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Abstract

Mesons are made of quark-antiquark pairs held together by the strong force. The
one channel spectator, Dirac, and Salpeter equations can each be used to model
this pairing. We look at cases where the relativistic kernel of these equations
corresponds to a time-like vector exchange, a scalar exchange, or a linear com-
bination of the two. Since the model used in this paper describes mesons which
cannot decay physically, the equations must describe stable states. We find that
this requirement is not always satisfied, and give a complete discussion of the
conditions under which the various equations give unphysical, unstable solutions.



I. INTRODUCTION

A. Background

In the simplest models, mesons are bound states of a valance quark-antiquark
r confined by the strong force. Even for such a simple case a covariant model
ieeded when the mesons are composed of light quarks with high momentum
1ponents. However, covariant models require knowledge of the Lorentz struc-
2 of the confining interaction, and it turns out that some choices of Lorentz
icture for some equations will produce mesons which decay. When no mech-
sm for decay has been included in the model (which will be the situation for
cases discussed in this paper), this is a sign that the solutions are unphysi-
In may be acceptable for an equation to produce unstable (i.e. unphysical)
itions /it if these solutions are confined to a region of the spectrum which can
precisely characterized and systematically ignored, but if this is not possible
iations which produce such unphysical solutions are unsatisfactory. In this
ver we study confining potentials with scalar and time-like vector exchanges,
| find that the stability of such interactions depends on the kind of relativistic
iation used for the description of the interaction.
This is not the first time that the stability of covariant models of confine-
nt has been addressed. Several papers have been written on this topic, some
h contradictory conclusions. Two examples which illustrate this are papers
ed An ezact argument against an effective vector exchange for the confining
wk-antiquark potential (1], and Evidence against a scalar confining potential
QCD [2]. If both papers are correct, this would indicate that, at best, the
‘entz structure for the potential is more complex than a simple scalar or vec-
exchange.
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FIG. 1. Example of electroweak decay of the p* meson.
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FIG. 2. Example of strong decay of the p* meson.

Our research into the question of stability was motivated by the paper of
Parramore and Piekarewicz [3], which found thet the Salpeter equation was stable
when the vector strength exceeded the scalar strength. This seemed counter
intuitive to us, since it is well known that, because of the famous Klein paradox,
the Dirac equation is stable only when the potential is predominately scalar.
Their result also contradicted the work of another group (4] who found that the
Salpeter equation was stable for a pure scalar confining interaction, provided the
quark mass was sufficiently large.

B. Physical and unphysical instabilities

We begin the discussion by making a distinction between instabilities which
are physical and those which are unphysical. Real mesons have a finite lifetime
and can decay either through the strong interaction or the electroweak inter-
action. For example, the p* can decay into a photon and a n* through the
electroweak interaction shown in Fig. 1. It can also decay into a 7% and #° via
the strong interaction, as shown in Fig. 2. In this paper we describe mesons which
are isolated from external influences (including vacuum fluxuations), and use an
equation which excludes the electroweak interaction and does not include any
mechanism for the production of quark-antiquark pairs. Hence both of these de-
cay mechanisms are excluded from the theory and thus the mesons described by
our equations cannot decay physically. Therefore any instability emerging from
these equations will be unphysical, and a sign that the equations are describing
unacceptable states.
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FIG. 3. Sketch of the solution to the Dirac equation for the scalar case, where ¢ > 0
dy=0.

C. Unphysical instabilities — an example

The Dirac equation for a linear combination of a scalar and vector confining
stential provides a familiar example of the kind of unphysical instabilities we
re discussing. Consider the Dirac equation for the linear confining potential

)y =or{(1-v)+v7°}
EpY’6(r) = (m+V(r)++-V) ¢(r) (1.1)

here o and the vector strength y are both constants. The solutions of this
juation have both positive and negative binding energy eigenvalues Eg. If
1e system described by this equation could interact with the outside world (e.g.
osorb or emit photons), the positive energy states could decay to negative energy
iates (unless all of the negative energy states were occupied as in hole theory).
owever, we have assumed that there is no coupling to the outside world, and
ence this equation should describe a stable system, even if some of the binding
arergy eigenvalues are infinitely large and negative. However, it is well known
1at the Dirac equation does not give stable solutions for all values of the vector
;rength y and we review this result now.

The nature of the solutions to the Dirac equation can be studied by looking at
1e expectation value of U = m 4+ V. The form of this expectation value, which
escribes how the wave function behaves, is

+
(U)e = {T—nm f;r(l - 2y)

positive energy

negative energy (1.2)

rhere the positive energy expectation value is a matrix element involving u-type
ositive energy spinors, (U}+ = @Uu, and the negative energy expectation value
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FIG. 4. Sketch of the solution to the Dirac equation for the vector case, where o > 0
and y = 1.

is a matrix element involving v-type negative energy spinors, (U)_ = oUv. The
result (1.2) comes from the matrix elements

tu = 1= -
#%u = 1= 97, (1.3)

which hold when the total momentum p = 0. When Eq. (1.2) is sketched for pure
scalar (y = 0) or pure vector (y = 1) cases, Fig. 3 and Fig. 4 are produced, re-
spectively. The resulting wave functions for a particle with energy E are sketched
on the figures, along with the form of (U) which produces it.

To understand these results, first neglect the coupling between positive and
negative energy states. Then the positive energy states move under the influence
of the potential (U)4+ and the negative energy states under the influence of (U)_.
For the scalar case (y = 0), the choice ¢ > 0 produces confinement for both
positive and negative energy states. Coupling the two solutions does not change
this picture significantly, and the exact solution is a total wave function which
drops to zero at large distances. This means that both positive and negative
energy solutions describe particles permanently confined around the point 7 = 0.

Next look at the vector case (y = 1), and begin again by neglecting the
coupling between the positive and negative energy states. In this case, however,
either the positive or negative energy state is always unconfined. For the example
shown in Fig. 4, 0 > 0 and the positive energy states are confined and the
negative energy states are not. Including coupling between the positive and
negative energy states mixes the two states, and the wave function for the exact
positive energy solution acquires a component with a “tail” which oscillates to
infinity, signaling deconfinement. The effect of the coupling is to produce an
effective potential composed of two regions separated by a finite potential barrier
through which the quark can tunnel. Once it is free of the potential barrier



can propagate endlessly through space, thus becoming a free quark. In this
se, the exact coupled solutions do not confine either the positive or negative
ergy states, and the bound state is unstable. This example, known as the Klein
radox [5], is one of the unphysical instabilities we are trying to avoid.

D. Requirements for stability

A relativisitic equation with a confining kernel with a given Lorentz struc-

re will have stable, physical solutions only if the following four conditions are
tisfied:

(1) the binding energy must be real;

(2) the energy eigenvalues must be independent of the numerical approxima-
tions used to obtain them;

(3) unphysical solutions, if there are any, must be confined to an identifiable
part of the spectrum clearly separated from the physical solutions; and

(4) the solutions must have the correct structure in coordinate or momentum
space.

e will discuss each of these conditions in turn.
Condition 1 - real energies. Any eigenstate wave function which describes a
ason in momentum space, ¥(p,t), can be written

¥(p,t) = d(p)e**", (1.4)

1ere E = y/u? + P 2. The discussion is simplified if the particle is chosen to be
rest, P = 0. Then, if u is complex, p = o =+ i['/2, the absolute square of the
eson wave function is

(e, t)]? = [(p)7e*™. (1.5)

5 time increases, this goes exponentially either to zero or to infinity, showing
at the state is unstable.
Condition 2 - numerical stability. The different relativistic equations will be
lved numerically in Sec. IV using spline functions to model the wavefunctions
momentum space. (A description of the properties of the spline functions
given in Appendix A.) So long as enough spline functions are used to model
e system, the energy of the lower lying stable states will not vary much as

the spline rank is increased. However, if the state is unstable it is part of a
continuous spectrum and the energies obtained from the “eigenvalue” equation
only represent a discrete approximation to this continuous spectrum. They will
vary strongly with the number of splines, much as the location of the nth point
in the interval {0, 1] will vary strongly with the number of intervals N into which
the the line segment is divided. This dependence of an energy level on spline
rank is one of the most obvious symptoms of instability.

Condition 3 - isolation of instabilities. In some cases we find that, follow-
ing the second criteria, the positive energy states are stable and the negative
energy states are unstable. This may be acceptable for a phenomenology, where
the negative energy states can be rejected as unphysical from the start. How-
ever, in some cases these unstable negative energy states become positive as the
spline number increases, and they can become so positive that they cross the
gap separating the negative and positive energy states, enter the positive energy
spectrum, and mix with states which would otherwise be stable. In this case the
distinction between (stable) positive energy states and (unstable) negative energy
states becomes blurred, and we cannot rely on the predictions of the equation.

