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I demonstrate that the amplitude of the high-energy scat-
tering can be factorized in a product of two independent func-
tional integrals over “fast” and “slow” fields which interact by
means of Wilson-line operators - gauge factors ordered along
the straight lines.
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The starting point of almost every perturbative QCD
calculation is a factorization formula of some sort. A clas-
sical example is the factorization of the structure func-
tions of deep inelastic scattering into coefficient functions
and parton densities. The form of factorization is dic-
tated by process kinematics (for a review, see [1]). In
case of deep inelastic scattering, there are two different
scales of transverse momentum and it is therefore natural
to factorize the amplitude in the product of contributions
of hard and soft parts coming from the regions of small
and large transverse momenta, respectively. On the con-
trary, in the case of high-energy (Regge-type) processes,
all the transverse momenta are of the same order of mag-
nitude, but colliding particles strongly differ in rapidity.
Consequently, it is natural to look for factorization in the
rapidity space.

The basic result of the paper is that the high-energy
scattering amplitude can be factorized in a convolution
of contributions due to “fast” and “slow” fields. To be
precise, we choose a certain rapidity ny to be a “rapidity
divide” and we call fields with n > 1 fast and fields with
11 < 1o slow where 1y lies in the region between spectator
rapidity and target rapidity. (The interpretation of this
fields as fast and slow is literally true only in the rest
frame of the target but we will use this terminology for
any frame).

Our starting point is the operator expansion for high-
energy scattering [2] where the explicit integration over
fast fields gives the coefficient functions for the Wilson-
line operators representing the integrals over slow fields.
For a 22 particle scattering in Regge limit s = (ps +
pe)? » m? (where m is a common mass scale for all
other momenta in the problem (t = (pa — p/y)* ~ p% ~
(#4)? ~ 7 ~ (Pp)? ~m?) we have:

Awapo = dap) = 3 [ Eor.dizn W
Civin(zy, .20 )(pa|Tr{Us (21).-Us, (zn) Hrlp)

Here z; (i = 1,2) are the transverse coordinates (orthog-
onal to both p4 and pp) and Us(z) = U'(z)%D‘:—‘U(z)

where the Wilson-line operator U(z) is the gauge link
ordered along the infinite straight line corresponding to
the “rapidity divide” ny. Both coefficient functions and
matrix elements in Eq. (1) depend on the ry but this
dependence is canceled in the physical amplitude just as
the scale u (separating coefficient functions and matrix
elements) disappears from the final results for structure
functions in case of usual factorization. Typically, we
have the factors ~ (g%Ins/m? — o) coming from the
“fast” integral and the factors ~ g’ngy coming from the
“glow” integral so they combine in a usual log factor
¢°Ins/m?. In the leading log approximation these fac-
tors sum up into the BFKL pomeron (3], [4] (for a review
see ref. {5]). Note, however, that unlike usual factor-
ization, the expansion (1) does not have the additional
meaning of perturbative vs nonperturbative separation
- both the coefficient functions and the matrix elements
have perturbative and non-perturbative parts. This hap-
pens due to the fact that the coupling constant in a scat-
tering processis is determined by the scale of transverse
momenta. When we perform the usual factorization in
hard (k1 > p) and soft (ky < p) momenta, we cal-
culate the coefficient functions perturbatively (because
a,(ks > p) is small) whereas the matrix elements are
non-perturbative. Conversely, when we factorize the am-
plitude in rapidity, both fast and slow parts have contri-
butions coming from the regions of large and small k, . In
this sense, coefficient functions and matrix elements enter
the expansion (1) on equal footing. We could have inte-
grated first over slow fields (having the rapidities close to
that of pg) and the expansion would have the form:

A(s,t) = Z/d“z;...d’z,.D“""" (Z1,-Zn) 2)

{PAIT{Ui; (21)...Us, (za) HPl)

In this case, the coefficient functions D are the results
of integration over slow fields ant the matrix elements
of the U operators contain only the large rapidities >
fo. The symmetry between Eqs. (1) and (2) calls for
a factorization formula which would have this symmetry
between slow and fast fields in explicit form.

