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ABSTRACT

The equation of state of symmetric nuclear matter with the inclusion
of non-strange dibaryons is studied. We pay special attention to the exis-
tence of a dibaryon condensate at zero temperature. These calculations have
been performed in an extended quark-meson coupling model with density-
dependent parameters, which takes into account the finite size of nucleons
and dibaryons. A first-order phase-transition to pure dibaryon matter has
been found. The corresponding critical density is strongly dependent on the
value of the dibaryon mass. The density behavior of the nucleon and dibaryon
effective masses and confining volumes have also been discussed.
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Nuclear matter properties have been modeled by several kind of local relativis-
tic effective lagrangians which basically use point-like representations of nucleons and
mesons as the relevant degrees of freedom. The differences are essentially coming from
the nucleon-scalar meson interaction. It should be desirable to describe nuclear matter
from a fundamental theory like QCD, but it is wellkown that in the low energy limit
QCD becomes non-perturvative. This situation has motivated the development of several
effective models of quark interaction, among them there is the MIT bag model [1]. This
model predicts the existence of some multibaryons and strange exotics [2]. The early
work of Jaffe [3] has concentrated the attention of theoretical studies [2, 4] and the fur-
ther development of experimental research looking for signals of strange and non-strange
dibaryons. In reference [3] it has been shown that in the scheme of the MIT bag model
the gluon-exchange force should be responsible of the existence of a stable six-quarks
bound state. This particle, the so-called H-particle, is a flavor singlet J* = 0* dihyperon
with a mass of 2150MeV and strangeness —2. The problem has also been treated in the
non-perturbative framework of the Skyrme model where dibaryons have been considered
as axially symmetric skyrmions [5]. Non-strange as well as strange dibaryons and another
multibaryons have been studied as multiskyrmions [6]. The experimental activity con-
cerned to this search has been increased in the last years, recent experiments have been
developed at TRIUMF and CELCIUS {7}. Non-strange dibaryons which have a small
width have been described as promising candidates for experimental searches [8].

On the other hand, models based on the quantum field theory of hadrons including
non-strange dibaryons as effective degrees of freedom have been extensively studied {9},
obtaining very interesting effects on the binding energy per particle as well as on the
equation of state (EOS) of the system. In these hadronic effective lagrangians nucleons
and dibaryons are treated as point-like particles represented by two independent effective
fields, both of them interact by the exchange of scalar and vector neutral mesons using
two different sets of coupling constants.

The purpose of this work is to include finite size effects on the EOS, taking into
account the quark structure of the particles. As we will show later, several features of our
results are in agreement with those obtained in reference [9). Therefore, this fact seems
to support that the dibaryon condensate is essentially a model-independent issue. We
have selected the so-called quark-meson coupling model (QMC) [10}, which in some way
satisfies the above mentioned requirements. In this scheme we can perform a simultaneous
description of nucleons and dibaryons using only current quarks and mesons as effective
degrees of freedom. The model was early developed by Guichon [10] and it has been
extensively applied to calculate nuclear matter {11] as well as finite nuclei [12] properties
with successful results. It has also been used to evaluate nucleon structure functions
[13]. The naturalness of the QMC model has been studied using the dimensional analysis
[14]. Recently the density dependence of the parameters of the MIT bag have been

phenomenologically modeled {15], alternatively a relationship with observables evaluated
in the quantum field theory of hadrons have been stablished {16, 17].

In this work we have developed an extension of the QMC model described in refer-
ence [16], by including dibaryons represented as spherical MIT bags confining six quarks.
The extended QMC lagrangian density with quark fields g,(z) coupled to scalar o(x) and
vector w,(z) neutral mesons, is written as follows

LQMC(z) = LN(I) + LD(I) + L?Vlumu(:) ’ (1)
Ly(z) = (LX(z) = B1) Ovn ~ § Tocy Gal®)9a(z)Asy ()
Lp(z) = (LY(z) — B;) Ovp — § Loy Fa(2)ge()Asp - 3)

Here ©yy and Oyp are the radial non-overlapping step functions which schematically
confine the quarks inside spherical bags for nucleons and dibaryons, respectively. B,
and B, are the so-called MIT bag constants associated with these particles. Within the
standard QMC treatment B is a constant, however it can be considered as function of
the baryonic density, pg. The terms proportional to the surface delta functions Asy and
Agp ensure a zero flux of quark current through the bag surface. In this lagrangian we
have defined the following terms