Condition 4 ~ correct structure. Even if the mass is real, the state might
not be confined in a finite region of coordinate space (as in the Dirac example
outlined above). If the state is confined, 1t8 coordinate space wave function will
approach zero as r ~ oo faster than an ezponential. It can be shown that the
momentum space wave function resulting from such a state will also fall off at
p — oo faster than an exponential, and that the number of nodes will correspond
to the level of the state. It is easy to distinguish such behavior from that of an
unconfined state, which is neither localized in coordinate nor momentum space,
and which has many nodes not related to the level of the state. We can use
the Dirac wave functions for comparison, since we know that they are stable for
scalar confinement and unstable for vector confinement. Examples of both types
of states will be given in Sec. IV.

In the following sections, these stability conditions will sometimes be referred
to by number, as we will see that a successful phenomenology requires that all of
them be satisfied.

E. Summary and Outline

In summary, the stability conditions are: (1) the eigenvalues of the system
must be real; (2) the eigenvalues cannot vary with the spline rank; (3) the positive
energy states must always be greater than any unstable negative energy states;
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FIG. 5. Feynman diagram for the meson bound state vertex function. The kernel, or
otential, is denoted by V.

nd (4) the wave functions must have the appropriate structure for that specific
;ate.

In Sec. II specific forms are given for the Dirac, Salpeter, and one channel
sectator (denoted 1CS) relativistic equations. Then in Sec. III these three equa-
ons are studied using an approximation technique which gives insight into the
rigin of the instabilities, and the estimated masses of stable states are com-
ared to the exact numerical solutions presented in Sec. IV. The three equations
re solved numerically in Sec. IV using spline functions for a quasirelativistic
»nfining potential. The actual equations used in the computer code and the
roperties of spline functions are given in Appendix A. Finally, conclusions are
iven in Sec. V.

II. THE RELATIVISTIC EQUATIONS

In this section we define the one-channel spectator (1CS) equation obtained
y confining the heavier particle 1 (assumed to be the quark) to its positive
nergy mass shell, fixing the kg integration. Then we show that these equations
sduce to the Dirac equation for the lighter particle (particle 2) in the limit when
he mass of the heaver particle m; — oco. We conclude by finding a helicity
spresentation for the 1CS and for the Salpeter equation.

Re kg

FIG. 6. This figure shows the position of the four poles associated with the four
propagators G? in the bound state equations.

A. Dirac form for the one-channel spectator equation

The Feynman diagram for the bound state meson vertex is shown in Fig. 5.
Particle 1 is the quark, particle 2 the antiquark, and © is a matrix in Dirac space
which describes how the confining force couples to the quark or antiquark. It can
be a scalar, 1, or the time component of a four-vector, 7°. The kernel V' contains
the momentum dependent structure of the confining potential. The equations
are derived in the center of mass rest frame, P = (u,0). Later, the quark will be
placed on shell, thus producing the single channel equation. The four momenta
used in the diagram are

p=p+3P
ki=k+iP K

Do DO
v "o

(2.1)

!

3
I
|
bl |
|

The vector k is the average internal momentum and vector p is the average
external momentum of the quark-antiquark pair:

p=3p1+p2) P=pi-ps. (2.2)

With this notation, the Bethe-Salpeter equation [6] for the bound state vertex
function for the meson is

mo+ ko
m3 — k2

0) =+ [ o Vo) © THEA r

Gy R 0. (2.3)

The two fermion propagators have poles in the complex ko plane; these four
poles are shown Fig. 6. Factoring the denominators of the propagators



=G} G; (2.4)

m? — k;
poles are at

ole 1 (Gi’-)_l = Ey, — (ko + u)—ie=0
ole 3 (G Y= E, + (ko+ 41) —ic=0
ole 2 (G;)_l = Ek2 - (ko - IL) —ie=0
ole 4 (G5) ™' = Ey, + (ko = 1) —ie =0

ko = B, — b —ie
ko = —Ekl u + ie
ko = Ek, — e

ko = _Ekg 2[1 + i€.

(2.5)
place particle 1 on the positive energy mass shell, the kg integration is closed

he lower half plane and only the residue from pole 1 is kept. This gives the
>wing equation:

3 m
(0) =~ [ s VD @ (it k) TH) T2 R0, (29

sre now ky = (Ex,,k) and ky = (Ey, = p, k). This is one form of the one
nnel spectator equation.

Next, we recall that the projection operator can be written [7] as a sum over
shell u spinors (to be defined below)

mi+ /:71 = Zu(k, /\')ﬁ(k, ). (2.7)
Al
rrefore, if we define the relativistic meson wave function by

1 m2+ ma+ k2

W(k,A) = JoEn u(k, A) I‘(k) p gy (2.8)
n Eq. (2.6) becomes
@k _V(pk)

¥(p,A) (ma— p2) = — Ze;;t(p, k) U(k,\)©, (2.9)

27!')3 v 4EP1 Ekl

ere
035 (p, k) = u(p, \) © u(k,X). (2.10)

Equation (2.9) is the Dirac form of the one-channel spectator equation. Later
will reduce this equation further, but as written in (2.9) it looks very much like
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a Dirac equation for the light antiparticle (particle 2) moving under the influence
of a effective potential which depends on the spin of the heavy quark. To make
this comparison more familiar, we convert the equation into the usual form by
taking the transpose and multiplying by the Dirac charge conjugation matrix C
(see Ref. [7]). This gives

(k) V(p, k)

(et £0) 20, = -6 3 / = i ofip k), (211
P

where

¥(p,N)=Cc¥T(p,)) ©6=coeTc. (2.12)

With the exceptions of the spin dependence of the source, expressed through
the factor ©}f(p, k), and the fact that the effective potential does not depend
solely on q = p — k, the difference of the three momenta, Eq. (2.11) looks like
the familiar Dirac equation for a particle with four momentum equal to —p; (as
expected from the charge conjugate state).

We will now calculate the matrix element ©+* and show that Eq. (2.11) does
indeed reduce to a Dirac equation in the limit m; — oco. In spin space the u
spinor, as defined in Ref. [7], is

1
u(p,s) = (B, +m)¥ [ .. p |X (2.13)
E,+m

which contains the operator o -p. It is convenient to work in helicity space, where
o -px* = 2\|p|x*. The u spinor in helicity space is therefore

1
) X, (2.14)
2\

ut(p, A;) = u(p, A;) = Ny,

where we have introduced the notation u? with p-spin = +1 for the positive energy
solutions (u) and p-spin = —1 for the negative energy solutions (v, described
below), and

Ipl

NP:’ = (Epj +mj)% pj = N2 .

(2.15)

The index j denotes a quark (j = 1) or antiquark (j = 2). The values of p
range from 0 to 1. The helicity spinors are defined in Table I for cases when the

11



TABLE 1. Helicity spinors
internal quarks

external quarks

b d
I
™
N
o
N—
>
Il
.
N
n o
5 8
NI [CIC
v

momentum is along the z axis (external quarks), and when the momentum is in
the zz plane at an angle 8 with respect to the z axis. We will use a prime to
distinguish the latter from the former. The v spinor, or negative p-spin state,
used in this paper is

=208\
u”(p,A;) = v(-p,A;) = Ny, . xM, (2.16)

and is consistent with that used in Ref. [8]. It is convenient to use the helicity rep-

resentation because helicity is invariant under rotations, and because the vector

operator o - p is replaced by scalar eigenvalues, thus simplifying the algebra.
The matrix element ©73}(p, k) is then

015 (p, k) = Np, Ni, Axx (6'6) (1 FANA ;31/21) , (2.17)

where the upper sign is for the scalar vertex and the lower sign for the time-like
vector case. We will assume, for the time being, that the polar angle of the
external quark is 6’ instead of 0 (as it will be later). Then

AA)\I(G'G) = §yn COS %(0 - 0’) - 2A6)‘, —» sin %(0 - 0’) . (2.18)
Therefore, forming the two independent linear combinations

*(p) = (P, 1) cos 36’ - (p, —-) sin 16’
& (p) = ¥ (p, 1) sin 16’ + ¥ (p, —§) cos 36’ (2.19)

Eq. (2.11) becomes

12

NP1 Nkl
A4Ep, E,

{<I>+(k) [1 F prFy cos(d — o')] + &~ (k) prfy sin(0 — e’)}

mat 1)) =0 [ £ Vip, k)

N, 1Nk1
(m2+ ,b2 = "e/ (271’)3 4pE'p1Ek1 V(pa k)
{<1> (k) [1 + prky cos(d — o')] £ &+ (k) frFy sin(d — e')}
(2.20

Hence the interaction depends only on the difference § — 6’ and we may set §' = 0
without loss of generality.
For later use we will record here the other p-spin matrix elements of ©

9.,\.,\_’ (pv k) = ,\,\'(pr k)
O35 (p,k) = —Np, Ni, A (6'0) (2X Fy 2 B1) =2055(pK).  (221)

