of each
resulting vector, representing coupling between errors and monitors, is calculated. All BPMs with

* Conceptual outline rather than detailed procedure will be given here as the latter can be found in Ref. [3].

“ It should be noted that general accelerator design respects the following numerology: N>N, 2N, where N, N,
and N_, are the total number of potential errors, monitors and correctors respectively. Thus the matrix M™ has
more columns than rows and the opposite is true for M™, The optimization program is most relevant when this is
the case, and if not, will likely leave the system in this state at the end.



length smaller than a numerical criterion are deleted as.they do not reflect enough error of interest.

The program then moves on to orthogonality checks, which is done with the Gram determinant
[3] to ensure absence of redundancy in the observable orbit. If a numerical criterion is not met,
iterative elimination of monitors is done with SVD on M™ and identification of the dominant monitor
in the resulting monitor combination with the smallest smgular value. This is repeated until M™
passes the Gram-determinant test.

2.2.3  Corrector deficiency =» Fundamental uncorrectability

This is the most basic requirement of any orbit correction system, namely, there must be enough
correcting power to counteract errors, whether injection, electromagnetic kick, or misalignment.

The program performs SVD on M™ to obtain ortho-normal combinations of error-induced orbit
vectors. Or, if there is enough confidence in the last two tests on monitor behavior, all unit vectors in
the orbit space can be used instead with proper scaling reflecting design error tolerances. The
projection operator IT™ associated with the real response matrix M™, and the pseudo-inverse of M™
[3], are then applied to all orbit vectors to obtain the uncorrectable fraction and the required corrector
strength for each orbit vector. Both outcomes are subjected to numerical criteria to identify corrector
deficiency. Iterative addition of correctors is achieved through comparing projection of column
vectors of the all-location-to-monitor response matrix M** and the “residual” orbit vector derived
from the deficiency test above. Iteration ends when both numerical criteria are met.

2.2.4 Corrector redundancy =» Hardware excess & response matrix singularity

This is the cause of excessive corrector strengths and unobservable orbit excursion resulting from
orbit correction. If economy of hardware is not a concern or surplus correctors are needed for special
purposes, this program can be skipped and the response ‘matrix singularity left to be handled by smart
steering algorithms. For example, the virtual monitor algorithm described in Section 4 addresses this
problem with algorithmic and operational advantages.

The program performs SVD on M™ and evaluates. its condition number, a measure of the
evenness in the corrector effect distribution. It also calculates the Gram determinant of M™ to
determine the orthogonality of the corrector effects. Both-are compared to numerical criteria. If
either criterion is not met, the index of the largest element in the SVD generated ortho-normal
corrector combination corresponding to the smallest singular value is identified. This index points to
the corrector to be removed unless it corresponds to a deliberately retained corrector, in which case
the corrector corresponding to the next largest element is removed. This is repeated until both criteria
are met. The criteria for corrector non-deficiency used in the last step should be monitored at each
iteration to prevent over-reduction.

2.3 Application at CEBAF

The optimization program was used during commissioning 'of the CEBAF accelerator to provide a
quantitative guidance on orbit correction effectiveness. Orbit correction system in every section was
subjected to the tests described to ensure same level of pérformance. Areas where steering difficulties
were encountered were found to be the same areas that stood out significantly in the tests. The
recipes described above were then employed to re-configure the orbit correction system until it passes
the tests. The improvements have been corroborated bx improved steering reproducibility, corrector
strength and orbit excursion, which translate into operational and even optical gains.

An additional advantage of formally optimizing the orbit correction system was realized when
steering algorithm was developed for CEBAF, demanding various exception handling measures built
into the algorithm. We were able to refer to the baseline configuration for estimates on effectiveness
of such measures, knowing in the first place that the former was free of static problems.



2.3.1 Monitor Deficiency

It was realized from the monitor deficiency test of 2.2.1 that undetectable error-induced orbits inside
all 5 passes of the East Extraction Region were 5 times larger than anywhere else in CEBAF. This
was supported by high steering sensitivity and poor corrector reproducibility in this region regardless
of method of steering. According to simulation this undetectable orbit could sample multipole
components in nearby dipoles and cause emittance distortion of up to 10%. The optimization
program identified 5 new monitor locations to bring undetectable orbit level in line with the rest of
the machine. Steering efficiency and corrector reproducibility have improved to the same level as the
rest of the machine since these monitors were installed.