£3(z) = T2, 8a(2) ({784 — Ma + 9,0(7) — gur*wy(2)) galz) (4)
LY(z) = T4y Galz) (1778, — Ma + 9,0(2) — 9.7*wu(2)) ¢a() (8)
Lesons () = Yd#0(2)Bu0(z) — m2a?(z)] — §F*(z) Fulz) + jmiw(z)wu(z) . (6)

Here g, and g, are the quark-meson coupling constants associated with o(z) and w,(z),
respectively. In order to get the minimal set of free parameters we have assumed that
quarks do not distinguish baryon or dibaryon bags, i.e. the coupling constants are the
same in both of the equations for baryons and dibaryons. In that follows we deal with u
and d massless quarks, furthermore we introduce the index v = 1, 2 to label quantities
related to nucleons and dibaryons, respectively.

The normalized quark wave function for the fundamental state in a spherical bag
of radius R, is given by

S\ _ NS p=tet/Ry Jo(wr/R.) Xv_
W) = M (iﬂua-fjl(yur/m) ) Vi’ @

where r is the distance from the center of the bag, x, is the quark spinor and the nor-
malization constant is
N, = Yo ]
V2R (W)@ ~ 1) + Rum3 /2]
The parameter associated with the quark mass is m}, = m, — g,5, and the energy eigen-
value is written as

®
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where Q, = 1/y2 + (R,m})?, and &, are the mean values of meson fields calculated in
the Mean Field Approximation. The y, variable is fixed by the boundary condition at the
bag surface jo(3.) = B.j1{y.) as in reference 1] and 8, = \/(Q,, - R,m3)/ (% + Romy).
The mass associated with the bag is given by

W~z 4 3
M, = R + 3'/rB,.R,,. (10)

The B, are the bag constants already introduced in Eqs.(2) and (3), while zo, takes into
account the zero point energy of the bag.

The usual procedure in QMC is to fix the nucleon bag parameters at zero baryon
density to reproduce the experimental nucleon mass M; = My = 939MeV, simulta-
neously it is required that the equilibrium condition dM,(d)/dR = 0 must be fulfilled.
An analogous method should be applied to dibaryons, however the experimental value of
in-vacuum dibaryon mass Mp has not been definitely confirmed yet, and at the present,
only theoretical estimates are availables. Therefore, we leave Mp as a parameter of the
model. Since the B, are related to vacuum properties we assume that B; = B, = B,
at all densities. Although the paramaters z, could also have a density dependence, in a
previous work [16] it was found that zy; remains approximately constant at the baryon
densities below four times the nuclear matter saturation density. Consecuently we have
taken 2o, as constants fixed at zero density for each kind of bag. Under these assumptions
one can immediately get a relation for masses and radii : R, = (My/M;)/*R,.

In order to obtain the density dependence of B we have stablished an explicit
relationship between nuclear matter observables evaluated in the extended QMC model
and in pure hadronic models, as it has been described in detail in [16]. In the present work
we have selected the Zimanyi-Moszkowski model [18] to describe the hadronic sector (as
in reference [16]). Considering that the effective nucleon mass predicted by the extended
QMC model and the hadronic model must be the same, together with the fact that
the outward quark-momentum on the bag surface must be compensated by the hadronic
momentum going inside, one gets the following equations

Ml =M‘ 3y (11)

Pbag=Phadr (12)

which are valids at each value of baryon density. Here M* and Ph,g are the effec-
tive nucleon mass and pressure of nuclear matter in the hadronic model, while Pray =
—(dM;/dR;)/4n R? is the pressure in the nucleon bag. Using these equations and m, =
550MeV, m, = 7183MeV, g, = 4.576, g,, = 2.222 and R} = 0.8fm we have obtained the
density behaviour of B = B(ps) shown in Fig. 1.

Once we have dinamically derived the parameter B as a function of the baryon
density, we can perform the calculations for nuclear matter with dibaryons. Firstly, we
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evaluate the energy per baryon of a system composed by symmetric nuclear matter with
density py, and dibaryons with density pp. Since each dibaryon carries baryon number
two, the baryon density must be pg = py +2pp. Using the quark wave functions of Eq.(7)
one can construct the antisymmetrized (symmetrized) nucleon (dibaryon) physical states
and evaluate the expectation value of the energy density # derived from the lagrangian
of Eq.(1). For uniform matter the energy per baryon is given by

1 M} mio?  miw?

= = —— W
e=Hipn= oo | TP+ T+ T g (13

where n = kp/M,, kp is the Fermi momentum for the nucleons and it is related to the
nucleon density by py = 2k}/3n2, while F(n) = nv/77 + 1(27% + 1) — Log(n + V7 ¥ 1).
Chemical potentials for nucleons and dibaryons are given by uy = VEE + M? + 3g,0
and pup = M, +6g,@, respectively. Although the dibaryons are bosons, the corresponding
particle number is conserved because they carry baryon charge and since in our lagrangian
we have not included any decay mechanism. The pressure of hadronic matter at zero
temperature can be written as

Pioa = NpN + ippp — €pB - (14)

The mean values of the meson fields have been evaluated by mmlmlzmg the energy, i.e.
0¢/05 = 0 and 8¢/dw = 0, obtaining

1 dF dM, sz} (15)
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together with @ = 3g,pg/m2.