B. Limits of the one-channel spectator equation

Now we can observe that taking the limit mj — oo gives a Dirac equation for
the light particle. The fixed source for the Dirac equation is a heavy quark, so
the equation will model a Q g system, such as a D meson. As m; — 00, p1 — 0
and V(p,k) — V(p — k) (see below), giving

A d3k
(ma— #2) 2(6) = = [ 53 V(o - 108(k), (222)
where the helicity of the heavy particle was dropped because the equation i
independent of it and we introduced the physical momentum pj = —pz = (p -

E,,,-p) — (EB,p'), with Ep = p — my. In position space Eq. (2.22) is

(ma — Egy® +i+'8;) ®(r) = -6 V(r)&(r), (2.23

We will return to this equation in the next subsection.
The confining potential V (r) which appears in Dirac Eq. (2.23) is taken to be
a simple linear potential in position space [9]

d2 e~ €
= limo—s .
e—0 de2 T

—er

V(r)=or= lin(x) ore (2.24
€~

13



momentum space this potential is

1 4¢?
V(q) = —8no llm { @i (@ _: a2y } . (2.25)

iis form of the potential is inconvenient because the limit € — 0 must be taken
merically. For the Dirac equation, we use an alternative form which has the
me physics

V(q) = ~8n0 {51- ~ 8%(q) ‘;q } (2.26)

lere q = p—k and q' = p—k'. It is instructive to note that the position space
rm of each of the terms in (2.26) is

810 tim 8" im0t~ T pora..
q4 T =0 (q2+€2)2 0 ¢ =TT
3 3 18 - 3 3, STo 52
5%(q) / &g = i 5°(0) / O s = (2.27)

ance the role of the delta function subtraction is to remove the infinite constant
»m the first term, leaving a pure linear potential.
In relativistic two-body equations, the potential (2.26) is generalized to [9)]

(p—- k)t

ne insertion of the energy factors is necessary to make the kernel (2.28) co-
riant, and is associated with the restriction of the heavy quark to its mass-
ell [9). The full 1CS also includes the covariant replacement (p — k)2 —
Zps — Ex,)? — (p — k)%, but in both the theoretical and numerical studies
this paper we have neglected retardation and use the simplest replacement
' — k)2 — —(p — k)2. We will refer to this as the quasirelativistic approxima-
on, and it should be emphasized that we use this approximation in this paper
ily to simplify the discussion. We also neglect the regularization factor and
rm factor introduced in previous studies [9].

The energy factor in the subtraction term in (2.28) gives rise to a relativistic
fect of some importance. To see this, evaluate the diagonal matrix element

3L! 8o
wivelw) = [ dapdSk«p(p){Ema p-#) [ ﬂf—k,)—}w(k)

1 a3k’
V(p,k) = —SWU{G—:——)- Ep, 8*(p—k) / E———} . (2.28)

14

d3 d3 g 3 i (r -r) d3k'81ra
G Lo e {E m}zb(r)
d*k’' 8
= /d3r’(/)(r) {pr E;—-(;—_%}w(r), (229)

where, in the last line, p = 1/p? — vV/=V?2. Hence the subtraction term becomes
an operator which is a function of p> — —V? but independent of 7. It can be
evaluated by standard means

d3k' 8mo  lm E / d3k' 8o
Bo (R em0 P B [(p- k)2 + €2
o 20 my m‘f E, +p)}
=2_29 1 1 1
e M {Em * pE2 Og( my
o
=——-C(p?). (2.30)

This new subtraction term contains the ssme singular part we found before [see
Eq. (2.27)] plus a new finite part C(p?). The finite part arises from the relativistic
energy factor in Eq. (2.30), which produces an infinitesimal modification of the
singular part, and it vanishes in the m; — oo limit. It has an interesting effect
which will be discussed in the next subsection.

The confining potential has the property that it is very singular when q — 0.
This suggests using a peaking approximation in which 8 ~ ¢, so that the coupling
between &+ and ®~ can be neglected. No further approximations are needed,
because we may reduce all factors of E,, and Ej, to derivative operators, and
replace

k-p
(Exy +m1)(Ep, +ma)
o ®-pr  R.#
2(Ek1 +m1)(Ep, + m;) 2 2’

k1p1 cos(6 — 8') =

(2.31)

because the operators k2 (which operates on the initial wave functions) and p?
(which operates on the final wave functions) will eventually give indentical results.
Furthermore, the operator q2 can be reduced to

8roq? 4mo o

15



Combining all of these effects, Eq. (2.20) becomes a single Dirac-like equation
vith a momentum dependent potential

(ma+ 1) 2(3) = 6CEI) -6 [ 25 Vip kINR()

1 q?

2 (Ex, +m1)(By, +m1)] y @9)

[1; (k2 +p%)

vhere N' = Ny, Ni, /\/4Ep, Ex,. Recalling that pyo = M ~E, = Eg+m,—E,,,
the coordinate space form of this equation is

(m2 - [EB +my—y/mf- Vz] 2+ m*‘ai) &(r)

=-6 ([0‘7‘ - C'(p2 ] (1 F -2) F - E—_—é—fw) No(r), (2.34)

vhere we have anticipated the application to diagonal matrix elements where
¢2 = p? - —V?2, and all functions E,, = E; are replaced by \/m} — V2. Using
q. (2.34) we can study the single-channel spectator equation when the mass m,
s close to ma, and also see how it approaches the Dirac limit. We will study
;hese issues approximately in Sec. IIL

C. Equations with mixed scalar and vector confinement

Note that the operator © depends on its Dirac structure; it is 1 for a scalar
:onfinement and «° for vector confinement. Hence Eq. (2.12) gives

_ { 1 scalar

o= ~0 vector . (2.35)

[n the nonrelativistic limit, the Dirac equation reduces to a Schrodinger equation
for the upper component, and we will choose the sign of our potential so that it
confines the positive energy solution in the nonrelativistic limit. Hence, in order
to obtain a nonrelativistic confining potential equal to or, independent of the
mixing parameter y, the operator form O of a mixed kernel must be

O=(1-9)101-y7*®+°. (2.36)

Using this definition and the result Eq. (2.34) gives the following equation for a
mixed confining potential

16

(m2 - [EB +mp — E1] 'y° + i’yia") (I>(r)

= -6 ([UT - C(pZ)] (1 ”‘ﬁ?(l _ 21/)) o 1 -2y)

BTy )2) No(r). (2.37)

Assuming a ground state solution of the form (7]

<I>(r)=( () .)x, (2.38)

—ig(r)o - ¢

Eq. (2.37) reduces to the following set of coupled equations for the radial wave
functions f(r) and g(r)

dg 2
(Eg —m2 ~ By —my)) f + % T

. 1-2
= ((ar~C) [1—pf(1~2y)]—-%—(—él—+7—nyl)—)2)./\ff
(Eg+me—[Ey—-mi]) g — %

S ((ar -C)[1-2y)-53] - %(E—:—T-m—)z) Ng. (2.39)

We will return to this coupled set of equations in the next section.

D. Spectator equation in helicity space

The equations we have obtained so far are convenient for approximate anal-
ysis, but an exact helicity decomposition is better for numerical solutions. To
obtain this form of the one-channel spectator equation, return to Eq. (2.9) and
expand the wave function and the projection operator in terms of the helicity
spinors given in Egs. (2.14) and (2.16). The wave function can be expanded
using the decomposition of the propagator into p spin contributions (7],

(mo+ ko) 1 u(k, A2)@(k, A2)  v(—k, A2)(—k, A2)
2 = 2 8 . (2.40)
- k2 2Ey, " Ey, — koo — 1€ B, + koo — i€
Using this in Eq. (2.8) shows that the wave function has the form
)= 98, % (p, Xa). (241)

pA2

17



thermore, the most general form of the pseudoscalar vertex function with
ticle 1 on shell is

@t (p, ) T(p) =7+ (p,A) {T17° +T27° (ma— #2)} (2.42)

| these Dirac operators are built only from the 2 x 2 matrices 1 and o-p = 2Ap.
srefore in helicity space the helicity is conserved and an explicit calculation
ws that

T (P, A T(p) u (P, A2) = bax, (2N T*(p) (2.43)

sre the I'?(p) are independent of the helicity. Hence the expansion (2.41) can
written

5By, ¥(p, ) = e {$1a(0) T~ (P, A) + 2N) Y1(P) TH(, N)} ,  (2:44)
V 4EP2EP1

ere
r- r+
N M _—— 2.45
Vo= "B T E.-r VT En B, th (2.45)

nging all of these elements together, using Eq. (2.21), and choosing the sign
she vector interaction in accordance with Eq. (2.36) gives the helicity form of
: single channel spectator equation

"(Ep ~ Ep, — [Ep, —m1])¥1a(p) \ Dy D Y1a(k)
it Inhe) = [v (o o) () e

ere Ep = p—my,
d3k
Jo= J @40

: rescaled potential kernel is
Np, Np, Ny, Ny,
4y Ep, Ep, Ek: Ekz

d D; = A; + B;cosf with

V= v, (2.48)

A =Q By =FR
Ay =T, By =15,
As=S,  Bs=+T (2.49)
A4 =R B4 = :FQ,
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and

Q = 1+ pifpskiks
Sj = Pj — k1kapjr

R =y k1 + foks

-~ 2.50
T = kj — Pr1pokj . (2:50)

In (2.49) the upper sign holds for scalar confinement and the lower for vector
confinement and in (2.50) j’ # j.