2.3.2 Corrector Redundancy

Excessive correction in lower arcs and poor reproducibility in spreaders and recombiners during
machine setup at CEBAF suggested excessive coverage of beam line by correctors. The corrector
redundancy test of 2.2.4 was applied to the entire accelerator and correctly identified the most
offending correctors in lower arcs, with singularity index 20 times greater than anywhere else. It also
established a prioritized sequence of corrector removal in spreaders and recombiners. Corrector
deficiency criteria were monitored at each step to prevent over-reduction. The machine has been
operating with this reduced corrector set. Neither previous steering problem nor compromise in orbit
correctability has been observed.

3 ORBIT CORRECTION AT JEFFERSON LAB

Jefferson Lab operates its

CEBAF accelerator, with ’ : / N

which it is often synony- y RecirAcuIatw
i rcs

mous, as a nuclear physics 0.5-GeV ol;'nzci o
research facility currently (20 Cryomodules) 0.5-GeV Linac
delivering CW electron 56-MeV Injector (20 Cryomodules)

beam to three fixed-target (2 1/4 Cryomodules) 'y &

experiments with energy - m—— %
up to 5 GeV. CEBAF con- <
sists of injector, multi-pass
linacs, re-circulating arcs,
beam separation (spreader) Stations Y/
and recombination (re-
combiner) structures, and
extraction lines to experi-
ments. These are shown in Fig. 3.1. The complex trajectory manipulation, often simultaneous in
multiple passes, the need to satisfy multiple beam and optical constraints in both transverse and lon-
gitudinal dimensions, the deviation from smooth, periodic FODO lattice in many areas, and the space
limitation on instrumentation all guarantee a rich environment for steering challenges. These chal-
lenges, as well as existing and proposed solutions, are discussed in the following subsections.

Elements

Figure 3.1
CEBAF Conceptual Layout

3.1 Steering engine

A locally developed algorithm, PROSAC (Projective RMS Orbit Subtraction And Reduction), is used
at CEBAF as the generic steering engine with a strong.emphasis on fully exploiting hard corrector
limits while strictly conforming to them®. This turns out to be a valuable feature in many cases.

5 An alternative method of eliminating corrector combinations through SVD when corrector limit is reached is
intrinsically pathological. Since SVD only deals with orthogonality of the response matrix, it can misinterpret
large corrector values caused by fundamental uncorrectability as singularity-induced, and proceed to over-elimi-
nate correctors. An algorithm for correctly eliminating correctors under SVD has been conceived at CEBAF but



The principle of PROSAC is very simple. All correctors are mapped by the response matrix
into “effective orbit” vectors, which are compared in turn to the real orbit vector and the one with the
largest projection on the real orbit, either normalized or un-normalized, is used to truncate the orbit
vector up to the corrector limit. This process is iterated until a user-defined reduction target is met.
Corrector prioritization is also carried out to let the user apply the most effective subset of the
correction while achieving most of the correction goal.

Accompanying PROSAC are exception-handling algorithms for either data pre-processing to
eliminate errors or guarding against operational problems. These are discussed in the following.

3.2 Solution to dynamic problems

Dynamically occurring steering problems at CEBAF that require algorithmic exception handling are a
subset of Table 1.1. We will describe them below.

3.2.1 Dynamic response matrix singularity and unobservability

With the absence of static monitor deficiency and corrector redundancy guaranteed, response matrix
singularity happens only when some BPM’s become unavailable at execution time. Two algorithms
were used to prevent adverse effects of excessive correction due to near-singularity.

* Corrector elimination: SVD is performed on the response matrix and a procedure similar to that
described in Section 2.2.4 is executed.

= Additional orbit constraint: Trajectory fitting is performed on the orbit and corrector data. The
projected orbit at missing BPM’s is added to the real orblt before steering.