Our goal is to demonstrate that one can combine the
operator expansions (1) and (2) in the following way:

Afs,t) = Z :% /nf‘zl...rfz,.
(PalU 5 (21).. U (2,) | MpBIUL (1) Up" (zn) 1P

where U# = Tr(A*U;) (A* are the Gell-Mann matrices)
It is possible to rewrite this factorization formula in &
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FIG. 1. Structure of the factorization formula. Dashed,
lid, and wavy lines denote photons, quarks, and gluons, re-
rectively. Wilson-line op are denoted by dotted lines
1d the vector n gives the direction of the “rapidity divide”
stween fast and slow fields.

iore visual form if we agree that operators U act only
1 states B and B' and introduce the notation V; for the
une operator a8 U; only acting on the A and A’ states:

A(s,t) =
(pallps| exp (i 2V (2)U (2)) Ipa)IPs) @

n a sense, this formula amounts to writing the coefficient
inctions in Eq. (1) (or Eq. (2)) as matrix elements of
/ilson-line operators. (Such an idea was first discussed
1 ref. [6]). Eq. (4) is our main result and the rest of the
aper is devoted to the derivation of this formula and the
iscussion of its possible applications.

Let us now briefly remind how to obtain the operator
cpansion (1). For simplicity, consider the classical ex-
mple of high-energy scattering of virtual photons with
irtualities ~ — m?.

Afs,t) = ~i{0IT{j(pa)i(P4a)i(PB)i(PE)}I0).  (5)

here j(p) is the Fourier transform of electromagneti

We use the notations ze = z,p} and z, = z,p4 which
are essentially identical to the light-front coordinates
zy = z./\/3, z- = 2z./v/s. The Wilson-line operator
U is defined as

U(zy) = foop1 + 2, —0opy + 2.] M

where [z,y] is the straight-line ordered gauge link sus-
pended between the points z and y:

.o EPexp (ig 3 du(e -y} Au(uz + (1 - wly)) ®)

The origin of Eq. (6) is more clear in the rest frame of
the “A” photon. Then the quark is slow and the exter-
nal fields are approaching this quark at high speed. Due
to the Lorentz contraction, these fields are squeezed in a
shock wave located at z, = 0. Therefore, the propagator
(6) of the quark in this shock-wave background is a prod-
uct of three factors which reflect (i) free propagation from
z to the shock wave (ii) instantaneous interaction with
the shock wave which is described by the operator U(z,),
and (iii) free propagation from the point of interaction z
to the final destination y.

The propagation of the quark-antiquark pair in the
shock-wave background is described by the product of
two propagators of Eq. 36) type which contain two
Wilson-line factors U(z)U'(z') where 2’ is the point
where the antiquark crosses the shock wave. If we sub-
stitute this quark-antiquark propagator in the original
expression for the amplitude (5) we obtain [2}:

Jadtzd zeP4 =+ (T§(z + 2)§(2)})a
= [ €20 1(p), 0 ) H{UPLUN g —p1))  (9)

where U(p,) is the Fourier transform of U(z,) and
I(pi,qys) is the so-called “impact factor” which is a
function of p3,ps -y, and photon virtuality [8], [2].
Thus, we have reproduced the leading term in the ex-
pansion (1). (To recognize it, note that U(z, )Ut(y,) =
Pexp {—ig f: dz.»U¢(zl)} where the precise form of the
path bet points z, and y; does not matter since

arrent j,(z) multiplied by some suitable polarization
“(p). At high energies it is convenient to use the Su-
akov decomposition: p* = a,p} + fpph + p/ where
| and p4 are the light-like vectors close to p4 and pp,
spectively (b} = pi —pipu/s, Pp = 1§ ~piph/s). We
'ant to integrate over the fields with a > o where ¢ is
efined in such a way that the corresponding rapidity is
o. (In explicit form no = In § where & = ""—:). The re-
alt of the integration will be given by Green functions of
ae fast particles in slow “external” fields [2] (see also ref.
7). Since the fast particle moves along a straight-line
lassical trajectory, the propagator is proportional to the
traight-line ordered gauge factor U. For example, when
+ >0, yy <0 it has the form [2]:

o) =i [arate) DB v e s @)

2n3(z — 2)*

this is actually a formula for the gauge link in a pure
gauge field Ui(z1)).