For the mixed scalar/vector confinement defined in Eq. (2.36) the values of
A; and B; are:

A =Q By = —-R(1 - 2y)
Ay =T By = S(1 - 2y)

2.51
A3 =S B3 = T5(1 - 2y) (2.51)
A4=R B4=—Q(1—2y).

When the masses are equal this equation reduces to the equation previously
introduced in Ref. [10].

E. Dirac equation in helicity space

The helicity form of the Dirac equation is obtained from (2.46) by taking the
my — oo limit

(Eormdbd)=[o(2 &) () e

where now V = VNp, Ni,/ (2\/Ep, Ek; ) and d; = a; + b; cos 6 with

a; =1 by = —poka(1 — 2y)
az = kp ba = p2(1 — 2y)

k p 2.53
az =p2_ by = k(1 - 2y) (259)
aq = poka by = —(1-2y).

We conclude this section with a derivation of the helicity form of the Salpeter
equation.

F. Salpeter equation in helicity space

The Salpeter [11] uses the approximation that the potential, or kernel, of the
Bethe-Salpeter equation is independent of ko and pg. Therefore, in coordinate
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ce the potentials and the wave functions are instantaneous, i.e. t; = t5. The
peter Equation has two undesirable features. First, neglecting the energy
riendence of the kernel is unphysical. Second, there is no Dirac limit for this
lation. When the mass of one of the particles is taken to infinity, the resulting
lations do not reduce to a Dirac equation for the light quark moving in the field
ated by the heavy quark. Hence, it is most appropriate to use this equation
equal masses, far away from the one body limit.

The direct derivation of the Salpeter equation utilizes the same steps as those
d for the 1CS equation with a few modifications. In this case pole 2, as defined
2q. (2.5) and Fig. 6, must be included. For brevity we will only give the final
alt. The general equation is

Ff‘pz(p) - / )3 “ Z z ePlPlFszGhengz (2.54)
PPy A1 Mg

sre p1 # p2 and p} # ph. The second channel wave function, denoted s,
responds to propagation of the two quarks in their negative energy state, and
qual to

ry+

¢2a=—E-——_kz+Ek, +,J,'

(2.55)

e two wave functions, 11, and g, satisfy the coupled equations
( (/‘ - Epz - Em)wla(p) ) - /V (Dl _DS) ( ¢la(k) ) (2.56)
(ke + Ep, + Ep, )¥24(p) s Ds -D, Y2a(k) )’
Ds = 12 + krkz + (1 ~ 2y) (ﬁll.cg +z327cl) cos @ (2.57)
other terms have the same definitions as before.

III. APPROXIMATE THEORETICAL RESULTS

In this section we develop approximations which help us understand the sta-
ty issues which will arise when the equations are solved numerically.

20

A. Dirac solutions for large r

We begin by studying the stability of Eq. (2.39) in the Dirac limit when
mp — 00

Eof=(my+ar) f- 22 -2
Bpg=(-m;—or(1-2)) g+ . (3.1)

This is the exact Dirac equation for a potential which is a superposition of scalar
and vector linear confining forces. At large r the equations become approximately

dg
orf— Pt 0
—-or(l —2y)g+ gé= 0. (3:2)

The solution to these equations depends on the value of y. If y < 1/2, then the
solution which approaches zero as r — oo is

f(ry=N e~ VT2 for? g(r) = N, e~ VI=2 }or? , (3.3)
f g
where

-V/1=2yN,. (3.4)

Note that the wave functions become less confined as y — 1/2. For y > 1/2
the solutions are oscillatory and escape to large r. In this case the most general
solution is a linear combination of the following two independent solutions

f1(r) = Ny, sin (\/2y -1 -;-arz) g1(r) = Ny, cos (\/211 -1 %orz)
f2(r) = Ny, cos <\/2y_—1 —;—01'2) g2(r) = Ng, sin (\/537—_1 %013) , (3.5)

where

-2y — 1 Ny,
=2y —1N,,. (3.6)

This is the simple mathematical explanation behind the results shown in Figs. 3
and 4.
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B. Estimates for the one-channel spectator equation

Study of the solutions of the approximate one channel spectator equation,
- (2.39), is complicated by the presence of the operators \/m? — V2 and 7.
will therefore develop a variational-like method which can give us insight into
: confining behavior of the equation.

First, if 0 = 0 the ezact solution of the equations is

f(r) = fodo(yr)
9(r) = go 1 (7)), (3.7)

ere je is the spherical Bessel function of order £, and the energy is a function
the parameter

Eg(y) = [,/m"l’ + 92 —ml] + \/mg +42.

e spectrum is continous with a gap between the positive and negative energy
tes. It is amusing to see that the energles of both the positive and negative
;rgy states are always greater than the corresponding Dirac state energies,
1 that the negative energy spectrum is now bounded between —m3 and —m,,
tead of running from —mgy to —oo. This already illustrates one of the new
tures of the 1CS equation.

When ¢ # 0 we cannot solve the equation analytically, and will limit our
idy to the behavior of the expectation value of the energies as estimated by
ting matrix elements of the equation. To compute these matrix elements we
1 use wave functions of the type shown in Fig. 7, which are constructed from
1erical bessel functions of order zero and one. This choice makes the evaluation
functions of the operator V? easy.

Ideally, the functions used should consist of a region where —V? is positive,
d a “tail” region where —V2 < 0. The functions shown in Fig. 7 were con-
ucted from j¢(yr) and he(kr) joined so that the function and its first derivative
» continuous. However, we found that the contributions from the tails did not
ange the qualitative behavior of the matrix elements, and hence we present
re only the simplest results for wave functions without tails (where k/y — oo,
2 heavy solid lines in the figure). These results are easy to evaluate.

Hence the “trial” wave functions we choose are

(3.8)

fir)= {gojo(vr) N
g(r) = {gojl('yr) ::: i Z: ’ (3.9)
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FIG. 7. The trial wave functions f(x) and g(z) as a function of x = yr. The different
tails are for the cases k/vy = 0.1 (biggest tail), 0.5, and 2.0 (smallest tail), as discussed
in the text.

where j¢ is the spherical Bessel function of order ¢, 7 is a variational parameter,
and the constant n; = 4.493 is the location of the zero of j;. These wave functions
are eigenfunctions of the operator V?:

V)= 2y ) = =17 0)
"~ ror? =7

1 92 2

Vo= (57 ) 96 = =7 o(r) (3.10)

Hence the operators /m3 — V2 and $} can be readily calculated.

Substituting f and g into Eq. (2.39), multiplying the first equation by jo(yr)
and the second by j;(77), and integrating over d°r gives the following coupled
equations for f, and g,

(EB— l:\/m%-i-’)’z—ml] —m2) fot+79

K% - CW)) (-Ra-w) -2t 29)} Nfo=Sifo

(EB" [\/m%+72—m1] +m2) 9o —vbfo

- {(Zs_% - cw‘)> (1-2y - #7) — -"%ﬁ%} Ngo=~590, (311)
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'[G. 8. The Dirac energy E = Ep as a function of the variational parameter - for
erent mixing ratios y = O (solid line), y = 0.4 (dot-dashed), y = 0.6 (dashed), and
1.0 (dotted).

ere
™ 3d -2 ) ny 3d$-2
Jo z%dzjd(x) o z2dzj?(x)
(3.12)
n . n .
d 2 1 d 2
02 = _f_g_f_f_]& =0.776 s = —,Q,T-{:-M =0.412
Jo 22dzjé(z) Jo ! z?dzji(z)
1
™ o 2dri?
b= Jo 4@ _ o ay (3.13)

0"' z2dzji(z)

lving Eq. (3.11) gives an estimate for the eigenvalues Ep as a function of v,
ated to the size of the state

1 1
Zp = \/mi+9% —mi+5(Sp - S+ \/Z(2m2 +S5r+8)2+9%b,  (3.14)

iere Sy and S, were defined in Eq. (3.11). These energy surfaces for a variety
cases are shown in Figs. 8-12. In all of these cases we chose ¢ = 0.2 GeV? and
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~2.0

-4.0

FIG. 9. Energies E = Ep as a function of the variational parameter v for the Dirac
equation (solid line) and the 1CS equation with mi = 10m2 (dashed line). In both
cases, y = 0.