In order to obtain numerical results we have arbitrarily selected the value of the
in-vacuum dibaryon mass Mp = 1970MeV. We have used the meson masses, free nu-
cleon bag radius and the previously described procedure to calculate several in-vacuum
quantities such as the parameters z,, = 3.27, 29, = 6.27, as well as the dibaryon bag
radius 3520) = 0.954 fm™!, the usual boundary condition eigenvalue y© = 2.042 and the
bag parameter B = 0.5546 fm~4. When the constants z,, zo; have been fixed and the
density dependent parameter B has been obtained, we must find the effective bag radii
Ry(ps) and Ry(ps). To do that we have impossed the equilibrium condition for bags
immersed in hadronic medium in similar way as Eq.(12), but now using Eq.(14) in the
right hand side. After a little algebra it gives

2a,(Q, - 1)+ Q,
Y20, - 1) +a,’

where we have defined a, = m}R,(pg). It must be noticed that this condition becomes
the standard equilibrium requirement of QMC model for vanishing pg.

AR, Praa = —3M,R, + 4(3Q, — 2,,) — 30, (16)



Solving the boundary condition at the bag surface simultaneously with Eqs.(15) and
(16), for a given baryon density and several values of the dibaryon abundance Q = pp/pn
we have evaluated the bag radii, masses, energy density and pressure as functions of pp
and Q. The coupling constants have been fixed in order to reproduce at @ = 0 the
saturation density py = 0.15 fm~3 and the binding energy per particle ¢ = 16MeV,
obtaining g, = 4.6876 and g, = 2.2967. In Fig. 1 the results for the nucleon bag radius
R, are shown. From this we can see that at low densities the radius is an incresing function
of pp and it becomes a smoothly decreasing function at densities around the saturation
nuclear density. Furthermore, at densities below 1.4py, R, is higher than in-vacuum radius,
notwithstanding for @ = 0 the relative increment of R, remains under the value 2%, as
it is expected from y-scaling arguments in the analysis of quasi-elastic electron scattering
{19]. Therefore, the use of this radius and the nucleon effective mass M, is equivalent to
have a bigger radius and the free nucleon mass, as it has been proposed in the reference
of Sick [19]. Density variation of the radius is less pronounced as Q increases. A similar
behaviour for the dibaryon bag radius has been found.

To investigate the existence of a phase-transition from symmetric nuclear matter
to a pure dibaryonic state we have used the Gibbs criterion. If there is a dynamical
mechanism combining two nucleons to give one dibaryon, at the phase-transition point
the conditions 2uy = pp and P,,. = Py must be fulfilled. Although we have not
included such a reaction channel in our model, we are concerned with the stable initial
and final phases rather than with any particular mechanism of dibaryon formation. Here
P,y and Py, denote the pressure in pure nuclear and pure dibaryon matter, respectively.
In Fig. 2 the quantities 2uy for @ = 0 and pp for Q = 0.5 are represented as functions of
the corresponding pressures. The intersection point of these curves indicates that phase-
transition occurs at a critical pressure nearly Py = 8.8 10~2fm™4. At low pressure the local
minimum of the Gibbs potential per particle corresponds to pure nuclear matter, while
at pressures beyond P, the stable state corresponds to pure dibaryon matter. In order to
construct the EOS we have drawn Fig. 3 with the pressure of Eq.(14), corresponding to
Q@ = 0 and Q = 0.5 as functions of baryon density. The value P, is reached at baryon
densities of p; = 2.55py in nuclear matter and p;; = 3.18py in the dibaryon condensate.
Therefore it is a first-order phase-transition with a discontinuity jumping 0.63py in the
baryon density. The horizontal segment P = Py between p; and p;; represents two-phase
coexistence. The effect of the phase-transition is to reduce the compressibility at high
densities. For example, the quotient of the thermodinamical compressibility evaluated in
the dibaryon condensate to its value in the nuclear matter gives at pg = 3.5p) the value
0.706. This fact could be favorable for the collapse of very massive stars [20]. In Table I
a comparison of the quotient of thermodinamical compressibility at @ = 0. and @ = 0.5
for several values of Mp at the transition point is shown.