Note that formally we have obtained the operators
U ordered along the light-like lines. Matrix elements
of such operators contain divergent longitudinal integra-
tions which reflect the fact that light-like gauge factor
corresponds to a quark moving with speed of light (i.e.,
with infinite energy). As demonstrated in (2], we may
regularize this divergence by changing the slope of the
supporting line: if we wish the longitudinal integration
stop at n = 19, we should order our gauge factors U
along a line parallel to n = op, + 5p;. Then the co-
efficient functions in front of Wilson-line operators will
contain logarithms ~ g*In1/s. For example, there are
corrections of such type to the impact factor I(p,q) and
if we sum them, the impact factor will be replaced by
¥ (¢°In1/0)" K"I(p,q) where K is the BFKL kernel.

In order to understand how this expansion can be gen-
erated by the factorization formula of Eq. (3) type we
have to rederive the operator expansion in axial gauge
As = 0 with an additional condition A.|, ._. =0 (the
existence of such a gauge was illustrated in [QTby an ex-
plicit construction). It is important to note that with
with power accuracy (up to corrections ~ o) our gauge
condition may be replaced by e#A, = 0. In this gauge
the coefficient functions are given by Feynman diagrams
in the external field

Bi(z) = Ui(21)6(z.),

which is a gauge rotation of our shock wave (it is easy to
see that the only nonzero component of the field strength
tensor Fo4(z) = Us(z 1 )8(=.) corresponds to shock wave).
The Green functions in external field (10) can be ob-
tained from a generating functional with a source re-
sponsible for this external field. Normally, the source for
given external field A, is just J, = D#F,,, so in our case
the only non-vanishing contribution is J,(B) = D'F,..
However, we have a problem because the field which we
try to create by this source does not decrease at infinity.
To illustrate the problem, suppose that we use another
light-like gauge A. = 0 for a calculation of the propa-
gators in the external field (10). In this case, the only
would-be nonzero contribution to the source term in the
functional integral D'F; A, vanishes, and it looks like
we do not need a source at all to generate the field B!
(This is of course wrong since B,, is not the classical solu-
tion). What it really means is that the source in this case
lies entirely at the infinity. Indeed, when we are trying
to make an external field A in the functional integral by
the source J,, we need to make a shift A, & A, + 4, in
the functional integral

[DAexp (iS(A) - ifd'zIs@)A*@)}} (1)

after which the linear term D#F,,.A* cancels with our
source term J,A* and the terms quadratic in A make
the Green functions in the external field A. (Note that
the classical action S(A) for our external field A = B
(10) vanishes). However, in order to reduce the linear
term [d'zF¥ D, A, in the functional integral to the
form | d*zD*F,, A¥(z) we need to make an integration
by parts, and if the external field does not decrease there
will be additional surface terms at infinity. In our case
we are trying to make the external field 4 = B so the
linear term which need to be canceled by the source is
%fdz.dz.thJ_Fi.b.A‘ = fdz.d’le.A‘|"=°°

B,=B.=0 (10)

It comes entirely from the boundaries of integration. If
we recall that in our case Fyy(z) = Ui(z,)6(z.) we can
finally rewrite the linear term as

Jdz, Uiz, ){A*(~o0op; + 2.) — A'(oopy + 24)} (12)

The source term which we must add to the exponent in
the functional integral to cancel the linear term after the

shift is given by Eq. (12) with the minus sign. Thus,
Feynman diagrams in the external field (10) in the light-
like gauge A, = 0 are generated by the functional integral

[rAenfisa+ 13)
i d2, U (21)[Af (0opa + 21) = A% (~0opz +21)]}

In an arbitrary gauge the source term in the exponent in
Eq. (13) can be rewritten in the form

2 [ diz, Te{U*(z 1) [7°, dv[~ocops +z1,vps + 24]
Fui(vpz + 21 ){vpa + 21, ~0op + 2]} (14)

Thus, we have found the generating functional for our
Feynman diagrams in the external field (11). However,
it is easy to see (by inspection of the first rung of BFKL
ladder diagram) that the longitudinal integrals over a in
these diagrams will be unrestricted from below while we
need the restriction a > ¢. Fortunately, we already faced
that problem on the other side — in matrix elements of
operators U and we have solved it by changing the slope
of the supporting line. Similarly to the case of matrix
elements, it can be demonstrated that if we want the
logarithmical integrations over large a to stop at a = o,
we need to order the gauge factors in Eq.(14) along the
same vector n = op, + dpa, of. Eq. (2). Therefore, the
final form of the generating functional for the Feynman
diagrams (with a > o cutoff) in the external field (11) is

/ DADIDESANH [#2,U =)V (21)  (q5)

where

Vilzr) = [25, dv[—oon + zy,un + 2]
ntF(on+z))vn+zp,—oon + 2] (16)

and V2 = Tr(A\°V;) as usual. For completeness, we have
added integration over quark fields so S(.A, ¥) is the full
QCD action.