1.0 2.0 3.0
FIG. 10. The 1CS energy E = Ep as a function of the variational parameter -y for

different mass ratios k = m;/m2 = 10 (solid line), x = 5 (dot-dashed), x = 2 (dashed),
and k = 1 (dotted). In all cases, y =0
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FIG. 11. The 1CS energy E = Ep as a function of the variational parameter ~y for
ferent mixing ratios y = 0 (solid line), ¥ = 0.4 (dot-dashed), ¥ = 0.6 (dashed), and
= 1.0 (dotted). In all cases m;/m2 = 10.

FIG. 12. As in Fig. 11 but with m; = ma.
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TABLE II. Comparison of the exact and estimated solutions for the Dirac and 1CS
equations, All energies are in GeV, and the symbol - indicates that there is no stable
solution,

parameters positive energy negative energy
exact estimate exact estimate
my/m2 v E, E v E_, E v
Dirac
oo 0.0 0.976 0.950 0.715 -1.249 -1.226 0.859
04 1.028 1.014 0.673 -0.660 -0.650 0.463
One Channel Spectator

10 0.0 0.964 0.946 0.635 -1.091 -1.034 0.988
04 1.013 1.007 0.603 -0.619 -0.598 0.505
5 0.0 0.940 0.926 0.579 -0.936 -0.828 1.272
0.4 0.992 0.992 0.552 -0.548 -0.532 0.563

2 0.0 0.857 0.857 0.471 -0.607 - -

0.4 0.928 0.952 0.452 - - -

1 0.0 0.745 0.777 0.379 -0.330 - -

04 0.853 0.928 0.367 - - -

mg = 0.325 GeV. We will now discuss some of the interesting features of these
solutions.
Note that the solutions (3.14) are always real, and that as y — 0

Ep — -2‘% (c1 — e3(1 — 2y) % |e1 + es(1 — 2))) (3.15)

Hence the positive energy solution always approaches +co as v — 0, but the
negative energy solution goes like

. ¢ +c3
—c3(1 - 2y) ify<0.795 = ——
Jopgd 2c3 (3.16)

c3(2y—1) ify > 0.795,

and becomes positive for y > 1/2, as shown in Figs. 11 and 12. This is a sign
of instability. When y > 1/2 the positive energy states cannot be stable because
they may always reduce their energy by tunneling through to a negative energy
surface and sliding down to —oo. '

A similar problem may occur at large 7, but because our estimates are less
reliable here (we neglected the wave function tails which are more important at
large ) we can draw no firm conclusion. As vy — oo,
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Ep—7 (1 + \/5) , (3.17)

id because b < 1 the negative energy solutions also become positive at large
This feature sets in at lower values of vy as the mass ratio m; /m, decreases,
is shown in Fig. 10. In fact we do note that the numerical solutions for the

)gative energy states are unstable for small values of m; /m,, but we see no sign
instability in the positive energy solutions for small values of y and all values
my /ma.

Finally, a comparison between these estimates and exact solutions for the
ound state are summarized in Table II. Note that Eq. (2.39) does a credible
b of explaining the trends, all of which can be understood qualitatively from
:amination of the figures.

Before leaving the discussion of the 1CS equation, we comment on two features
our estimates due to the presence of the “constant” term C(p?) of relativistic
igin [recall Eq. (2.30)]. First, note that the positive energy 1CS solutions
proach the Dirac limit as m; — oo from below instead of from above, as
>uld have been suggested by our analysis of the free particle case. (Note the
mparison in Fig. 9.) Even though the energy factor [E) — m,] is positive, the
rm C is negative and is just a bit larger, giving the observed behavior. Second,
e term —C becomes more negative with decreasing mass ratio, explaining the
op in the binding energy as m; /ms decreases to unity.

C. Stability of the Salpeter equation

Applying our technique to the Salpeter equation (2.56) for equal masses (my =
2 = m) gives

(b—2E) fi=w1 fi +ws fa
(M+2E) fa=—-w fo—wa fi (3.18)

here

wy = {(f’% - 0(72)) (0 -7 +ay5*) ~ 225 (1 - 2y)} N
w=2{(Z-cem) -0+ ZFa-wm N, G19)

ad we have assumed that f; and f2 are both S-states. Hence the estimated mass
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FIG. 13. The square of the bound state mass p? as a function of the parameter
for the Salpeter equation with a pure scaler confining interaction (y = 0). Solid curve
{m = 0.325), dashed curve (m = 0.1). '

p? = (2E + wy)? — wi. (3.20)

We have recovered the result that the masses always occur in % pairs, and we
see that they may be imaginary if |we| > |2E + w;|.
First note that as v — 0,

2 = (3}7’1)2 : (3.21)

and as 7 — 00,
u?=(2), (3.22)

so that u? is always large and positive at the extreme values of -y, and must have
a minimum for some <. If this minimum is negative, the masses will be imaginary
(i.e., the state will be unstable). This can occur only if m and y are small enough
to satisfy the condition

2E + {(9-3—‘ - (72)) (1- 652 + * + 8y %) —4%;32(1 —2y)} N
=2FE +w; —w; <0. (3.23)
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TABLE III. Comparison of the exact and estimated solu-
tions for the Salpeter equation. All energies are in GeV and
the symbol ~ indicates that there is no stable solution.

—

parameters exact estimate

m y E? E? v

0.325 0.0 - 0.973 0.340

0.4 1.339 1.537 0.349

0.6 1.510 1.819 0.353

1.0 1.837 2.380 0.361

0.650 0.0 3.112 3.217 0.466

0.900 0.0 5.235 5.396 0.5629

"m = 0 this condition reduces to to
27—470(c1+C2--12;) 1-2y)<o0. (3.24)

ence the Salpeter equation for m = 0 is unstable only if y < 1/2! As m
icreases, this critical value of y decreases. If y = 0, our estimate Eq. (3.23) leads
» the conclusion that the scalar Salpeter equation is unstable only if m < 0.18;
ir larger values of m the equation has real roots for all y. This behavior is
lustrated in Fig. 13, which shows that the scalar Salpeter equation is stable for
1 = 0.325 (our standard choice for the quark mass) and unstable for m = 0.1.

_ Unfortunately, our crude estimate Eq. (3.23) does not reproduce the quanti-
itive features of the exact Salpeter solutions as well as it did for the previous
ases. The comparison between exact and estimated solutions is given for a few
ases in Table III. Note that the qualitative agreement is good, but that we are
nable to “predict” the the critical mass at which the Salpeter equation becomes
nstable. The exact solutions tell us that this mass is around 0.85 GeV, much
igher than the estimated value of 0.18.

IV. NUMERICAL RESULTS

Now we turn our attention to the numerical solutions for the Dirac, 1CS, and
alpeter equations.

Numerical results are obtained by expanding the solutions in terms of splines,
s described in Appendix A. In this way the integral equations in momentum
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TABLE IV. First four positive and negative Dirac energy levels for y=0.0, 0.4,
and 0.6 with spline ranks of 20, 16, and 12. The energies are in GeV. The bold
face numbers are unstable states with energies greater than the stable ground
state, as discussed in the text.

Level| SN=20 SN=16 SN=12 | SN=20 SN=16 SN=12 [ SN=20 SN=16 SN12

4 1.945 1945 1.946| 2.035 2.035 2.035| 2.092 2.092 2.093
3 1695 1695 1.695] 1772 1.772 1.772| 1.821 1.821 1.821
2 1.394 1.393 1.393| 1456 1455 1.455| 1.496 1.496 1.496
1 0976 0976 0976 1.028 1.028 1.028| 1.065 1.065 1.065
-1 | -1.249 -1.249 -1.248)] -0.660 -0.660 -0.660| 2.028 1.576 1.120
-2 | -1.576 -1.575 -1.574| -0.781 -0.781 -0.780 | 1.190 0.861 0.525
-3 | -1.839 -1.839 -1.838| -0.879 -0.878 -0.879| 0.899 0.590 0.278
-4 | -2.067 -2.067 -2.078| -0.963 -0.963 -0.964 | 0.692 0.396 0.090

—

space are turned into matrix equations and the problem reduced to a general-
ized matrix eigenvalue problem. Numerical values of the eigenvectors (expansion
coefficients) and the eigenvalues (bound state masses or binding energies) are
obtained, and the wave functions are constructed from the spline expansion.

A. The Dirac equation

The Dirac equation is reduced to the system given in Eq. (A3) and Eq. (A8)
and can be solved numerically on a PC in a reasonable length of time. The
antiquark mass was set to m = 0.325 GeV and the confinement strength o = 0.2
GeV?2. We looked at four different values of the vector strength: y = 0.0 (pure
scalar), 0.4, 0.6, and 1.0 (pure vector). The first four positive and negative energy
levels for y values of 0.0, 0.4 and 0.6 are listed in Table IV for spline ranks of 12,
16, and 20. The pure vector case (y = 1.0) was found to be fully unstable, as
predicted by Fig. 8, and is not listed in the Table. The eigenvalues, which for the
Dirac equation are the binding energies, are all real and therefore pass the first
stability condition (as described in Sec. ID).

