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We compare the effects of different quark diagram topologies on the
weak hadronic width of heavy-light mesons in the large N, limit. We
enumerate the various topologies and show that the only one dominant
(or even comparable) in powers of N, to the noninteracting specta-
tor “tree” diagram is the “annihilation” diagram, in which the valence
quark-antiquark pair annihilate weakly. We compute the amplitude for
this diagram in the 't Hooft model (QCD in 1+1 spacetime dimensions
with a large number of colors N,) at the hadronic level and compare to
the Born term partonic level. We find that quark-hadron duality is not
well satisfied, even after the application of a smearing procedure to the
hadronic result. A number of interesting subtleties absent from the tree
diagram case arise in the annihilation diagram case, and are described
in detail.
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1. DESCRIPTION OF THE PROBLEM

The notorious difficulty of computing strong interaction quantities from first principles
leads directly to a multitude of models, methods, and approximations. QCD lore dictates
that inclusive rates, i.e., those for which we do not inquire about any detail of the final
hadronic state, are given to good approximation by the corresponding rate in a theoretical
world of unconfined, perturbative final-state quarks. This lore, known as “quark-hadron
duality” is seldom shown to follow from first principles. In some cases, such as the rate of
ete™ — hadrons, an operator product expansion can be used to demonstrate the lore for
quantities in which one averages over the energy of the final-state hadronic system. This
is the so-called “global” duality, in contrast to duality for unaveraged quantities, or “local”
duality.

Quark-hadron duality applied to decays of heavy mesons permits the computation of
many important quantities, such as meson lifetimes, hadronic branching fractions, and the
average number of charm quarks per beauty quark decay. One must note that the duality
used here is of the “local” variety, and therefore less likely to be valid. Indeed, the sizeable
deviations between theoretical predictions utilizing this form of duality and experiment
for lifetimes, branching fractions and charm countings suggest that either there are large
corrections to duality, or worse, that the duality lore simply does not apply in this context.

In this paper we study whether duality holds for annihilation decays of heavy mesons
in a highly simplified but soluble strongly interacting theory; in a previous paper [1] we
explored this issue for spectator decays of heavy mesons. We also investigate the validity of
duality in the interference between spectator and annihilation decays.

To inquire about duality in a model, one must require that the model exhibits permanent
quark confinement and asymptotic freedom; the former is necessary for a meaningful defini-
tion of purely hadronic properties, while the latter is believed to be the main ingredient of
duality. The 't Hooft model is a good candidate: It satisfies these requirements and behaves,
in many other respects, much like the real world of strong interactions.

Perhaps still the most straightforward and frequently used model of strong interactions
is the constituent quark model, in which hadrons are envisioned as consisting of confined but
otherwise weakly interacting valence quarks. Although deep inelastic scattering experiments
clearly show that the true structure of a hadron incorporates a much more complicated brew
of gluons and sea quarks, the undeniable success of the quark model in predicting hadronic
spectra or enumerating decay modes still leads researchers to apply this scheme immediately
when approaching a new hadronic system.

The asymptotically free parton result, i.e., the result of the valence quark model dressed
with perturbative QCD corrections, is also the leading term in an Operator Product Ex-
pansion [2] (OPE), in those cases where an OPE is known to exist, such as deep inelastic
lepton-hadron scattering [3] and e*e~ annihilation [4], as well as semileptonic processes in-
volving heavy quarks (5]. One feature held in common by these processes is the presence of
a large mass or energy scale, which provides the inverse expansion parameter of the OPE;
consequently, it is tempting to suppose that other processes with large scales also possess
OPEs. Such is the case for the nonleptonic decays of B mesons, where an OPE in powers
of 1/m is purported to exist [6].

As of the time of this writing, measurements of many of these exclusive channels at

CLEO and LEP are being performed for the first time. Apart from the intrinsic value of
such information, nonleptonic B decays are expected to provide valuable insights into QCD,
magnitudes of CKM elements, and CP violation; consequently, understanding these decays
has become the focus of much recent theoretical work. But the theoretical situation is wide
open, precisely because no part of the decay is free of the complications of strong interaction
physics.

When applied to a B meson, the lore of quark model calculations or the expansion
of Ref. [6] declares that the inclusive decay width should be dominated by the (color-
unsuppressed) “tree” diagram T (Fig. 1), in which the b quark decays to a lighter fla-
vor by emission of a W™, particularly as m, — oco. The daughter quark of the b then
combines with the spectator antiquark to form one meson, whereas the quark-antiquark
pair from the nonleptonic decay of the W form another. The above process assumes
factorization, which means that the W system and daughter-spectator systems are re-
garded as non-interacting after the initial weak vertex. One very interesting comparison
that can be made at this point is between the width obtained by the sum of such di-
agrams in Fig. 1 regarded as hadronic decays and the corresponding free quark decay.

FIG. 1. The (color-unsuppressed) “tree” (T) parton diagram for the decay of one meson
into two mesons. Ovals indicate the binding of partons into hadrons.

Of course, such a diagram is but one possibility, even in the simple quark model. For
example, the spectator antiquark and the antiquark from the W~ decay may trade places
before hadronization, the “color-suppressed” tree diagram C (Fig. 2). Such an amplitude
is suppressed by a factor of N, the number of QCD color charges, compared to the T
amplitude, since the W is a color singlet; thus, the color indices are automatically suitable
for creating colorless mesons in Fig. 1, but require rearrangement in Fig. 2. Of course,
in a real meson there may be additional dynamical enhancements or suppressions, and
moreover, the exchange of any number of gluons and color charge between the quarks on
opposite sides of the W line may completely muddle the hierarchy based on large N, counting.
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FIG. 2. The “color-suppressed” (C) parton diagram for the decay of one meson into two
mesons. Ovals indicate the binding of partons into hadrons.

Likewise, the “annihilation” amplitude A (Fig. 3), in which the valence quark-antiquark
pair of the B annihilate to a W (quantum numbers permitting), is assumed to be
suppressed compared to the T amplitude because of the difficulty of the b quark and
the antiquark “finding” each other in the meson in order to anmihilate. Quantita-
tively, this probability is proportional to the square of the meson wave function at van-
ishing quark separation, {$(0)|* o f2 (the van Royen-Weisskopf relation). To com-
pare this probability with that of the T diagram, one then argues that the only re-
maining dimensionful quantity that can be used to form a probability is mp, so that
the relative probability of an annihilation to a tree process is f3/mh < 0(0.2%).

FIG. 3. The “annihilation” (A) parton diagram for the decay of one meson into two mesons.
Ovals indicate the binding of partons into hadrons.