Now we can assemble the different parts of the factor-
ization formula (4). We have written down the generat-
ing functional integral for the diagrams with a > o in
the external fields with & < ¢ and what remains now is
to write down the integral over these “external” fields.
Since this integral is completely independent of (15) we
will use a different notation B and x for the a < o fields.
We have:

/DAD‘i"D‘I'e‘s(“"J'(PA)i(Pk)j(pa):i(P'a)= an
[PADIDUE AN .00 [oBDIDX
iR)itrp)eS® exp (i [ P2, U a1V}

The operator U; in an arbitrary gauge is given by the
same formula (16) as operator V; with the only difference



that the gauge links and Fy; are constructed from the
fields B,. This is our main result (4) in the functional
integral representation.

The functional integrals over A fields give logarithms
of the type g* In 1/c while the integrals over slow B fields
give powers of g2 In(os/m?). With logarithmic accuracy,
they add up to g? In s/m?. However, there will be addi-
tional terms ~ ¢g? due to mismatch coming from the re-
gion of integration near the dividing point a ~ ¢ where
the details of the cutoff in the matrix elements of the
operators U and V become important. Therefore, one
should expect the corrections of order of g* to the effec-
tive action [ dz U*V;.

In conclusion let us discuss possible uses of this ap-
proach. First thing which comes to mind is to use the
factorization formula for the analysis of high-energy ef-
fective action. Consider another rapidity nf in the re-
gion between 7y and Inm?/s. If we use the factorization
formula (17) once more, this time dividing between the
rapidities greater and smaller than ng, we get:

jDAe‘s<‘>j(m)j(p;)j(ps);'(p'a) = (18)

[PAS A 5pa)i(5) [DBS® (o) i)

where the effective action for the rapidity interval be-
tween n and 7' is defined as

efSmV¥iily) = / DO (19)
P2V @)U e )+ [P W 20) Y (52)

(For brevity, we do not display the quark fields). In this
formula the operators U; are constructed from C fields
and the operators W; (made from C fields) and Y; (made
from B fields) are given by the same Eq. (16) with gauge
links aligned along the direction n’ = o'p + &'ps corre-
sponding to the rapidity #’ (as usual, Ino'/d' = 5’ where
& =m?/s0").

The formula (19) gives a rigorous definition of the ef-
fective action for a given interval in rapidity (cf. ref.
[5]). Next step would be to perform the integrations over
the longitudinal momenta in the r.h.s. of Eq. (19) and
obtain the answer for the integration over our rapidity
region (from 7 to %') in terms of two-dimensional the-
ory in the transverse coordinate space which hopefully
would give us the unitarization of the BFKL pomeron.
At present, it is not known how to do this. For illustra-
tion, let us present a couple of first terms in the effective
action (10}, {11]:

Seoft =/dq"’-‘°(ﬂ)yf(1p)+

s n & (f P2dyVala) 0’ (@ - PV +
%famcfonclenyd’I'dzv'V",'s (z)v;:; (V)ka,k (:’)Y,] ")

In =8 n 0 (,,",—i)zln L) +

where we we use the notation V%(z) = 3‘:—’_V'-"(z) etc.
The first term here looks like the corresponding term in
the factorization formula (17} — only the directions of the
supporting lines are now strongly different. The second
term is the first-order expression for the reggeization of
the gluon [4] and the third term is the two-reggeon Lipa-
tov's Hamiltonian [12] responsible for BFKL logarithms.

This approach can be also used for the study of high-
energy heavy-ion collisions since it is well suited for the
study of the interaction of two colliding shock waves. In-
deed, for heavy-ion collisions the coupling constant may
be relatively small due to high density (see [13]). On the
other hand, the fields produced by colliding ions are large
so0 that the product gA is not small — which means that
the Wilson-line gauge factors V and Y are of order of 1.
In this case we need to know not only a couple of the
first few terms in the expansion of the effective action,
but the whole series.
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