These methods can in principle be either too heavy -handed or misrepresenting reality if too
many BPM’s are missing®. In practice, however, they have kept the steering process from diverging.

It should be noted that the real cause of the difficulty is that, with missing BPM’s, we also get
fundamental unobservability. When too many BPM’s are missing, the system configuration is no
longer adequate for orbit correction.

3.2.2 Errorininput data

Systematic offsets in BPM readings present major impediment to successful orbit correction. At
CEBAF the procedure of “quadrupole centering” is performed on BPM’s at critical locations to
mitigate this problem. This is done by varying the strength of the quadrupole next to the BPM in
question while changing the beam position at the same location. Beam is considered “centered” when
downstream orbit oscillation induced by quadrupole variation is smaller than a specific tolerance.
BPM database is then updated to reflect this center. Currently this procedure is done manually at
strategic areas to provide zero-th order information on the machme baseline.

BPM offset error at CEBAF has partly 1nsp1red the orbit interpretation algorithm, to be
discussed in Section 4, with the aim of separating fundamental uncorrectability from monitor input
error, and deducing the underlying orbit for correction. This algorithm has been successfully applied
to real data at CEBAF to identify BPM’s with offset errors and to resolve the underlying orbit and
dipole kicks in linacs and spreaders.

Finally built into PROSAC is a crude version of the orblt interpretation algorithm which aims at
identifying extreme BPM offsets. This is invoked as a user option.

not tested on line. The optimal approach to the corrector limit problem, correctly handling both fundamental
uncorrectability and response matrix singularity, would be using’ PROSAC on orbit generated by the virtual
monitor algorithm, to be discussed in Section 4.

¢ Again, the correct way to address this problem is to use virtual momtors or equivalent algorithms, if not too
many BPM’s are missing.



3.2.3  Dynamic uncorrectability

This is usually not a cause of concern unless uncorrectable orbit indicates anomalous injection or
large unaccounted disturbance. The orbit interpretation algorithm discussed in Section 4 has also
been motivated by attempts to identify this effect. Currently no exception handling is built into
PROSAC to address this problem, other than indirect inference from extreme apparent BPM offsets.

3.3 Special steering scenarios

A summary was given in Table 1.2 of special steering scenarios encountered at CEBAF. We will
describe below methods developed or planned to accomplish these tasks.

3.3.1  Energy calibration

The lowest energy arcs in CEBAF are used as spectrometers to both calibrate and stabilize energy out
of the linacs. Energy stabilization is possible due to large dispersion in the arcs exploited by the
energy feedback system. But before feedback can be invoked linac energy has to be matched to the
arc dipole with a “standard” arc orbit pattern established. PROSAC is employed to perform the task
of simultaneously establishing the standard orbit and matching the energy. This is done by including
the momentum offset dp/p as an extra corrector with associated Mi¢ as response matrix elements, and
forcing the averaged physical corrector strength to that néeded only for counteracting earth field while
allowing individual variations to correct local orbit.. This procedure decouples the non-dispersive
orbit from the dispersive orbit and corrects both in a single step. The same algorithm has been used
for higher energy arcs where linac energy can no longer be changed, but simultaneous correction of
orbit and path length, or orbit and main dipole strength may be desired.

3.3.2  Angle control and beam threading

With many junctions between functional modules of CEBAF clean injection from section to section
is an important issue. Currently PROSAC can be configured to perform injection optimization into
multiple pass linacs where local steering is not possible. This is done with orthogonal correctors to
cover injection phase space, with orbit in the downstream section providing target of correction.

For other sections PROSAC provides the “zero angle” option, which freezes the strengths of all
correctors between the last two BPM’s at zero before applying correction. If the remaining correctors
are not driven to limits, and if the optical transfer between the last two BPM’s is not close to point-to-
point imaging, then the outgoing beam angle should be close to zero. This technique has also been
used for beam threading with PROSAC when the arcs weré first commissioned.