Nevertheless, other concerns lead one to believe that the annihilation and other non-
spectator diagrams may be more important than one would naively expect. For, if non-
interacting spectator diagrams dominate decays of b hadrons, how then does one explain
the fact that the lifetime of B mesons is greater than that of A, baryons by 30% or more
[7]? One possible explanation is that the naive estimate of the previous paragraph fails
to include potentially large numerical coefficients. This point of view has been voiced re-
cently in Ref. [8], in which it is suggested that the annihilation width has an unexpected
additional enhancement of 1672 compared to the tree width. One obtains this result by ap-
plication of perturbative unitarity of the S-matrix to a cut across loop diagrams (Figs. 4a,b).

FIG. 4a. Diagram giving rise to the “tree” amplitude of Fig. 1 upon a vertical cut through
the center (application of unitarity). The vertex blobs indicate W exchange.
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FIG. 4b. Diagrams giving rise to the “annihilation” amplitude of Fig. 3 upon a vertical

cut through the center (application of unitarity). The vertex blobs indicate W exchange.
Strongly produced qg pairs are not drawn here for simplicity.

Since the diagram giving rise to the tree width requires an additional loop integration com-
pared to that for the annihilation width, the latter is enhanced by a relative factor of 1672
(multiplied by the original factor f3/m}).

But is such an effect genuine? As soon as one includes the gluon lines necessary to bind
real mesons, the counting of loops no longer leads to an obvious enhancement, unless we
impose another hierarchy to suppress the effects of these exchanged gluons. The difficulty
originates, as always, in our inability to take into account the multitude of gluons and virtual
quarks involved in the strong coupling of mesons.

A question similar in spirit is that of the sense in which the partonic annihilation diagram
Fig. 3 exhibits quark-hadron duality with its corresponding sum of exclusive hadronic chan-
nels. Just as it is expected that the width obtained from the tree diagram Fig. 1 approaches
its corresponding sum of exclusives as the heavy quark mass becomes large, one may study
whether this is true for processes in which the quantum numbers of the quarks are such that
an annihilation diagram but not a tree diagram is permitted.

Unfortunately, the determination of definitive solutions to these questions requires one
to have in hand exact solutions of QCD, and so is currently out of reach.

However, there does exist a simpler universe in which QCD can be solved exactly, so that
we may consider the problem of meson decays in either quark or hadron language. As 't Hooft
showed long ago [9], the Green functions of QCD in one spatial and one time dimension (1+1)
in the limit of N, = oo are completely calculable. Despite these large modifications from
our universe, the 't Hooft model remains a nontrivial theory that possesses the attractive
feature of realizing confinement by binding quark-antiquark pairs into color-singlet mesons
(and more generally, forbidding colored states [10]), as well as asymptotic freedom and the



many phenomenological results of large- V. QCD [11] common to our N, = 3 universe, such
as dominance of scattering amplitudes by diagrams with a minimum of meson states, OZI
suppression, the absence of exotics, and others [12].

In this paper we consider the analogue of B weak nonleptonic decays in 1+1, where
“B” means a meson with a heavy quark (“b") of mass M and a light antiquark of mass
m; “heavy” and “light” quark are terms made more precise in Sec. III. We studied the
question of quark-hadron duality for the tree diagram in Ref. [1], in which it was shown
that agreement between the two pictures as M — oo occurred in a subtle and surprising
manner with such high precision that the discrepancy between the two yielded a remarkable
result: a correction to the Born term partonic limit well-fit numerically by a term of relative
order 1/M. Encouraged by this result, we ask what may be learned from other topologies
of Feynman diagrams. We study in detail the annihilation diagram and compare the total
width with that obtained from the parton model. Our motivation, as before, is the hope
that the results from a soluble theory quite similar to real QCD in some respects and quite
different in others may shed light on the full four-dimensional problem.

The paper is organized as follows. We begin in Sec. II with an enumeration of the
various quark diagram topologies and study the scaling of each in the large N, limit. This
classification is independent of the number of spacetime dimensions. We find that, in the
decays of interest, naive N, power counting at the diagram level is subtle and deserves
special discussion. The annihilation diagram emerges as the dominant topology and is the
one whose computation is studied in the subsequent portion of the paper. In Sec. III,
we briefly review the more arcane features of 1+1 dimensional physics and the 't Hooft
model that are particularly relevant to the subsequent calculations. Section IV exhibits the
algebraic results of the inclusive parton-level calculation of widths, from both a naive tree-
level diagram and an analysis based on loop diagrams as in Fig. 45, the latter being related
closely to the corresponding OPE-like expansion. In Sec. V, we present the results of the
width calculation through exclusive hadronic channels in the 't Hooft model. Section VI
gives our numerical results and a discussion of their implications, and Sec. VII concludes.
A short Appendix discusses the van Royen-Weisskopf relation in arbitrary dimensions.

II. QUARK DIAGRAM TOPOLOGIES AND LARGE N¢

In order to obtain Green functions for exclusive decays in the 't Hooft model, one must
first decide which diagrams are present at leading order in N,. As is well known, n-meson
couplings in large N, appear with a suppression factor N{!~*/2), and therefore the leading
meson decay diagrams are those producing only two final-state mesons. However, for some
diagram topologies there is the possibility of direct oscillation of the B meson into a single
highly excited meson of the same mass. Such resonant production poses an interesting
problem of large N, counting, as we discuss below.

Next, we consider the relevant diagrams in terms of quarks, gluons, and electroweak
bosons, in order to count factors of N, appearing in these diagrams. To lowest order in
electroweak coupling, a single gauge boson is required; moreover, since we require the decay
of a quark, the boson must be a flavor-changing W rather than a y or Z. It is convenient
to classify all possible diagram topologies according to six classes given by Ref. [13], since
these account for all possible diagrams including only one electroweak gauge boson. The
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categories include the color-unsuppressed tree diagram T (Fig. 1), the color-suppressed tree
diagram C (Fig. 2), the annihilation diagram A (Fig. 3), the electroweak “exchange” diagram
E (Fig. 5a), the “penguin” diagram P (Fig. 5b), and the “penguin annihilation” diagram
PA (Fig. 5¢c). For the P diagram exhibited in Fig. 5b it should be noted that the gluon may
instead attach directly to the spectator antiquark, in which case production of an additional
quark-antiquark pair is not required. Similarly, the PA topology includes diagrams in which
the intermediate glue connects to a single final-state ¢ pair. Although these diagrams were
originally exhibited in the context of quark model calculations, they suit our purposes since
the inclusion of each additional meson, quark-antiquark pair, or external gluon is accom-
panied by suppressions in the amplitude of orders 1/v/N,, 1/N, and 1//N,, respectively.
Furthermore, diagrams with internal gluons are either nonplanar and hence suppressed by
powers of 1/NZ, or planar and produce a diagram at most of the same order in N, as the
diagram obtained when all such gluons are removed. Thus, the simple diagrams displayed
in the figures are representatives of those with the leading behavior in N, for each possible
topology.