Of the four cases studied, only the negative energy levels for the y > 1/2
cases (i.e., y=0.6 and 1.0) vary significantly with the spline rank, as shown in
Table IV. This violates the second of the stability conditions defined in Sec. ID.
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FIG. 14. Dirac positive ground state solutions for three values of the vector strength
: y = 0.0, E;=0.976 GeV (circles and squares); y = 0.4, E1=1.028 GeV (solid and long
ashed lines); and for y = 0.6, E1=1.065 GeV (heavy short dashed and dotted lines).

‘urthermore, the bold face values in Table IV highlight unstable states whose
igenvalues are greater than the positive ground state, and hence the y > 1/2
quations also violate the third stability condition. These unstable states were
lentified and tracked with changing spline number by looking at their momentum
pace structure, as discussed below.

The Dirac wave functions are shown in Figs. 14-16. Fig. 14 gives the positive
nergy ground states, Fig. 15 the first positive energy excited states, and Fig. 16
he negative energy ground states. By comparing the solutions for the states with
' < 1/2 (which are known to be stable) with the y = 0.6 solutions, we conclude
hat (i) the positive energy y = 0.6 state has a structure identical to the other
iositive energy states, and hence appears to be stable (as already suggested by
he stability of the eigenvalue shown in Table IV), but (ii) the negative energy
1 = 0.6 ground state, shown in Fig. 16, has a radically different structure (similar
o a momentum space delta function) showing that it is indeed unstable. All of
he y = 1.0 solutions (not shown in the figures) have a behavior similar to the
iegative energy y = 0.6 solution, confirming that they are unstable.

The apparant stability of the y = 0.6 positive energy solution differs from
xpectations based on the discussion in Sec. II and examination of Fig. 8. We
xpect all positive energy solutions for y > 1/2 to be unstable, but as Fig. 8
hows, the positive and negative energy surfaces actually overlap in the y = 1.0
:ase but remain clearly separated for the y = 0.6 case. This suggests that the
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Wavefunctions
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FIG. 15. Dirac positive first excited state solutions for y = 0.0, E2 = 1.394 GeV
(circles and squares), for y = 0.4, E2=1.466 GeV (solid and long dashed lines), and for
y = 0.6, E2=1.496 GeV (heavy short dashed and dotted lines).
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FIG. 16. Dirac negative ground state solutions for y = 0.0, E_; = —1.249 GeV
(circles and squares), for y = 0.4, E_;=-0.660 GeV (solid and long dashed lines), and
for y = 0.6, E_, = 2.028 GeV (heavy short dasheded and dotted lines).
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itability of the y = 0.6 positive energy state is hard to observe numerically
cause the distance between the positive and negative energy surfaces is large
d the “leakage” from positive to negative energy is very small (also suggested

Fig. 4). Presumably a more precise numerical calculation would uncover some
stability in the positive energy y = 0.6 case, but this further calculation is
t needed because the overlap of the positive and negative energy spectrum
»ndition 3) is already a sign of the instability.

We conclude that the fourth stability condition largely reinforces the conclu-
mns we have already drawn, but that it should be used in conjunction with the
her three. The stability of a single state cannot easily be determined solely

tracking (with changing spline number) its behavior. A reliable conclusion
juires the examination of the entire spectrum, with particular attention to
ndition 3.

B. The one-channel spectator equation

As in the Dirac case the antiquark mass will be set to mp = 0.325 GeV and
e confinement strength to o = 0.2 GeV2. We will present results for heavy
lark masses m; = kmq with the mass ratio x = 10, 5, 2, and 1. In order to
mpare the 1CS results to those obtalned from the Dirac equation, we define an
ective Dirac-like binding energy Ep using the relation

“=E0+ml (4.1)

1ere p is the mass eigenvalue obtained from the 1CS equation. This relation
sures that the effective 1CS binding energy must approach the Dirac binding
ergy as m; — oo. Tables V and VI give these effective binding energies (instead
the bound state masses).

Note that results for the equal mass (x = 1.0) 1CS equation are included
ly for comparison because the 1CS equation should not be used for equal mass
stems. If the equal mass particles are identical (as in NN scattering) the
|uation must be symmetrized in order to preserve the Pauli principle. Even
the equal mass particles are not identical, as for the ¢g pairs discussed in
is paper, the equation must still be symmetrized to insure charge conjugation
variance. Furthermore, for bound states with a very small mass (e.g., the pion)
ie symmetrized two channel spectator equation defined in Ref. [12] should be
sed.

The eigenvalues are real for all values of the vector strength y and the mass
tio k (condition 1). However only systems with a vector strength less than
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TABLE V. First four positive and negative energy levels for the 1CS equation
for mass ratios k=5.0 and 10.0 and vector strength y=0.0 and 0.4. Here Ep is
shown in GeV and solutions for spline ranks of 20 and 12 are compared.

y=00 k=50]y=00 kx=100| y=04 k=5.0]y=04 x=10.0
Level| SN=20 SN=12 | SN=20 SN=12 | SN=20 SN=12 | SN=20 SN12

4 2,109 2.113 2.073 2.078 2,226 2.227| 2165 2.168
3 1.808 1.808 1.783 1.783 1.898 1.899 1.858 1.858
2 1.443 1.443 1.435 1.435 1.509 1.509 1.495 1.494
1 0.940 0.939 0.964 0.964 0.992 0.992 1.013 1.013
-1 -0.936 -0.936 | -1.091 -1.090| -0.548 -0.569 | -0.619 -0.619
-2 -1.084 -1.084 | -1.333 -1.332| -0.570 -0.607} -0.715 -0.715
-3 -1.173 -1.170| -1511 -1.515| -0.600 -0.637 | -0.786 -0.785
-4 -1.233 -1.259| -1.650 -1.642| -0.630 -0.675] -0.841 -0.848

TABLE VI. First four positive and negative energy levels for the 1CS equation
for the mass ratio k=1.0 and vector strength y=0.0 and 0.4. Here Ep is shown
in GeV and solutions for spline ranks of 24, 20, 16, and 12 are compared.

y=200 y=04
Level| SN=24 SN=20 SN=16 SN=12| SN=24 SN=20 SN=16 SN12

4 1.881 1.881 1.881 1.881 2.222 2.222 2222 2.223
3 1.630 1.630 1.630 1.632 1.884 1.884 1.884 1.884
2 1.294 1.293 1.293 1.293 1.461 1.461 1.461 1.461
1 0.745 0.745 0.745 0.745 0.853 0853  0.853 0.853
-1 -0.329 -0.330 -0.331 -0.334 0.933 0.724  0.508 0.284
-2 -0.331 -0.332 -0.335 -0.341 0.727  0.527 0.326 0.122
-3 -0.334 -0.337 -0.342 -0.354 0.577 0.387 0.196 0.005
-4 -0.338 -0.343 -0.353 -0.379 0454 0.272 0.091 -0.087
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1
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FIG. 17. Positive ground state soutions for the quasirelativistic 1CS equation with a
pure scalar interaction. The solid and long dashed lines are for kK=5.0, £1=0.940 GeV;
the heavy short dashed and dotted lines are for k=10.0, £,=0.964 GeV. The scalar
ground state Dirac solution for E; = 0.976 GeV is shown for comparison (circles and
squares).

1/2 (0.0 and 0.4) have stable eigenvalues (condition 2). Cases which fail the first
two stability conditions (y = 0.6 and 1.0) are not listed in the eigenvalue tables.
Table V shows the eigenvalues for mass ratios k=5.0 and 10.0. These cases are
very similar to the Dirac cases, and the table shows that in all cases the spectra
satisfy condition 3 (no overlap of the positive and negative energy sectors). Table
VI shows the eigenvalues for the equal mass case (k=1.0). Note that condition 3
is violated for y=0.4; at a spline rank of 24 the negative energy state (shown in
bold face) crosses into the positive energy sector. In the equal mass case only the
pure scalar interaction is stable. The binding energies for k = 2.0 (not shown in
the tables) exhibit the same behavior as for £ = 1.0.

Wave functions for the 1CS equation are shown in Figs. 17-23. In Figs. 17~
19 the wave functions for a large mass ratio and a pure scalar confinement are
compared with the Dirac solutions. Both the positive and negative states for
these systems are completely stable and very similar to the corresponding Dirac
solutions. We also observe how the 1CS binding energies approach the Dirac
values as & is increased.

