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Abstract

Generalizing a covariant framework previously developed, it is shown that con-
finement insures that meson — g + § decay amplitudes vanish when both quarks
are on-shell. Regularization of singularities in a covariant linear potential associ-
ated with nonzero energy transfers (i.e. ¢ = 0,¢* # 0) is improved.
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I. INTRODUCTION

Even for a simple system such as a quark-antiquark (referred to collectively

“quarks”) bound state, color confinement implies that the matrix element
r meson decay, 4 — ¢ + ¢, must vanish whenever this decay is kinematically
ssible. This trivial statement can be realized by two possible mechanisms.
ther i) the quark propagators are free of timelike mass poles, as is usually
sumed in Euclidean metric based studies [1], or ii) the vertex function of the
und state vanishes when both quarks are on-shell. In an earlier work [2]
was assumed that the quark propagators have mass poles, but it was not
own that relativistic generalization of the linear confining potential guaranteed
e correct vanishing of the vertex function. In this work it is shown that the
nishing of the vertex function is a general feature of any confining interaction,
d that insisting on the correct nonrelativistic limit leads naturally to
le second option.

II. THE NONRELATIVISTIC LINEAR POTENTIAL

It was shown earlier [2] that the nonrelativistic linear interaction
V(r) = -C + or, (2.1

n be expressed in momentum space by

V@ = lim[Va@ - 8@ [ @aVa@)] - erpEac, (2.2)
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coordinate space

Va() =/

d hence the delta function subtraction cancels the infinite 1/¢ term, insuring
at the limit € — 0 exists and that the potential confines. It also insures that
e linear potential vanishes at the origin. In fact, the delta function subtraction
uld be used to construct confining potentials for any monotonically increasing
i(r) for which V4(r) — V4(0) = oo for some r. For example, after the delta
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function subtraction even the coulomb potential V4(r) = —1/r would result in a
confining interaction.

Using the linear potential Eq. (2.2) the Schrédinger equation for two quarks
of equal mass m becomes
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where E is the binding energy.

III. THE RELATIVISTIC GENERALIZATION

A seemingly natural candidate for a relativistic generalization of the linear
interaction (2.2) is to use the Bethe-Salpeter equation with a kernel given by
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where ¢ - —¢? in Eq. (2.3). Unfortunately this form does not have the correct
nonrelativistic limit. Therefore we rephrase the question: Can we find a covariant
equation that reduces to the Schrédinger equation with linear interaction in the
nonrelativistic limit? In order to motivate the relativistic equation, start by
defining the Schrédinger vertez function ®(p)

2

3(p) = [% - E} T(F). (3.2)

The Schrédinger equation with linear interaction is then
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Introducing the four-vectors P, k, and p, with P = (2m+ E, 0) and p® = k* = m?

(so that Ey = V'm? + k2), the relativistic generalization of (3.3) which reduces
to it in the nonrelativistic limit (when m — c0) is
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FIG. 1. The Gross equation. The x indicate that the particle is on-shell.

is is the Gross equation (see Fig. 1) and the discussion shows that this is the
st natural relativistic equation obtained from a generalization of the nonrela-
stic Schrédinger equation for confined particles.

In a previous application of the Gross equation {2] the kernel (2.3), with
— —¢?, was used. This choice is undesirable for use with the two channel
sion of this equation, where the mass shell constraints which fix g introduce
zularities for non-zero momentum transfers (i.e. ¢ = 0, but ¢* # 0). To
rect this problem the kernel V4(q) is defined to be

1

VA(q) = —SWUW

(3.5)

vantages of this form are many: i) singularities are restricted to ¢* = 0, ii)
raction strength does not depend on the bound state momentum P in the
t frame, iii) it has the correct nonrelativistic dependence on ¢2, and iv) the
raviolet regularization used previously [2] is no longer needed.

IV. PROOF OF CONFINEMENT

It is sufficient to consider the case when the constant term C = 0. If the mass
‘he bound state 2 > 2m, then there exists a value of three momentum |5} = p,
en both quarks can be on-shell. In this case (P —p)? = p? —2uFE, +m? = m?,
1 the subtraction term in Eq. (3.4) appears to be singular. This singularity is
; cancelled by the first term, and hence, if the equation is to have a solution,
: vertex function must be zero at p.. In particular, as |p] = p. L ¢,
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1 the vertex function would have an infinite discontinuity at p. unless it were
o there. We conclude that ®(p) = 0, when 2E, = pu (as illustrated in Fig. 2).
A numerical confirmation of this result is shown in Fig. 3. In the actual
culations to be presented in an upcoming paper, the bound state equation is
rraged over positive and negative energy contributions and symmetrized by
king up the pole contributions of both constituents. The average over positive
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FIG. 2. When both constituents are on-shell, the vertex function vanishes.

and negative energy contributions leads to a two channel equation with a two
component vertex function. In Fig. 3 the solid line is the (large) component in
which the off-shell quark has positive energy and the dashed line is the (small)
component in which the off-shell quark has negative energy. Since a physical
decay must produce two positive energy quarks, only the large component must
have the “confinement” node. Fig. 3 shows the vertex functions for an excited
pion with mass p = 1.2 GeV composed of two quarks with masses m = 0.34
MeV. The large vertex function must have {wo nodes: one due to the excitation
and another at p? = 0.244 GeV2, exactly where both particles are on-shell.
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FIG. 3. The pion 1st excited state Gross vertex functions are shown. The first node
is due to the excited state. The second node assures that the bound state does not
decay.



V. CONCLUSIONS

The relativistic equation obtained from a generalization of the nonrelativistic
hrédinger equation for confined particles is of the Gross equation type rather
an the Bethe-Salpeter equation type. The confinement mechanism arises not
m the lack of quark mass poles, but through the vanishing of the vertex func-
m when both quarks are on their positive energy mass-shell. Because of this
nfinement mechanism, the vertex functions (ground or excited state) have one
ditional node if the bound state is heavy enough.
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