Real and absolute angle control, nonetheless, is poss1ble only with the introduction of virtual

monitors, to be discussed in Section 4. A
3.3.3  Steering with common dipoles :,H'

In the spreaders and recombiners of CEBAF main vertical bending dipoles have significant effects on
the orbit. Due to the machine setup sequence dipoles common to multiple passes can couple lower
pass injection errors to higher passes. Off-line orbit interpretation has been performed to disentangle
multiple pass effects with reasonable results. During commissioning a prototype program has also
been developed to use, among other correctors, the common dipoles to simultaneously fix injection
and correct local orbit for multiple-pass spreaders and recombiners.

With CEBAF in its production phase, the need to adjust individual dipoles has decreased
significantly. However in order to respond to flexible energy requirements from the experiments, it is
planned for the next phase of PROSAC to include some of these dipoles as orbit correction elements
for more efficient baseline setup.

3.3.4  Path length control, dispersion control, and orbit at un-monitored locations

Absolute control of these parameters are not possible without the virtual monitor algorithm, which is



not implemented at CEBAF currently. They are plann‘ed forthe next phase of PROSAC.
3.4 Simultaneous multiple pass steering in the linacs

In early 1998, large and persistent orbit * Linac 5-pass Orbit (mm) 03/25/98
patterns in all 5 passes inside the CEBAF linacs - X: Dash: Before, Solid: After
were seen to develop, defying pass-by-pass cor- me
rection. This was blamed on possible misalign- | 3 i"i el

ment and unaccounted disturbances. Significant
difference in betatron phase advances between
different passes and absence of correctors
exactly coinciding with all potential errors left
higher pass orbits at the mercy of first pass
corrections. This was exacerbated by unknown
systematic offsets in the BPM’s. Effort was
first made to determine the underlying errors,
including injection, sources of kicks, and " Linac 5-pass Orbit (mm) 03/25/98
monitor offsets.  This highly constrained " Y1 Dash: Before, Solid: After
analysis yielded very reliable estimates on .
monitor error and underlying orbit. It was it
realized from simulation that using all the
correctors inside the linac, which affects all
passes differentially, as well as injection fixes
from individual upstream recombiners, we
could reduce the orbit in all passes significantly.
This was done in the South Linac, using
PROSAC as the steering engine’. Fig. 32 | -1
shows the outcome with all 5 pass orbits dis- bl
played in tandem for each plane. The solid line
in x-plane is an order of magnitude smaller in
RMS than the dashed line'. A total of 12 hori-
zontal and 13 vertical correctors in the linac and 10 (2X5) correctors in each plane in the recombiners
were used to achieve this orbit reduction at 135 locations (27 BPM X 5 passes) in each plane [5].
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" Multiple Pass Linac Steering

4 ORBIT INTERPRETATION AND VIRTUAL MONITORS

In earlier sections we discussed exception handling methods for minimizing dynamically occurring
steering errors, as well as for controlling generalized beam and optics parameters. It was noted that
these methods are less than perfect mainly because of i 1gnorance about the underlying errors. This is
what prompted a study into ways of approaching the orbit correction problem with a more
comprehensive and consistent formulation such that all types of errors and their effects on steering are
accounted for under a single unified scheme. From this formulation we can gain insight into the
underlying problem, disentangle errors with overlappmg signatures, reconcile between conflicting
steering objectives, and create arbitrary steering scenanos w1th optimal exception handling ensured.

A conventional way of developing orbit correction program is shown in Fig. 4.1 where steering
constraints at CEBAF are used as an example. In this approach a steering algorithm, for example
SVD, is coded to solve the most generic steering problem. More Sophisticated features, such as
needed for exception handling and generalized constraints, are then added as operational need
develops. Complexity multiplies as the program is modified to accommodate these features. In the
end one has a steering program which can meet a unique set of operational requirements.

” Some correctors were driven to their design limit in the process, justifying the choice of PROSAC.
* Most solid spikes correspond to malfunctioning BPM’s.



The shortcoming of this ap-

proach is obvious. From the soft- Generalized Constraints |.- Generic Exception Handling
ware viewpoint, incremental and [Angle | | R ‘

ad hoc feature enhancements un- SI::“"::W
dermine modularity and flexibility, || |Pathlength I

making it harder to incorporate al- [Dispersion l Dynamic
ternative error handling features uncorrectability
and steering algorithms. From the || [Unmonitored orbit |

machine operational viewpoint, in- [Multiple pass | Error in
formation inside the program is input data
inaccessible to other interested Input Orbit

clients such as magnet or align-

ment. There are also algorithmic Figure 4.1

limitations to orbit correction with
this approach to be discussed later.