The electroweak gauge boson does not carry color charge, and so the possible diagrams
fall into two categories: those in which the boson connects two otherwise disjoint color loops,
and those in which the boson begins and ends on quarks already connected by gluons and
therefore within a single color loop structure. Clearly, the former diagrams boast one extra
color loop, and thus dominate the latter by a factor of N.. The former set consists only of
the T and A diagrams, whereas the latter set includes C, E, P, and PA diagrams. Only for
T and A diagrams does the amplitude factorize into a product of a decay constant and the
matrix element of a current between two mesons. Finally, forming a color-singlet meson for
the one initial and two final mesons brings in a factor of N;3/2 for each amplitude, and so
we find that the amplitude is oc N}V/? for T and A, e N;V/2 for C, E, and P, and oc N;%?
for PA. Widths are obtained by squaring the amplitudes and folding in phase space as usual,
which adds no powers of N, since meson masses and momenta scale as N?. For reasons that
will presently become transparent, let us refer to the above as “naive” N, power counting.

-
FIG. 5a. Electroweak “exchange” (E) parton diagram.



FIG. 5b. “Penguin” (P) parton diagram.

FIG. 5¢. “Penguin annihilation” (PA) parton diagram. Since the initial and final states
are color singlets, the intermediate state actually requires at least two gluons; however, the
archetype presented here exhibits the same N, counting.

Suppose, however, that a given diagram topology permits a resonant flavor-changing
transition into a single meson, to which we may assign the label “one-meson decay.” Such
diagrams clearly dominate over those of the corresponding two-meson decay by a factor
of /N, in amplitude. Therefore, 't Hooft model (or indeed any large N.) studies of the
two-meson decay mode for such diagrams appear doomed since the 't Hooft model presents
results only for behavior at leading order in N..

Nevertheless, the one-meson decay is a very strange physical process. For such a transi-
tion to occur on-shell, the final-state light-quark meson must have precisely the same mass
as the initial heavy-light meson. The weak decay width as a function of M to lowest order in
N, is then a series of delta function spikes (since the strong decay widths of the light quark
mesons scale as 1/N,), with a nonzero value if and only if M is tuned just right to produce
such a light quark meson. In this picture, a continuum width appears only at relative order
(1/vNo)? = 1/N,, when two-body decays are permitted.

Clearly, this is an unsatisfactory physical picture. It implies that the leading behavior of
the weak decay width scales as N? for some integer n if M is tuned to certain special values,
but scales as N*~! otherwise. The simple large N, diagram counting appears to have failed
us.

Fortunately, it is not difficult to develop a useful and consistent physical interpretation
for such situations. The salient point is to consider N, very large but still finite, so that
strong widths of light-quark mesons are not strictly zero; indeed, the usual N. counting
shows that their O(1/N,) strong widths are exactly what one obtains from strong decays
into two lighter mesons. Thus, the one-meson decays may be interpreted as intermediate
states in the decay of the initial heavy-light meson through a single resonance into the final
two-meson state.

Effectively, in this picture one integrates out the one-particle decay resonant channels,
which dominate the nonresonant two-particle weak decay widths by N}, from the hadronic
Lagrangian. However, unitarity demands that the extra power of N, must appear some-
where in the remaining degrees of freedom, and this is accomplished through Breit-Wigner
resonances appearing in the two-meson continuum at points where the mass of the initial
heavy-light meson and light-light resonance are equal. The single meson decays have thus
achieved the same interpretation as the p peak in the 77 continuum.

Despite this natural interpretation, it is important to see explicitly that it supports the
correct large N, counting. Let us suppose that a certain class of diagrams gives a naive
one-meson weak decay width of order N7 for certain special choices of M. The equivalent
resonant two-meson decay diagram has a naive amplitude of order N{"~Y/2 (and hence a
naive width O(N{"-1))), and includes a propagator of the form'

i

3 — iy +ipply’ @)
where the initial meson has mass ug, and the resonance, labeled by p, has mass u, and
strong width ', = O(1/N.). Unless 4 is very close to 2, the propagator is O(N?) and the
naive large N, counting is maintained. However, when u = p,? the previously suppressed
factor I', becomes dominant and promotes the propagator to a quantity of order N!. The
question becomes, how much area lies under this Breit-Wigner? To answer this, we note
that the relevant quantity in the width is the propagator squared. Since the peak is very tall
and narrow, the rest of the invariant amplitude varies little over the width of the peak, and
thus may be treated as an overall constant. We may then extend the limits of the integral in
43 from the immediate O(1/N,) neighborhood of 43 to all values 4§ € (—o00,+00). Noting
that

+00 1 T
[ i = = = o)), (22)
() +ury T

the total weak width becomes O(N®), and we see that the large N, counting and unitarity
are preserved, exactly as claimed. More precisely, if the product f(p3) of the invariant
amplitude (except for the propagator), phase space and whatever measure we choose for the
integration over uJ is a smooth function in the neighborhood of p,, then

In the narrow width appraximation, which is automatically satisfied in large N, QCD, it does
not matter whether u, or g is chosen as the coefficient of I'p in the propagator. We have found
that this statement is empirically true in our numerical simulations.

9
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It follows that the N, counting for two-meson decay diagrams must be modified when it is
possible within the topology class to have a final state consisting of a sole color-singlet qg
pair. The A and E diagrams, and those subsets of P and PA diagrams singled out above,
satisfy these criteria. In such cases, the width is promoted by one power of N, over the result

of naive power counting. We obtain finally the large N, hierarchy for diagram topologies
summarized in Table 1.

N IN | N TNTTINT
AR T Pn, En C PAR
Table 1. Large N, dependence of two-body meson decay widths from all quark diagram

topologies. A subscript R indicates that the counting is enhanced by N! relative to naive
counting by the presence of resonant intermediate states.