Figs. 20 and 21 show the wave functions for large mass ratios and a vector
strength of 0.4. For k=10.0 the system is once again totally stable, while for
x=5.0 only the positive states are stable. In this case the instability of the
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Wavefunctions

FIG. 18. Positive first excited state solutions labeled as in Fig 17. Here the x = 5.0
solution has an energy of E; = 1.443 GeV and the x = 10.0 solution an energy of
E; = 1.435 GeV compared to the Dirac energy of E2 = 1.394 GeV.
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FIG. 19. Negative ground state soutions labeled as in Fig 17. Here the k = 5.0
solution has an energy of E_; = —0.936 GeV and the x = 10.0 solution an energy of
E_.y = —1.091 GeV compared to the Dirac energy of E_; = —1.249 GeV.
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1G. 20. Positive ground state solutions of the quasirelativistic 1CS equation with a
'ed scalar and vector interaction (¥ = 0.4) for two mass ratios k. The solid and long
hed lines are for k = 5.0, E; = 0.992 GeV, and the heavy short dashed and dotted
s are for k = 10.0, E; = 1.013 GeV. The circles and squares show the solution for
Dirac equation with E; = 1.028 GeV.
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"IG. 21. Negative ground state solutions of the quasirelativistic 1CS equation for
= 0.4 labeled as in previous figure. Here x = 5.0, E_; = —0.548 GeV and « = 10.0,
1 = —0.619 GeV. The comparison Dirac level has energy E_; = 0.660 GeV.
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FIG. 22. Positive ground state soutions for the quasirelativistic 1CS equation with
a pure scalar interaction. The solld and long dashed lines are for k=1.0, E1=0.745
GeV:; the heavy short dashed and dotted lines are for k=2.0, E1=0.857 GeV. The scalar
ground state Dirac solution for Ei = 0.976 GeV is shown for comparison (circles and
squares).
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FIG. 23. Negative ground state solutions labeled as in previous figure. Here the
x = 1.0 solution has an energy of E_; = —0.330 GeV and the x = 2.0 solution an
energy of E_; = —0.607 GeV compared to the Dirac energy of E_; = —1.249 GeV.
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igative energy states is not accompanied by violation of condition 3; the only
dication of instability is the variation of the negative energy levels with spline
nk (condition 2), as shown in Table V. In this case the structure (condition 4)
inforces condition 2, and we have a first example of a system where the positive
lergy solutions are stable and the negative energy ones are not.

The positive and negative ground states for x = 1.0 and 2.0 are shown in
gs- 22 and 23. Note that the positive energy states are stable while the negative
ilergy ones are not. Here the instability of the negative energy states is only
»parant from an examination of the structure of the wave functions; neither
ndition 2 (variation of the energy with spline rank) nor condition 3 (penetration
"the positive energy sector) seems to occur.

In conclusion, the 1CS system becomes more stable as the vector strength is
screased and the mass of the heavy quark is increased. This will be summarized
rther at the end of this section.

C. The Salpeter Equation

The use of pure scalar confinement with the Salpeter equation gives the first
:ample of instability due to the mess eigenvalues becoming complex (condition
. Actually, the eigenvalues become pure imaginary because the mass squared
real and negative. This situation is accompanied by a very rapid variation of
* with spline rank, as shown in Table VII. However, for y=0.4 the tabulated
)ectra do not vary with the spline rank, and these states are stable, as shown in
igs. 24-26. Fig. 24 also shows that the wave functions for positive and negative
lergies are identical provided 1y, + %2,. This is a further consequence of the
mmetry of the Salpeter equation which produces pairs of eigenvalues with the
me magnitude and opposite signs.

The two figures, Fig. 24 (ground state) and Fig. 25 (second excited state),
:monstrate that these Salpeter systems have solutions comparable to their Dirac
wunterparts. In addition, Fig. 26 illustrates that the y=0.6 and 1.0 solutions are
deed stable by showing that they have the correct structure with the right
amber of nodes for a second excited state.

While it is true that the scalar Salpeter equation is unstable for equal quark-
itiquark masses of 0.325 GeV, increasing the mass of the quarks will give stable
lutions (this was anticipated by the discussion in Sec. III). We find that the
wer mass states of the y=0.0 Salpeter equation are stable when the quark mass
increased to m=0.85. The ground state wave functions for this case are shown
« Fig. 27, where solutions for spline ranks of 20 and 30 are compared (since the
ave functions have not been normalized, only the shape of the two solutions
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TABLE VII. Square of the mass (u? in GeV?) of the first four levels of the
Salpeter equation for y=0.0 and 0.4 with various spline ranks.

y=0.0 y=04
Level SN=20 SN=12 SN=20 SN=16 SN=12
4 0.685 2.173 5.632 5.632 5.674
3 -1.074 1.538 4.383 4.383 4.385
2 -3.869 0.931 2.977 2.977 2.976
1 -8.705 -0.051 1.339 1.339 1.339

Wavefunctions

PN VT SN S T S BDOF SN SN GO VN W'Y

0 0.5 1 1.5 2
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FIG. 24. Positive and negative ground state solutions for the y = 0.4 quasirela-
tivistic equal mass Salpeter equation, u1=1.157 GeV (solid and long dashed lines) and
p-1=-1.157 GeV (heavy short dashed and dotted lines). The positive ground state Dirac
solutions for y=0.4, F1=1.028 GeV (circles and squares) are shown for comparison.
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FIG. 25. The positive second excited state solutions for the y=0.4 equal mass Salpeter
juation, pz = 2.094 GeV (solid and long dashed lines) are compared to the second
ssitive excited state Dirac solution for y = 0.4, E3=1.772 GeV (circles and squares).

Wavefunctions

p (QeV)

FIG. 26. Positive second excited state solutions for the Salpeter equation for a variety
f scalar/vector mixings: pure vector y=1.0, 13=2.565 GeV (circles and squares); y=0.6,
3=2.284 GeV (solid and long dashed lines); and y=0.4 u3=2.094 GeV (heavy short
ashed and dotted lines).
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FIG. 27. Stable ground state solution for the Salpeter equation with a pure scalar
confining interaction. In these cases m = 0.85 GeV and the Salpeter bound state has
mass p1=2.185 GeV. The solutions for SN=20 (circles and squares) and SN=30 (solid
and long dashed lines) are compared. (Note that the solutions are not normalized — see
the discussion in the text.)

should be compared). Solutions obtained for somewhat lower masses (m=0.65,
for example) appear stable for SN=20, but the spectrum shows some instability
for SN=30. In general, the number of stable states for the pure scalar Salpeter
equation increases as the quark mass increases. Further study is needed to obtain
a detailed understanding of the stability of the purely scalar Salpeter equation.

V. CONCLUSIONS

Table VIII summarizes the results presented in the previous sections, which
are also outlined below:

e The Dirac equation is stable if the scalar confinement is stronger than the
vector confinement (y < 1/2).

e The Salpeter equation is stable if the interaction is mostly vector, and
perhaps also for pure scalar exchanges with a large quark mass. The precise
boundary between stable and unstable solutions is presumably a function
of the quark mass m and the vector strength y, and we have not mapped
it out.
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TABLE VIII. Stability Results (the table lists the region of stability or the
first of the four tests that the system fails).

y =00 y=04 y =06 y=10
Dirac stable stable Cond 2 Cond 2
1CS k=1.0 positive Cond 3 Cond 2 Cond 2 -
1CS k=20 positive Cond 3 Cond 2 Cond 2
1CS k=5.0 stable positive Cond 2 Cond 2
1CS k=10.0 stable stable Cond 2 Cond 2
Salpeter m> 0.85 GeV stable stable stable

e The one channel spectator (1CS) equation has the Dirac limit, as expected.
This means that for large mass ratios K = m/ms, it is stable if the in-
teraction is predominately scalar (y < 1/2). However, as the mass ratio
decreases toward unity, the region of instability grows. As we decrease x
for a fixed vector strength y < 1/2, the negative energy states will first
become unstable, and then the positive energy states may follow. However,
if the vector strength is small enough (e.g., y = 0) the positive energy states
appear to be stable for all mass ratios.

The usefulness of an equation where only part if the spectrum is stable depends
>n whether or not the spectrum of unstable states is clearly separate from the
spectrum of stable states (i.e. Condition 3 is met). The 1CS equation for scalar
confinement has this feature; the unstable states are those which map, in the
Dirac limit, into negative energy states. If one is content to exclude these states
from consideration on physical grounds then the scalar 1CS equation can be used
to describe confined Q7 systems for all mass ratios. The Salpeter equation can
also be used for equal mass ¢7 systems unless the confinement is predominately
scalar and the quark masses are not large.

This conclusion answers one of the questions raised in the introduction; clearly
the stability of vector or scalar confinement depends on the relativistic equation
used. Scalar confinement is stable if the 1CS equation is used and vector con-
finement is stable if the Salpeter equation is used.

We emphasize that our study of the stability of the spectator equation is
preliminary for three reasons:
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e Only the 1CS equation has been studied. As emphasized before, a two
channel spectator equation must be used if the bound state mass is small
(the pion), and any spectator equation must be explicitly symmetrized if
the quark masses are equal.

e Our study of the 1CS equation was limited to the quasirelativistic approxi-
mation, in which retardation is neglected. However, neglecting retardation
usually leads directly to the Salpeter equation, and the attempt to include
it (at least approximately) is the principle reason for choosing to use a
spectator equation in the first place. Including retardation in our analysis
(planned for a later work) may alter our conclusions.

o Only the time-like part of a vector confinement (i.e. 7°v°) has been studied.
There are preliminary indications that our results will change when the full
vector interaction y*y, is included.