Orbit Correction Program - Conventional Approach

We can on the other hand widen the scope and follow the alternative approach of Fig. 4.2°. The
orbit, hardware, and model data are input to an orbit interpretation module, which interprets the un-
derlying error and orbit by separating contributions -from fundamental uncorrectability and input
monitor error. The algorithm used for this analysis can be interchangeable since it responds to a well
defined, fixed set of inputs. The output of this module is available to other clients interested in the
performance of magnet, alignment, or diagnostics, as well as to the second component of this

package: the virtual monitor module. —

The virtual monitor module does not Input Orbit | | Orbit lntetpreting  §. ] Other Clients
o alvsis. b . £ & Algorithm Magnet

perform any analysis, but upon input o Machine State -

. ., 10 . Dynamic Alignment
the interpreted orbit”, manipulates all - wncorrectability Diagnostics
genera.lized steering. const.raints, and Virtual Monitor | —
most 1mportan‘t‘ly., s1n,:gulan.ty control, Algorithm €| input data
into a set of “virtual” orbits and re- ||[Angle |
sponse matrices. The virtual objects are [Path tength i
indistinguishable from the real ones for

. . . IDispersion I

the steering engine. When they are in-
put to the steering engine, the outcome | |LUrmonitored orbit | Generic
automatically satisfies all constraints on ||| Multiple pass Asl;?;i:fn
generalized coordinates and response Response
matrix singularity. It is also less prone singularity
to input monitor error due to screening Figure 4.2
by the orbit interpretation algorithm. Orbit Correctlon Program - Alternative Approach

y Ip g

The third component of this package is
the generic, interchangeable steering engine. R

This approach exhibits multiple advantages over the conventional one, as elaborated below.

= Software structural advantage

— All feature enhancements are done through mterchangmg orbit interpretation algorithm or
steering algorithm, with well-defined and fixed inputs.

—  Feature enhancements will never touch the vu’tual monitor module, which executes a fixed
procedure with all options anticipated.

-~ Important information from orbit interpretation is avallable to other clients.

* Notice the migration of various components from Figure 4.1 to Figure 4.2.
' This will be given at all monitored and un-monitored locations and in all monitored and un-monitored
coordinates. For example, the interpreted orbit can contain information about path length inside a dipole.



— Being an independent module as opposed to ad hoc add-on features, the orbit interpretation
algorithm can be developed in a much more compact and consistent manner.

®  Algorithmic Advantage

—  Steering outcome inherits optimal screening of input monitor error by orbit interpretation.

—~  One can set absolute targets for generalized constraints, as opposed to actuating only increments
without orbit interpretation.

~  Controlling singularity through virtual monitors is superior to corrector elimination or correction
strength minimization which, not fully exploiting the response matrix, can be too heavy handed.

—  Singularity control through virtual monitors automatically takes into account constraints on
generalized coordinates.

= Operational Advantage

—  User can see the underlying picture, important in diagnosing anomalous cases.

—  User can satisfy different steering objectives simultaneously, avoiding unnecessary iterations.

—  User can create on-the-fly steering scenarios more easily and confidently.

As we will see below, the orbit interpretation and virtual monitor modules require minor
modification to an existing steering algorithm. The main enhancement comes from establishing
generalized response matrices of Section 2, which are fixed entities in the database once established.