We see that the A diagram actually dominates over the T diagram studied in Ref. [1]
by one power of N, precisely because resonance intermediates enhance the former and
not the latter. However, in order for both diagrams to appear in a single process, certain
restrictions on the flavors of quarks in the mesons must be imposed. This assignment must
be performed with some care, because in the general case one may have to deal with the
statistics of identical mesons. In order to base our conclusions on as simple a system as
possible, in the present work we have chosen flavors so that such identical final-state mesons
do not occur. In terms of the labels in the T diagram of Figs. 6a and the A diagram of
6b, we choose parton 1 to be the heavy quark “b” of mass M, partons 3 and 4 to refer to
identical light quarks, and 2, 3 (= 4), and 5 to be quarks degenerate with mass m but of
different flavors. In terms perhaps more familiar, this means that a “B” meson with flavor
content (b)) decays to two “pion” excitations with flavors (u'é) and (du'), where the u, d,
and hypothetical u' quarks are degenerate in mass. Similar assignments may be used to
permit certain topologies and forbid others.
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FIG. 6a. Diagram for “tree” (T) meson exclusive decay. Numbers indicate quark labels used
in the text (except 0, which refers to the ground-state “B” meson), while letters indicate

the eigenvalue index of meson resonances. One can also consider contact-type disgrams, in
which the point labeled by n is not coupled to a resonance.

k _____

me___._.
FIG. 6b. Diagram for “annihilation” (A) meson exclusive decay. Numbers indicate quark
Iabels used in the text (except O, which refers to the ground-state “B” meson), while letters
indicate the eigenvalue index of meson resonances.

III. THE 'T HOOFT MODEL AND ANNIHILATION DIAGRAMS
A review of the application of the 't Hooft model and a description of the interesting

physical peculiarities of 1+1 dimensions appears in Ref. [1. Here we reprise only those
properties essential to understanding the exceptional features of our results presented below.

11



The ’t Hooft model is defined as SU(N,) Yang-Mills theory in 1+1 spacetime dimensions
with both adjoint (gluon) and fundamental (quark) degrees of freedom in the limit of infinite
group rank N, — 1. This definition leads to a theory in which those Feynman diagrams with
leading dependence in N, may be summed explicitly to give closed-form expressions that are
numerically, if not analytically, soluble. The archetype of these expressions is the solution
for the two-point irreducible Green function, the 't Hooft equation:

2gm(n) = (ME 1 ) ghmi) - [y gy pe 2 (31)
Hn®n rj= T 1—-x n o Y On Y (y—:c)z' .
where ¢y, is the nth meson eigenfunction for a quark-antiquark pair of masses M, m, while
p is the meson mass eigenvalue, z is the fraction of the meson momentum carried by the
quark in light-cone coordinates, and R indicates quark mass renormalization:

miamly= m? — g*N,/2r. (3.2)

Note that gauge couplings in 1+1 dimensions have units of (mass)!, and recall the usual
't Hooft scaling of the strong coupling g o« 1/4/N;. From (3.2) it then follows that g*N,/2r
serves as the natural unit of mass in the 't Hooft model, and this redefinition has already
been used in Eq. (3.1). Indeed, this scale serves much the same purpose in 1+1 as Agep in
3+1, in that heavy quark scaling properties set in for quark masses a few times g\/N./2x
[14-18].

Meson wavefunction solutions to the 't Hooft equation are either pseudoscalars or scalars,
since rotations do not exist in one spatial dimension except in the residual form of spatial
inversion.

That three-point 't Hooft model Green functions may be expressed in terms of two-point
functions was first shown by Einhorn [17], with various generalizations demonstrated by
Grinstein and Mende {15,16]. The method [18] of numerically solving the 't Hooft equation
is discussed in Sec. VI, and described in detail in {1).

The most remarkable characteristic distinct to 1+1 physics exhibited by these calcula-
tions is that two-particle phase space actually becomes singular as 1/|p| when the threshold
|p| = 0 is approached, where |p| is the CM spatial momentum of either outgoing meson.
Nevertheless, these turn out to be rather weak square root singularities in the heavy quark
mass M and therefore have pronounced effects on the width only at points over a relatively
small measure in M. The corresponding familiar 3+1 expression, on the other hand, is
proportional to |p|* and thus vanishes at threshold.

Of much greater numerical relevance in any number of dimensions are the Breit-Wigner
lineshapes produced by resonant intermediate states. As discussed in Sec. I, such resonances
enhance the width by a full factor of N} for the A but not the T diagram, and therefore
were not an issue in Ref. [1]. Since explicit factors of N no longer appear simply as a single
overall coefficient in the width, one must choose a particular value for N, in order to obtain
numerical results. Quark-hadron duality should then be studied by taking N, as large as
numerically feasible; we return to a discussion of this point in Sec. VI.
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IV. PARTONIC WIDTHS

The computation of the inclusive width for the decay of a heavy-light meson via the
annihilation diagram at the Born level is fairly straightforward, and may be accomplished
through two complementary approaches, each of which has its own advantages.

The quark Hamiltonian used for this calculation is given by

H = GAu [@7* (cv + cars) B {@s7” (v +cavs) 2] s (4.1)

where

Apv = 9w + f(P)PpPu (42)

is the tensor structure of the weak interaction propagator with momentum transfer p. If one
adopts notation analogous to that of the Standard Model, then in unitary gauge, such that
charged Higgs bosons become irrelevant,

&= -1/M},. (4.3)
Similarly,
My, .
G= 2\/§Gpw—_p3vmv,5, (4.9)
where Gr/v2 = g3/8M}, as usual. To complete the analogy, in the usual V — A theory one
would have ¢y = —c4 = 1/2, but we leave these as free parameters.

The partonic calculation of the width must incorporate the annihilation of the initial
meson as well as the production of final-state free quarks. Rather than decomposing the
initial meson into a quark-antiquark pair free but correlated in such a way as to guarantee
the desired total quantum numbers, we include the full meson coupling through

(O|ey V¥ + caA¥|n) = (cve® + cag™) fapy, (4.5)

where V¥ = §ykq, A* = §y*vsq = €V, ea1 = +1 and f, is the decay constant of meson n.

In the 't Hooft model
_ [Ne _ INe
f,._,lw c,,-,/” /0 dz $u(z). (4.6)

The first computational approach evaluates the amplitude directly obtained from the
diagram Fig. 3, where the quark-antiquark pair created by the weak current is represented
by free spinors, and the on-shell process has p? = u3. Using the Dirac equation and the 1+1
identity y*vs = €*"y,, one obtains

Ma= —2\/¥Gcom [} - &4 (1 +€)] [Esseal. @7

The width is given by

13



1
P=—7
4pglp|

Including a factor N, for outgoing quarks and 1/4/N, for normalizing them into a color
singlet, one obtains

IMy. (4.8)

2 2micd

It is interesting to note that the rate vanishes in the limit of massless light quarks.
This follows trivially from the observation that in the m — 0 chiral limit both vector and
axial-vector currents (of light quarks) are conserved. Since for large N, the A amplitude
factorizes, one must contract the vector index in Eq. (4.5) with that of the current producing
the quarks. Contraction with p, corresponds to taking the divergence of the currents, while
contraction with ¢,,p” corresponds to first exchanging the role of vector and axial-vector
currents, and then taking the divergence. Incidentally, this argument also applies in 3+1
dimensions.