In addition, we have studied how much is modified the phase-transition point as

the in-vacuum dibaryon mass Mp is changed. It has been found that the density py is
an increasing function of the mass Mp, as it is shown in Table I. We must take into
account that dibaryons have not been observed at densities around the normal saturation
density pp and at sufficiently high densities our model can not describe the quark-gluon
plasma phase-transition. Therefore we limit the search for the nuclear-dibaryon phase-
transition at densities ranged from 1.5 to 4pg. This requirement constrains the variation
of dibaryon mass to 1940MeV < Mp < 2000MeV.

A comparison with the hadronic field theoretical model of reference [9] shows that
in the Hartree approximation a nuclear-dibaryon heterophase appears rather than a pure
condensate. The Bose-condensate for d' dibaryon appears at 3 times the saturation density
of nuclear matter. Independent calculations using the quantum field theory of hadrons
and dibaryons have been developed in [21). In this framework the transition density for
nuclear and neutron matter is pp/py = 2.87 and pp/po = 2.16 respectively [22], similar
results are found in reference [23]: pp/po = 2.69 and pp/po = 2.57 for nuclear and neutron
matter, respectively. Therefore our prediction of pp/py = 2.55 is consistent with these
values.

In this work we have studied the properties of a system composed of symmetric
infinite nuclear matter with dibaryons. This has been performed in a theoretical frame-
work which takes into account the finite size as well as the quark structure of nucleons
and dibaryons. The variation of particle properties with baryon density have also been
considered. The nucleon mass shows a monotonic decreasing behavior for all the densities
and dibaryon abundances Q studied here. At Q = 0 nucleon swelling is observed at den-
sities below the normal nuclear matter density. The bag radius increment is less than 2%,
in accordance with theoretical estimates based on y-scaling interpretation of quasi-elastic
electron scattering [19]. A nuclear-dibaryon matter phase-transition is found at zero tem-
perature. The dibaryon condensate predicted in this work could be an intermediate state
before the transformation to quark matter. If a dibaryon condensation takes place for
baryon densities in the range 1.5 < pp/py < 4, then values 1940MeV < Mp < 2000MeV
are predicted for non-strange dibaryon masses. As a consequence of phase transition the
compressibility of the system is considerably reduced at high densities, as it should be
expected from astrophysical scenarios.

Extensions of the present work in order to describe strange dibaryons can be in-
mediately performed by inclusion of the color electric and color magnetic interactions in
the MIT bag model, also multiquark bags describing some exotic states of multibaryons
could be treated in this framework.
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Mp [GeV] p/[fm™3) pulfm™] &u/si

1.94 0.228 0.335 1.30
1.95 0.283 0.380 1.09
1.96 0.335 0.429 1.01
1.97 0.383 0.477 0.98
1.98 0.427 0.522 0.96
1.99 0.470 0.566 0.94
2.00 0.505 0.603 0.93

Table 1: The baryon density p and the quotient of thermodinamical compressibility x =
OP/0pp evaluated at the transition point as functions of the in-vacuum dibaryon mass
Mp. The label I (II) corresponds to pure nuclear (dibaryon) matter state.

Figure 1: B (dashed line) and the nucleon bag radius, R;, for the values @ = 0, 0.25,
0.33, 0.47 and 0.5 (solid lines) as functions of the baryon density, pg. The arrow indicates
the increasing Q values. Ry is the nucleon radius at zero baryon density.

Figure 2: The dibaryon chemical potential (dashed line) evaluated at Q = 0.5 and two
times the nucleon chemical potential (solid line) at Q = 0 plotted as functions of the
total pressure of the system. The phase-transition for in-vacuum dibaryon mass Mp =
1970 MeV occurs at a baryon density of p; = 2.55 fm™2 in the nuclear matter phase,
corresponding to a baryon density of pr; = 3.17 fm~2 in the pure dibaryon phase.

Figure 3: Pressure as a function of baryon density for the dibaryon abundances Q = 0,
0.25, 0.33, 0.47 and 0.5 (dashed lines). The arrow shows the increasing Q values. Solid
line represents the physical states of the system, corresponding to nuclear matter (Q = 0)
below the relative density pp/py = 2.55 and to pure dibaryon matter (Q = 0.5) above
the value pp/py = 3.17. The horizontal segment between these densities represents a
coexistence region between the two phases.
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