4.1 Orbit interpretation

Let us begin by asking what makes up an observed orbit at a monitor located at point p. Staying
within the x-plane for simplicity, we have

of= %M k.ck " corrector kicks
+IM 919 : 8x9 + ZZM 77 &x§ ~injection & misalignment errors
J a Jj
+ AP, - . monitor error 1)

where we decomposed the x-orbit O, at p into contributions from correctors C at locations k, injection
errors &', misalignment errors d at locations @, and monitor error 4. Misalignment error stands for
all field and geometry errors in the beam line that can change any beam coordinate. Since injection
error satisfies this description, we can classify it under misalignment and rewrite Eq. (4.1) as

Of = MR C3= ZIME &G+ AT 2)

T=K+A R
where we have on the left hand side the “naked orbit” T, consisting of all known measurements, and
on the right hand side all the unknown errors, including the generalized misalignment K, and monitor
error A. If the naked orbit T is blindly input to any steering engine, the best outcome one can expect
is determined by the projection operator associated with the response matrix M™ given by

— 7L il
E= HMCMOK - HMCMOA ,

—1 :
Hll\ldcu =Mcm (MEM * MCM) * MEM ’ 4.3)

L - k]
HMCM =1~ HMCM

where E represents the residual orbit. The projection operators IT* and 11" divide the orbit space into
the part outside the subspace spanned by the column vectors of M™ and that inside, or, orbit
uncorrectable and correctable by M. The residual E stands for the real residual orbit after correction
even if the apparent residual orbit may be different due to monitor errors. Eq. (4.3) shows that K and
A have opposite effects on the residual orbit, which consists of all misalignment errors uncorrectable



by M, and all monitor errors correctable by M™. The former is fundamentally uncorrectable, but
the :latter is spurious, disguised as-alignment errors to compromise steering effectiveness. The
ultimate goal of orbit interpretation is to disentangle these contributions, with their mostly distinctive
signatures, to achieve optimal steering''. To do this, we resort to the error-to-monitor response matrix
M™ of Section 2 and perform the analysis discussed in the sections below.

4.1.1 Using alignment errors as virtual correctors

Each column of M™ can be regarded as the effect on the orbit by a “virtual corrector” corresponding
to the misalignment error. A generic steering algorlthm can be applied, using M™ as the response
matrix, to the orbit T of Eq. (4.2) to get

T =T o(K+A)+ I «(K+A)

=Tk *+Ta.

We can then interpret Tk as the real orbit generated by misalignment errors, to be used for orbit
correction, and discard T as spurious monitor error. In,practice only a subset of M™ can be used in
Eq. (4.4) since the problem is highly under-constrained, Let U° be a sub-matrix of M™ containing
part of the column vectors of M™, substituting U® for M™" in Eq. (4.4) and applying orbit correction in
the fashion of Eq. (4.3) on the interpreted orbit T« results.in a new residual orbit

—_1l 1l 1 Bl 1]
E = HMCM'K+ HMCM.HUO.K + HMCM.HUO.A . , 4.5)

(4.4)

Eq. (4.5) is graphically represented in Fig. 4.3. Both K and A are partitioned by the 4 projection
operators into complementary parts. Depending on the content of U’ the final residual error E
consists of different components of K and A4, as shown in Fig. 4.4.

»  Alignment biased: This corresponds to the case where U° is empty, thus the input orbit is
completely blamed on monitor errors. The interpreted orbit is identically zero and basically no
orbit correction is necessary. In a more relaxed variation U’ can contain only injection errors and
steering on the interpreted orbit amounts to an injection fix based on the global fitting of the orbit
to injection coordinates.

»  Monitor biased:  This corresponds to the case where U’ spans the entire orbit space, thus the
input orbit is completely blamed on alignment errors. The interpreted orbit is identical to the
apparent orbit and orbit correction is done to eliminate as much as possible the apparent BPM
pattern. This is what normally happens with simple-minded steering.

Alignment bias reflects an em- R
phasis on the global consistency, fa- T
voring long range orbit pattern over lo- Component"s’j;
cal deviations, whereas the monitor bias | of K R
prefers local flexibility, bending trajec- ‘
tory to fit monitor readings wherever
needed. In the intermediate case U°
takes on a finite subset of M™, allowing
trade-off between the two contributions. | Components
For example, it is often found that a of A
minimal subset of vectors in M®™ con-
tributes the most toward reducing the N L
residual T4 of Eq. (4.4). This minimal - F1gure4 3
subset is then a natural choice for U°. ‘ Error Partition by Projection Operators

" The term “interpretation” is already a hint of the highly under-constrained nature of the problem. In such cases
intelligence of the algorithm used for interpretation is crucial.