Since the decay constant fy o co scales as 1/v/M [15] and po x M as M — oo, the
asymptotic M behavior of the annihilation diagram width I'pay is 1/M2. This is to be
contrasted with the tree diagram asymptotic width [1], which grows as M*.

The second computational approach evaluates the width by calculating the loop integral
in Fig. 4b and then using unitarity to cut the diagram and reveal the on-shell result. As-
suming that each quark has a nonzero value of some conserved quantum number such as
electric charge, at most one of the two diagrams in Fig. 4b can occur in a given physical
process. In the present case, it is the first diagram, which has external quark-antiquark pair
1,2 and internal quark-antiquark pair 5,2.

Standard techniques show that the inclusive width to any final states X in D spacetime
dimensions is given by

e = NGP [} — & (1+ €48)]

(B - X) = % tmi [ 4% (B |TH!(z)H(0)] B), (4.10)

so that one requires only (one-half of) the discontinuity in the imaginary part of the loop
diagram, which begins at values of energy where on-shell intermediate states appear. The
factorized four-quark operator in # is used to annihilate and create a B meson, as is again
quantified by Eq. (4.5), leaving a vacuum amplitude of the product of two currents. Such
factorization is a consequence of large N.. Retaining only the internal quarks and their
couplings to the weak current, one obtains for the diagram

iN,
(=5 (eve?s + cact,) (eva”s +ead’s) (o = 57 5°)
2
Sl - 4~m— 1 tan~! ! .
P \/4m2/p2 -1 \/a1m7/p2 -1
The discontinuity of the bracketed quantity across the cut for p? > 4m? is given by
4m? 1

?m (4.12)
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(4.11)

The external couplings and weak current propagators are given by
—G* 3P p°leve™s + cag”llovers + caghu] [gun + EPupal g + Epupi] - (4.13)

Substituting into (4.10) the expression (4.13) contracted with (4.11) using the discontinuity
in (4.12), and finally replacing f, using (4.6), one again obtains the partonic rate (4.9). In
all subsequent expressions, we take £ = 0, corresponding to My — oo.

Once this computation is phrased in terms of the vacuum amplitude of the product of
two currents, one is tempted to replace the product of two currents by an OPE. However,
this procedure is poorly justified, if at all, since the momentum across the currents, p, is
neither in the deep Euclidean region (where the OPE is systematic) nor is it integrated over
a region in such a way that the contour of integration can be deformed so that it lies (mostly)
in the deep Euclidean region. The physical quantity of interest is the rate at a given heavy
meson mass, so that p> = p is timelike. One can, however, consider integrating the rate
over the variable p?>. Then, as in the more familiar case of ete™ — hadrons, the contour
can be deformed and the integral is dominated by the leading term in the OPE. Putting
aside the question of physical utility of this exercise (in reality, unfortunately, we cannot
vary the mass of the B meson), in the 't Hooft model it has long been known [10,17] that
this leading order OPE result is reproduced by the sum over intermediate resonant states;
for clarity, we demonstrate this result in the current notation below. Large N, counting
dictates that only single intermediate states contribute. If global duality (that is, including
integration over p?) is operative in the rate for annihilation decays, it must be through some
nontrivial interplay between these resonances and the inclusion of widths for internal meson
propagators in the exclusive rates, as discussed in Sec. II.

In the 't Hooft model one may explicitly check duality for the vacuum amplitude of the
product of two currents in the limit of p* large and in any complex direction except along
the positive real axis (where meson poles occur). In fact, this limit was considered first
by Callan, Coote, and Gross [10), with a number of refinements by Einhorn {17], but it is
instructive to see how the calculation proceeds when arbitrary combinations of vectorlike
currents are included. Defining #* = ¢**p, and using €**¢*, = —g**, the p* > m? limit of
the loop expression (4.11) reads

(—%’5) {(c% -4) e - % (Gp'p* + AP - %‘- w5 +ﬁ“P")} - 41

One the other hand, the hadronic vertex is defined by Eq. (4.5), and so the loop written in
terms of resonance contributions reads

i2

(ca’s + cag”s) (cve'u +cag”u) PP* Y 7 r_. (4.15)
n = b
As p? — complex oo, the sum becomes
i iN, iN,
RN DM (416

which uses the definition (4.6) and the completeness relation
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3 #n(z)dn(y) = 8(z - y). (417)

In this limit, (4.15) contracts to

(+2) {cﬁvﬁpf—” A2 4 A p"ﬁ”)} . (4.18)

To see that (4.14) and (4.18) are equal requires one to recognize the following (equivalent)
tensor identities, which hold in 1+1:

' —p’g" =P,
7P+’ =p'p". (419)

It goes without saying that a demonstration of the validity of an OPE for hadronic widths
in the real world of four dimensions and three colors would be much more subtle, as one
loses some simplifying elements such as factorization.

If it nevertheless can be shown that the nonleptonic expansion admits a well-defined
OPE, then the diagrams of Fig. 4b enter as effective four-quark operators of the form

O4 = bl*g, T,b, (4.20)

where T'* represents the vectorlike (V* and A*) Lorentz structures. In contrast, the T
diagram arises from cutting the loop diagram of Fig. 4a, and enters the effective OPE
through the leading operator Or = bb. Since fermion fields in D spacetime dimensions have
engineering dimension M(P-1/2, by naive power counting the A diagram width in 1+1 might
be expected to be only 1/M suppressed compared to that of the T diagram. Schematically,
the OPE-like expression for the width reads

1
MD-1
where the ellipses indicate subleading terms for both the T and A contributions, and nu-
merous overall coefficients as well as perturbative short-distance corrections have been sup-
pressed for simplicity. The overall mass factor is obtained by noting that the mass dimension
of Gr is M*~P, while the B bra and ket are normalized to 2M particles per unit volume
and thus have mass dimension M(!~2/3, Each term in the braces has dimension M.

However, this reasoning does not take into account the light quark mass suppression
induced by taking the divergence of the light quark current. One obtains an additional
suppression m?/M? as discussed above, and thus (4.21) does indeed predict I's o< 1/M? as
M — 0o in 1+1, in agreement with (4.9).

[(B = X) ~ GLM?D-4 {(B o] B) +--- + (BJbr#g @lub| B) + - } . (4.21)
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FIG. 7. Feynman diagram topology for the interference between A and T amplitudes.