Our results for the Salpeter equation agree with Ref. [4], but disagree with
the results obtained by Parramore and Piekarewicz (3], who found the Salpeter
equation to be unstable once the vector strength dropped below one-half, regard-
less of quark mass. However, as stated above, we find that the Salpeter equation
is stable for a vector strength 0.4, and is even stable for a pure scalar interaction
provided the quark mass is sufficiently large. We looked at one of the cases they
found to be unstable (¢=0.29, m=0.9 GeV, with 25 basis states), and found it
to contain stable states. A possible explanation for this difference is that we
use cubic splines for our basis functions, while nonrelativistic harmonic oscillator
wave functions were used in Ref. [3].

There are other equations which can be used to model the quark-antiquark
system. Tiemeijer and Tjon [13] explored two such equations, the Blankenbecler-
Sugar-Logunov-Tavkhelidze (BSLT) [14] equation and the equal-time (ET) equa-
tion of Wallace and Mandelzweig (15]. The kernels for both equations contained
one-gluon-exchange (with the full four vector structure) and a linear confining
term (with a mixed scalar-four vector structure). They found that increasing the
vector strength of the confining term improved the phenomenology, but that some
mesons became unstable for vector strengths of more than about 0.25, depending
on the equation and gauge used. These results reinforce the general conclusions
of this paper: stability depends on both the Lorentz structure of confinement and
on the type of relativistic equation used.

We have seen that the study of the mathematical stability of relativistic equa-
tions requires the examination of both local and global features of the eigenvalue
spectrum and have introduced four conditions which must be satisfied for an
equation to give stable solutions. Using these stability criteria we find that the
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rentz structure of the kernel and the equation used to model the meson both
y a crucial role in the mathematical stability of the system. Clearly further
earch on this topic is needed.
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PPENDIX A: SPLINE FUNCTIONS AND NUMERICAL METHODS

To solve the equations in this paper numerically, we expand each momentum
ace wave function in terms of cubic splines

SN
wip) = 3 3B (p), (A1)
1
iere ag are the expansion coefficients (which become the eignevectors of the
sblem), B; are the spline functions, and SN is the number of spline functions
the expansion (the spline rank). In all of the equations studied there are only
o independent wave functions, so i = 1 or 2. Since the angular integrations are
rformed analytically, the wave functions depend only on the magnitude of the
ymentum p. Once Eq. (A1) is substituted for each of the wave functions, both
les of the equation are operated on by the integral operator

/ p*Bi(p)dp. (A2)

1is reduces the integral equations to matrix equations with dimension 2SN x2SN
d of the general form

Ay O\ (B} 0 AN A
{,\(0 ch)+(0 g2) (v vk)f ol =0. (A3)

1ese equations are then solved for the eigenvalues A and the eigenvectors
i}, o?}. In the following subsections we give the forms of the matrices A
id V for each case studied in this paper.
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1. Dirac equation

The Dirac equation was given in Eq. (2.52) and (2.26). The two independent

wave functions are

¢1 = 1/’1:1
Y2 = Y1,
and A = Ep,
Ay = /o p2dp Bi(p)B;(p) ,
and

00
B = -5 = - [ v By o) (a).

Setting m, = m and using the notation

filp) = \/]ZT,, a),

the potential matrix can be written

(va &)=
th Vlj

2 [T [ warvaen a0 {10 (2 1) - 10 (3

do [ [ _ ¢ e
2 [T waviem awnw (& E).

The functions 7 and { are

m=ai+b  Gi=0b

(A4)

(AS5)

(A6)

(A7)

(A8)

(A9)

where a; and b; were defined in Eq. (2.53), and if n; = n;(p, k), then n} = ni(p, p).

The functions V and V; are

1 ! p2k? 2).2
Vo(p, k) = ‘/ dz (P2 + k2 — 2pkz)?  (p? + k2)2 —
k%(z-1) pk

p? 1
Vilp. k) = /d (P> + k2 — 2pkz)2 2 (p? + K2 + 2pk)
L (p2+k2+2pk

8
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2. One-channel spectator equation

The 1CS equation in helicity form was given in Eq. (2.46) with the potential
efined in Eq. (2.28) [with (p — k)2 — (p — k)? as discussed in Sec. IIB]. The
wo independent wave functions are as in Eq. (A4) and A = u = m,; + Eg. The
1atrix A is identical to the Dirac case, but now

Blljl= _/0 p’dp (Ep, + Ep,) Bi(p)B;(p)

{o o}
Bf}= - /0 pdp (Ep, — Ep,) Bi(P)B;(p) - (A11)
ntroducing the notation
N, N,
Fi(p) = —=2=L= gi(p), A12)
V4EP1EPn (
he potential matrix can be written
Y -
Vi Vi
40/°°/°° { (ﬁ 77) E -
it dpdk Vo(p, k) Fi(p){ Fik) (1t T2} _ e o (ﬁl QZ)
T Jo Jo pdk Volp, k) Fu(p) { F3(K) M3 T4 Ey, i(7) M3 T4
29 77 ke i, k) R Fs(R) (& 62
74 l(p’ ) l(p) .7( ) ) (A13)
T Jo Jo ¢a G4
rith
m=A+B (=B, (A14)

7here the A; and B; were defined in Eq. (2.51). The meaning of the prime in 7’
5 the same as in 7’ and Vj and V; are as before.

3. Salpeter equation

The Salpeter equation is given in Eq. (2.56), with the masses both equal to
n. Now

Y1 = Y14
Y2 = Y2a, (A15)
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and A = p. The matrix A is identical, but B is two times the Dirac B. The
potential matrix is similar to Eq. (A13) with

Tz = 75 C2— G5
M3 =~ C3— =G (A16)
T — - Ca— —C1»
and, from Eq. (2.57),
ms =50+ k2 +201 -2k (s =2(1 — 2y)pk. (A17)

4. Splines

The solution to the wavefunctions used in this paper are based on a set of third
order polynomial functions called cubic splines. Used previously in papers such
as Ref. [10], they have proven versatile enough to model all of the wavefunctions
examined in this paper.

The wave function expansion was given in Eq. (A1). Each spline is constucted
from four separate functions. The function used depends on the argument and
the spline index j as shown:

gz—z{_g!:’

h ’ . . T € [.’L‘j_z.,xj_ll
143E=5=0) 4 gemna).  glemgn)

) T € [zj-1,74]

4P;(z) = { 14 3mma) 4 gGinizal _ gGazel | g fr), 5, (ALS)
. _ )3
Laare) 5 2 T € [Tj41,Tj42]
0 otherwise .

Each spline is defined on the interval from zero to one. This range is divided
into sectors whose size, h = 1/(SN + 1), depends on the spline rank. Each sector
is bounded by nodes at z; and zx4, with the number of nodes equal to SN+-2.
The first node, 1, is always located at zero, and the last one, zsn42, at one. The
spline curves for a spline rank of 4 are given in Fig. 28. The standard choice for
our calculation was a rank of 20 (20 splines in each wave function expansion).
None of the nodes may lie outside of the interval from 0 to 1, so the first spline,
j = 1, is defined entirely by the third and forth functions given in Eq. (A18). It
has a zero slope at £ = 0. The j = 2 spline was defined in a special way so
that it too will have zero slope at z = 0 (insuring that all the splines have this
property). To accomplish this the first sector (which lies between x4 and z; and
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FIG. 29. Spline rank 4 curves (1 solid, 2 long dashed, 3 short dashed, and 4 dotted)
ith momentum arguement.

i hence outside the acceptable range of support) will be “folded over” onto the
iterval between [z1,z2). Hence, in the interval between [z, 2] the second spline
i defined to be

(z—z1) (z —z1)? : (x-21)% (z2-12)3
i +3 73 3 e + e .

*his is an exceptional case, and all other splines are defined following Eq. (A18)
1 a straightforward fashion.

The splines defined in Eq. (A18) are only continuous up to their second deriva-
ive. Therefore, in order to obtain convergence the integrals must be separately
valuated for each sector, and the results from all the sectors summed up af-
erwards. Special care must be taken in evaluating those contributions to the
louble integral of the potential which include singularities. These are evaluated

4By(z)=1+3 (A19)
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by choosing points equally spaced on each side of the singularity so that a well
defined limit is obtained.

To use the splines to describe the wave functions, the interval [0, co0) is mapped
into the line segment [0, 1] using the tangent mapping

T = %arctan (%) , (A20)

with A = 1 GeV. This mapping alters the shape of the splines, as illustrated in
Fig. 29.

When the spline rank is increased the sectors become smaller and the range
in momentum space over which the splines are significantly different from zero
increases. Thus, the wave function is more accurately modeled as the spline rank
increases. Of course this higher precision must be balanced by consideration of
computation time.
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