4.1.2  Including monitor errors as virtual correctors""é‘

We can expand the scope of virtual correctors of Eq. (4 4) further to include monitor errors. The

latter, instead of passively falling off as the K A
residual orbit of steering by virtual

correctors, can now actively match to the | Extreme Alignment (Global) Bias Z(/
orbit pattern as a distinctive error signature. | E = K

This is done by augmenting M™ with col-

umns making up the N, XN, identity ma- | Intermediate

trix, N,, being the number of monitors. We (g = IT + K + o Wate K [

denote this new response matrix M™. The ?fc” | Mew ™ Uy '
residual orbit after steering by M™™ will be - I Mc M‘H %° A

attributed to noise only. This scheme al- o .

lows the monitor error to be identified ex- Extreme Monitor (Local) Bias

actly as what it is, and not misinterpreted | E = HMC *K - H 2 A

as a misalignment error. The net effect is a

more accurate separation of K and 4, thus a Figure 4.4

smaller E. Residual Error with Different Uo Choices

4.1.3  Algorithm for optimizing U’

It is obvious by now that the element critical
to the success of orbit interpretation is an in- ,
telligent algorithm which decides on the con- |E = I'_I‘M‘ « K
tent of U° that disentangles K and 4, such LM
that the residual orbit E approaches the fun- e
damental uncorrectability shown in Fig. 4.5. :
Due to the under-constrained nature of the problem, there is-ample room for user preferences. For ex-
ample, whether there is more confidence in alignment and field accuracy or monitor accuracy,
whether empbhasis is on global consistency or local flexibility, whether minimal total RMS or smallest
number of errors is preferred in the makeup of U°, etc. - Relative weighting between different errors
also reflects the user’s bias, which ultimately depends on realistic evaluation of the steering situation.
Once these preferences are set, however, it is up to an automated algorithm to decide on the content of
U°. A collection of algorithms are listed in Table 4.1, most of which have been tested for this pur-
pose. Also listed are optimization bi- '

Optima!LSeparation

Figure 4.5
Ideal Residual Error

ases of each algorithm. SVD and QR- _ Table 4.1 )

decomposition are established mathe- : Orbit Interpretation Algorithms

matical algorithms. SUSMIC was | Algorithm | Alignment/ | Error RMS/ | Global/
19ca11yfdeve1<(>1ped for 0pfim;zing solu- Monitor Bias | Number Bias | Local Bias
tions for under-constrained systems. .
These three algorithms span th}; spec- SVD nghted RMS varfable
trum of preference between minimiz- |- QRD weighted mixed variable
ing error RMS and error number. SUSMIC ‘none number variable
Being conceived as analytic and exact | Prototype 3 'vanable RMS mixed
algorithms, they also share emphasis | prosac none . mixed variable
on minimizing response matrix sin- - )
gularity, and p%eclusI;on of noise cutoff MICADO | none . number variable

as a physical option. These can be positive or negative features depending on the situation.

Prototype 3 is an iterative algorithm developed exchisiiV.ely for orbit interpretation and tested on
real data at CEBAF [4]. It applies a prioritized sequence of SVD-generated alignment error
combinations to the orbit. At each successive application the residual orbit is used to update a
weighting factor on the BPM’s such that distinct monitor errors can stand out above noise. The
iteration terminates when an unnatural jump is detected in the total magnitude of alignment errors,



signaling monitor errors being misinterpreted as alignment-induced. The algorithm also provides
continuous interpolation between alignment and monitor biases, and automatic optimization on this
interpolation. It has been applied to real data at CEBAF and successfully demonstrated isolation of
monitor errors from misalignment errors. Piecewise concatenation of alignment-biased and monitor-
biased interpreted orbits has also been experimented as steering input, showing advantage in special
cases, but automation appeared difficult.