An important point to note is the absence of interference effects between A and T am-
plitudes in the total width predicted by the OPE-like expansion, Eq. (4.21). The diagram in
Fig. 7 would contribute to such an interference effect, but is of order N! rather than N2 as
suggested by Table 1. The absence of interference in the OPE method is not by itself proof
of failure of the method since there could be cancellations among the exclusive channels that
effectively cancel the interference effects.

V. HADRONIC WIDTHS IN THE 'T HOOFT MODEL

In Ref. {1] the amplitude for each allowed exclusive channel proceeding through the T
diagram of Fig. 6a was computed in terms of various sums and overlaps of 't Hooft model
wavefunctions. Such an expression, Eq. (5.8) or (5.18) in that work, represents the exact
nonperturbative calculation of the invariant amplitude within the 't Hooft universe of 141
spacetime dimensions and large N,.

The analogous calculation for the A diagram of Fig. 6b is almost identical, and essentially
amounts to a reassignment of indices, as expected from crossing symmetry.? The expressions
in terms of form factors are very similar to those for the T diagram, and so we instead present
only the result for the invariant amplitude. As before, O refers to the initial ground state
(12) meson, and is now directly coupled to the flavor-changing current. The light meson at
the other end of this current, labeled by p, has quantum numbers (52); m as before refers to
the final-state (32) meson, and k (which is no longer coupled to the flavor-changing current),
has quantum numbers (53): Recall the statement in Sec. II that, in order to have both T
and A diagrams, we require quarks 3 and 4 to be identical. The kinematic variable, now
defined by w = ¢q-/p-, is given for this diagram by

<>[(T)J(~r)(7)] 52

2Since 2 > (ux + pim)? for all on-shell processes, it follows that w defined here in (5.1) always
lies in [0,1], and one may directly use the analogue of (5.8) in [1] rather than worrying about
“backsolving” or “contact terms” as described in the previous work.
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Here we see that the relevant threshold is that of 0—mk, i.e., p? = (i + ftm)2. The invariant
amplitude for states above this threshold is given by

Ma= G%@;[[(@ - ) L+ (-1))] — ep’eallev + ca) (1) — (ev — c4))

Coliy

'(PZ——I‘.’:JFWFW(%)’ (5.2)

where now the on-shell process has p? = p2, wy = w(p? = p2), and the triple overlap is given
by

Foem(w) =
i iw [ asmer (2)e2 (=) - ‘%/w‘ wewep ()62 (1=2)]. 63

where the meson-quark vertex function is defined by

1 1
MWy M,
<I>u (Z) —-/0 dy ¢n (1/) Pr (y — Z)z' (54)
Note also the presence of the partial width I', for light-light meson p strong decay into
mesons k and m. As argued in the Sec. II, such an inclusion is essential to give a consistent
large N, power counting for the two-meson weak decay diagram. Explicitly,

2n 21-1/2
Fp(wp)=m?[(ﬂ:)’—Zu,’,(#i+#3,.)+(#E—#f..)] Fom(@n),  (5:5)

where, using (5.1), wp = w(p? = ul).

The total rate I'y,q for the A diagram is then obtained by squaring (5.2), inserting the
result into (4.8), and summing over all allowed final states k and m. This value is to be
compared with the Born term expression (4.9) as a test of quark-hadron duality.

One may also consider direct numerical comparisons between the T diagram total
hadronic rate exhibited in Fig. 4 of [1] and I'yq computed here; the correct procedure
to follow in this case is somewhat ambiguous, since the former rate is of order N, while the
latter integrates to order N? when resonant contributions are taken into account. Therefore,
if one works only in the strict large N, limit, the T diagram is infinitely small compared
to the A diagram. However, while the 't Hooft model is of course only exactly true when
N. = oo, this limit is believed to survive the inclusion of O(1/N.) corrections [10]. More-
over, since numerous studies in the literature show that the phenomenological predictions
of the large N, expansion survive even for N, as small as 3, we suppose that a quantitative
comparison between the T and A widths has merit even for small V,.

VI. RESULTS AND DISCUSSION

The 't Hooft equation is solved numerically by means of the Multhopp technique [18],
by which the integral expression (3.1) is converted to an equivalent eigenvector equation
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amenable to solution using computers. The results presented here were computed with
a basis set of K = 200 eigenfunctions. As a check that this set is sufficiently large, the
computation was repeated using of K = 50. Figure 8 shows the ratio of the total width,
solely from the annihilation topology, computed for K = 50 to that for K = 200, in the
case of (@) N. = 10, and (b) N, = 1. In both cases the ratio of the Gaussian-smeared
widths [see below, Eq. (6.2)] is also shown, with a Gaussian width of (a) AM = 1.2 and (b)
AM = 0.4, in mass units of g\/N./2x. In either case the difference for widths is never more
than 30%, while for the average width it is never more than 10%, and less than 5% in the
region M > 10.

T{X=80)/T{K=200}
T
L
T{K=60),/T{K=200)

os |

™

. . m . m w
] "

FIG. 8. Ratio of the total width, solely from the annihilation topology, computed for K = 50

to that for K = 200, in the case of (a) N, = 10, and (b) N, = 1. In both cases the ratio of

the Gaussian-smeared widths is also shown, with a Gaussian width of AM = 1.2 in (a) and

AM = 0.4 in (b). The unit of mass here and in all subsequent figures is g\/N/2x.

In all calculations we choose a single fixed value of mass common to all the light quarks,
m = 0.56. The range of M over which calculation of I'nya(M) is feasible is limited primarily
by the rapidly increasing number of exclusive channels open to the decay of the B meson
as M increases, and the concomitant computing time required for the necessary integral
overlaps. In practice, we limit our studies to the range from M = 2.28 (the lightest heavy
quark mass that creates a B with just enough mass to decay to two ground-state light-light
mesons) to M = 15.00 (at which point almost 150 exclusive channels are open) in units of
gy Ne/2m.

Incidentally, it is known that the standard Multhopp technique leads to inaccurate
’t Hooft wavefunctions when m < 1. In Ref. [20], an improved version of the Multhopp
method is developed, which does a much better job calculating the wavefunctions near z = 0
and 1 when m is small. One may question whether m = 0.56 is large enough that our re-
sults, computed by the standard technique, are reliable. We find that computing with the
technique of [20] tends to change the results by only a few parts in 10*. Therefore, we are
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confident in presenting numerical results below that use the standard Multhopp technique.

The Breit-Wigner resonances, which become infinitely tall and narrow as N, — oo,
present much more severe singularities in 'nag than the phase space singularities discussed
in Sec. III. Indeed, without proper regularization they are non-integrable, and therefore no
amount of averaging, or “smearing,” could produce a finite result. One must include the
O(1/N,) strong widths of the meson resonances coupled to the weak current, as discussed
in Sec. II.

The strong widths are interesting in their own right. The exact expression for the widths
is given in Eq. (5.5). In Fig. 9 we show the results of this calculation for meson excitation
numbers from 0 to 155, along with a fit function

0.44
ﬂ,Nc\/n~ 1. (6.1)

rit=22x

B e A e o e T e B e e S A A

FIG. 9. Meson strong decay widths in units of g\/N./2x - 1/N, as computed via (5.5). The
smooth dashed curve is the fit function (6.1).
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The coefficient is written in this peculiar format in order to facilitate comparison with
the results of Blok et al. [19], whose best fit appears to be a factor 22 smaller than ours.
There are two differences between their calculation and ours. First, they work with massless
light quarks m = 0 so that they may use analytic expressions for 't Hooft wavefunctions.
Second, their light quarks, unlike ours, appear to be chosen as indistinguishable, leading to
a different pattern of interference terms in the invariant amplitudes. When strong widths
for n > 155 are needed, we use the fit function I'f*.

In the present case in which strong widths can become important, factors of N, no
longer appear simply as an overall coefficient, as was the case in [1]. We are thus forced
to choose particular values of N, in order to obtain numerical results. The ideal, of course,
is to choose N, as large as possible in order to approach the results of the exact 't Hooft
model. However, such a choice makes the Breit-Wigners taller, narrower, and thus harder
to average over M, so that obtaining a smooth result for comparison with the one computed
perturbatively is more difficult. In particular, one is forced to choose the range AM over
which the averaging function has support to be larger and larger in order to obtain at last
a smooth result for I'p'5.

The averaging, or “smearing,” of I'paa(M) — T'}5(M) in the heavy quark mass M is
carried out here by multiplying T'y,a(M) at a series of points My over the range of M by
a suitably chosen smearing function, and then normalizing by the area under this function.
In practice we use a Gaussian of width AM/ V2

2
ey Zaa e (-5 Do)
rEs(M) = I ki (6:2)
o exp [ 5]
and the points M and M; are chosen at intervals of 0.1 mass units. It should be pointed
out that this smearing produces a small spurious result at the edges of the fitting range
if the function to be smeared has a nonzero derivative (apart from noise in the function)
at these points. For example, suppose one smears a linearly decreasing function near its
endpoint. The smearing function of course samples only points to the left of the endpoint,
where the function is uniformly larger than it is at the endpoint itself, and so the smeared
result is slightly higher than expected. One of many cures is to compare two curves smeared

in the same way, which produces the same spurious effect in both, and so such curves may
be compared directly.
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FIG. 10. Total annihilation width of the “B” meson as a function of the heavy quark mass
M, for N, = 1 (dotted line). The smeared width defined in Eq. (6.2) is shown in short
dashes, and was computed using AM = 0.4. The partonic width is shown in long dashes.
Units of the widths here and below are N!G?*(c?, — )2
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FIG. 11. As in Fig. 10, but with N, = 10 and AM = 1.2.
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FIG. 12. As in Fig. 10, but with N, = 20 and AM = 1.2,

The main results of this paper are exhibited in Figs. 10-13, which we now discuss. Figures
10-12 show in dotted lines the total annihilation width of the “B” meson as a function of the
heavy quark mass M. Widths are presented in units of N!G*(c}, — ¢4)?. The computation
was carried out at the points shown as small squares, and the dotted lines connect between
them, to guide the eye. Widths for the internal resonances have been included, and so the
plots depend on N, with N, = 1, 10 and 20 for Figs. 10, 11, and 12 respectively. Also, in
all three figures we show in short dashes the Gaussian-smeared width, taking AM = 0.4,
1.2 and 1.2 for Figs. 10, 11, and 12 respectively. We see that the larger the width of the
internal resonances (that is, the smaller N,), the smoother the behavior of ['haq, S0 that
AM as small as 0.4 is sufficient to smooth out the N, = 1 case, whereas for N, = 20 the
larger value AM = 1.2 had to be used. In each figure the partonic width is displayed in
long dashes.
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FIG. 13. Log-log plot of the total annihilation width of the “B” meson as a function of the
heavy quark mass M, for N, = 1 (dotted line). The smeared width defined in Eq. (6.2) is
shown in short dashes, and was computed using AM = 0.4. The partonic width is shown
in long dashes. Also shown, in dash-dot-dash, is the Gaussian-smeared result that uses the
model of Eq. (6.1) for the strong widths of the internal resonances.

It is apparent that there is a large discrepancy between the actual widths and the partonic
ones. The disagreement remains after smearing. We may now ask whether the disagree-
ment is a correction that decreases as a particular power of M. Figure 13 displays the
same information as Fig. 10, but in log-log format. Also shown, in dash-dot-dash, is the
Gaussian-smeared result that uses the model of Eq. (6.1) for the strong widths of the internal
resonances. Even though I'y. and ['},5 achieve somewhat better relative agreement as N, is
increased, we see that I'}.5 is not without structure, indicating that for this type of process
the onset of the asymptotic large M limit is very delayed. This is similar to what occurs
for the decay constant fp; the combination v/M fp is known to have large 1/M and 1/M?
corrections [15]. We have refrained from displaying a plot of L = log(I'}§/T'par — 1), which
at large M would display the leading power correction M7 as the slope of L versus log M.

25



The problem in doing so is that, as discussed, it is clear that even at these large values of
M the asymptotic behavior is not in sight. It is interesting to note that the dash-dot-dash
line is smooth and its slope disagrees sharply with that of [pan.

Finally, regarding the question of a direct comparison of T versus A widths, we remind
the reader that different N, behavior between the two widths means that, for N, sufficiently
large, the A diagram dominates. However, there are two additional effects that must be
taken into account. The first is that asymptotically, I'r ox M but I'4 oc 1/M?; thus for large
M and N, fixed, one expects I'y/T'r < 1. Much more interesting are the true dynamical
effects obtained from the exactly computed matrix elements and Breit-Wigner resonances
in the A diagram. Once the result for Iy given in Fig. 4 of {1 is properly normalized?, one
still finds that 'y is much larger than Iy, even for fairly large N, and fairly small M. For
example, for N = 10 and M = 5 (see Fig. 11) one finds I't/T'4 > 3. It appears that, in
the context of the 't Hooft model generalized to finite V., one must choose N, exceptionally
large before finding values of M for which 't & T'4.