Recently attention has been turned to MICADO as the orbit interpretation engine. Since
MICADO was conceived as a corrector selection algorithm, it possesses two unique advantages.
Firstly it aims at minimizing total number of errors instead of total error RMS, avoiding smearing out
localized error effect and mixing monitor error into alignment error. Secondly it allows for residual
noise after correction, avoiding exaggeration of errors that happens with exact algorithms. PROSAC,
with its corrector prioritization feature, may also prove effective as an orbit interpretation engine in
minimizing number of errors. There has been no test with MICADO or PROSAC at this point.

4.1.4  Orbit interpretation for multiple pass orbit T

Orbit interpretation can be applied to multiple pass orbit sharing common alignment and monitor
errors. Here the problem shifts away from being under-constrained and may actually become over-
constrained, greatly improving the predictive power of orbit interpretation. This was indeed the case
with the simultaneous multiple pass linac steering described in Section 3 [5].

4.2  Virtual monitors :
As indicated in Fig. 4.2, the virtual monitor algorithm péffbrhls the following functions.
4.2.1 Generalized steering constraints J

Once the interpreted orbit is established, we have knowledge of all beam coordinates at all locations,
whether directly observable or not. Steering constrints on these coordinates can be easily output to a
generic steering engine disguised as ordinary constraints at “virtual” monitors. In this scheme we can
even constrain the absolute values of these coordinates if there is enough confidence in the interpreted
orbit. The constraint on orbit-dependent dispersion is realized through

ME=233 ¥ T éXC+22 Y TP X6 (4.6)
Jj#6 k ascsb J ascsb

where &M is the change in dispersion from location a to- locatlon b due to orbit changes dX at all
locations ¢ between a and b. M and T are first and second order optical transfer elements. Thus SM”
can be directly input to the steering engine as a virtual orbit with associated response matrix being the
right hand side sums of Eq. (4.6) with éX° replaced with real response matrix elements Mj2.

4.2.2  Controlling response matrix singularity "
After the complete set of response matrices is assembled; connecting correctors to both real and
virtual monitor inputs, the
algorithm enforces singularity
control in the form of yet more
virtual monitors. This is done
by automated placement of
virtual monitors at strategically
chosen locations coupling

orbit induced by ‘orthonormal
combination of correctors

A correctors
O

~ Large undetectable
N orbit from MCA
propagation

BPM

sFrongly to singular coglb.ma- J o coh;éspon ding to _

tions of correctors. This is a small singular value of MCM

better way of controlling sin- " Figure 4.6

gularity than limiting or elimi- Singularity Control through Virtual Monitors

nation of correctors, because it



is always the singular combination of correctors, not individual ones, that causes steering problem.
Indiscriminate limiting or elimination of individual correctors targets harmless and offending
combinations equally, thus compromising steering effectiveness. The advantage of singularity
constraint through virtual monitors is especially apparent in cases of disabled BPM’s.

To do this, the program performs SVD on M™ for its condition number, and calculates its
Gram determinant. Both are compared to numerical criteria. If either criterion is not met, the SVD
generated corrector combination with the smallest singular value is identified. The corrector-to-all-
locations matrix M is applied to this combination. The index of the largest component of the out-
come vector points to the location for a new virtual monitor, with its orbit given by the interpreted
orbit. Iteration stops when the system passes both numerical tests. The procedure can be visualized
from Fig. 4.6.

At CEBAF steering with virtual monitors has been experimented in the spreaders, extraction
region, and arcs. It demonstrated ability to bypass monitor errors in orbit correction, and good
singularity control without unnecessary compromise of corrector strengths. It has also been tested for
angle control in the spreaders. The entire package. of orbit interpretation and virtual monitor
algorithms has not been developed for routine operation-at this point.

4.3 Application to orbit reproduction

The majority of steering effort in accelerator operation goes into reproducing an established standard
orbit, where the goal is to minimize the difference between the standard and absolute orbits, rather
than the absolute orbit itself. In such operations the orbit interpretation and virtual monitor
algorithms are even more effective since the relative orbit usually exhibits effects due to far fewer
errors than the absolute orbit. Clean separation between error sources by orbit interpretation is much
more achievable, and the outcome can be very useful forimachine diagnosis. Extension to relative
orbit at virtual monitors is straightforward. This guarantees a much more complete orbit reproduction
than is possible with only real monitors.
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