VII. CONCLUSIONS

We have studied the annihilation decays of heavy “B” mesons in the 't Hooft model as
a function of the heavy quark mass M for fixed light quark mass m. In the strict large N,
limit the hadronic width solely due to annihilation decays, ['yaq = I'(B), displays resonant
structure from intermediate light mesons. For almost all values of M the partonic width,
Fpart, which displays no structure, is at strong variance with the exact width I'(B). A
comparison with a smeared version of I'(B) is not possible since the resonant singularities
in I'(B) are non-integrable.

It seems plausible, however, that for large but finite N, and at large enough M a smeared
version of '(B) may agree with .. For finite N, the hadronic widths of the resonances
in I'(B) must be included and make it possible to study the smeared version of I'(B), I'&"%.
Moreover, the leading dependences on N, of I'},§ and ['pay coincide. However, our numerical
study shows that even at masses as large as M = 15 in units of gy/N./2m, T& and Tpan
disagree significantly. Although increasing N, improves the relative agreement somewhat,
the improvement is not strong enough to claim the onset of asymptotic scaling, even by
M =15.

Our analysis does not conclusively show the breakdown of duality for annihilation decays
of heavy mesons. But it seems clear that if duality is operative asymptotically, it must be
that asymptotia is much delayed for these types of decays.
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APPENDIX A: VAN ROYEN-WEISSKOPF RELATION IN ARBITRARY
DIMENSIONS

It is interesting to consider the generalization of the van Royen-Weisskopf relation {21],
which connects the meson decay constant to the value of the meson wavefunction at zero
quark separation, and was therefore implicitly used in the original naive argument in Sec. 1
that the annihilation diagram is suppressed compared to the tree diagram. This relation
is proved using nonrelativistic constituent quarks within the meson; nevertheless, one may
consider its generalization to arbitrary N, and D spacetime dimensions, in which it reads

4N |¥(0)?
2 _ ¢ . Al
= (A1)
Note particularly that D only enters this expression implicitly in (0). The explicit factor
of N, from f3 is in fact the source of the enhancement of the A width to the T width. To
proceed, we require a model for the wavefunction, for which we choose

P(r) = R(r)Yp(R)) = Ne " Yoo, (A2)
where p is a typical hadronic mass scale, the D-dimensional spherical harmonic is given by

[Yoo()[* = 1 w (A3)

T [da T 2x-ni2
and N? = (2u)P~}/T(D — 1). We then have

4N, T((D-1)/2) (2w)P (A4)

2 __ . .
fe=17 +m  2rP-D2 [(D-1)

Note that the mass dimension of fg is MP/2~1 as can also be shown directly from its
definition (4.5) as a matrix element.

In the context of dimensional regularization, the factor appearing with the inclusion of
each additional loop is (47)~P/2. We must also, according to the arguments of Sec. I, divide
out powers of mp (= M + m in this model) to obtain a dimensionless ratio. The relevant
ratio between the A and T diagram widths in this simple model is thus given by

: -t _T(D-1)/2
(4W)D/21—n%=Nc(Mim) OV (I(‘(D—)1; . (45)

Removing the explicit N, and the mass ratio, the remaining D-dependent coefficient actually
reaches a maximum for D = 9. We see that even in this simple model -— no dynamics, not
even a helicity suppression factor, has been included — tells us the ratio between the A and
T diagrams depends sensitively on interplay between the value of N, the quark masses and
interaction energies, and the number of spacetime dimensions.
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Figure Captions

FIG. 1. The (color-unsuppressed) “tree” (T) parton diagram for the decay of one meson
into two mesons. Ovals indicate the binding of partons into hadrons.

FIG. 2. The “color-suppressed” (C) parton diagram for the decay of one meson into two
mesons. Ovals indicate the binding of partons into hadrons.

FIG. 3. The “annihilation” (A) parton diagram for the decay of one meson into two
mesons. Ovals indicate the binding of partons into hadrons.

FIG. 4a. Diagram giving rise to the “tree” amplitude of Fig. 1 upon a vertical cut
through the center (application of unitarity). The vertex blobs indicate W exchange.

FIG. 4b. Diagrams giving rise to the “annihilation” amplitude of Fig. 3 upon a vertical
cut through the center (application of unitarity). The vertex blobs indicate W exchange.
Strongly produced q7 pairs are not drawn here for simplicity.

FIG. 5a. Electroweak “exchange” (E) parton diagram.

FIG. 5b. “Penguin” (P) parton diagram.

FIG. 5c. “Penguin annihilation” (PA) parton diagram. Since the initial and final states
are color singlets, the intermediate state actually requires at least two gluons; however, the
archetype presented here exhibits the same NN, counting.

FIG. 6a. Diagram for “tree” (T) meson exclusive decay. Numbers indicate quark labels
used in the text (except 0, which refers to the ground-state “B” meson), while letters indicate
the eigenvalue index of meson resonances. One can also consider contact-type diagrams, in
which the point labeled by n is not coupled to a resonance.

FIG. 6b. Diagram for “annihilation” (A) meson exclusive decay. Numbers indicate quark
labels used in the text (except O, which refers to the ground-state “B” meson), while letters
indicate the eigenvalue index of meson resonances. One can also consider contact-type
diagrams, in which the point labeled by p is not coupled to a resonance.

FIG. 7. Feynman diagram topology for the interference between A and T amplitudes.

FIG. 8. Ratio of the total width, solely from the annihilation topology, computed for
K = 50 to that for K = 200, in the case of (a) N, = 10, and (b) N, = 1. In both cases the
ratio of the Gaussian-smeared widths is also shown, with a Gaussian width of AM = 1.2in
(a) and AM = 0.4 in (b). The unit of mass here and in all subsequent figures is g{/N,/2.

FIG. 9. Meson strong decay widths in units of g/N./2r - 1/N, as computed via (5.5).
The smooth dashed curve is the fit function (6.1).

FIG. 10. Total annihilation width of the “B” meson as a function of the heavy quark
mass M, for N, = 1 (dotted line). The smeared width defined in Eq. (6.2) is shown in short
dashes, and was computed using AM = 0.4. The partonic width is shown in long dashes.
Units of the widths here and below are N}G*(c}, — &4)%.

FIG. 11. As in Fig: 10, but with N, =10 and AM = 1.2.

FIG. 12. As in Fig. 10, but with N, = 20 and AM =1.2.

FIG. 13. Log-log plot of the total annihilation width of the “B” meson as a function of
the heavy quark mass M, for N, = 1 (dotted line). The smeared width defined in Eq. (6.2)
is shown in short dashes, and was computed using AM = 0.4. The partonic width is shown
in long dashes. Also shown, in dash-dot-dash, is the Gaussian-smeared result that uses the
model of Eq. (6.1) for the strong widths of the internal resonances.

29



