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Abstract

Relativistic integral representation in terms of experimental neutron-
proton scattering phase shifts alone is used to compute the charge form
factor of the deuteron Gou (Q') The results of numerical calculations of
|Gcd(Q?)| are presented i m the interval of the four-momentum tr&nsfem
squared 0 < Q? < 35 fm™2. Zero and the p
in JGoda(Q?)| are the direct consequences of the change of sign in the
experimental >$;~ phase shifts. Till the point Q* =~ 20 fm~? the total
relativistic correction to cha(Q’)I is positive and reaches the maximal

value of 25% at Q* =~ 14fm ™.
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Deuteron is the brightest example of intersection of nuclear and particle
physics. During more then sixty years it serves as source of important infor-
mation about the nuclear forces, mesonic and baryonic degrees of freedoms in
nuclei, relativistic effects and a possible role of quarks in nuclear structure.
Therefore it is not surprising that currently the electromagnetic (EM) structure
of the deuteron is a subject of mt.emnve theoretical (the list of publication is

\ md Flﬂrl +a] 3 $3

Wlth new expermxenta.l data from Jefferson Lab on elastic electron-deuteron
scattering expected in the near future {1, 2], at momentum transfers in the GeV-
range, one needs to develop relativistic approaches to the (np)-bound state
problem. Recent experimental results from MIT-Bates {3] provided the first
experimental evidence for a zero in the deuteron charge form factor G¢q at about
Q%= 20 fm~? predicted in a number of theoretical models (or not predicted,
as in some kinds of quark models). Here we report new results of numerical
calculations of G¢cg4 . These calculations are based on the approach to the
relativistic impulse approximation, which was briefly discussed in ref. [4] (see
also the review [5] and, especially, the references herein). The more detailed
formulae are contained in ref. [6]. In this approach the deuteron form factors
are expressed in terms of experimental neutron—proton (rn—p) phase shifts in the
triplet ing ch ] and experimental values of nucleon EM form factors.

According to ref. [6] the formula for Gca(Q?) appears as

Gea(@®) = (pB™ + BPYGEAQM) -
—(pB* + B™)(pB™ + B)[GT,(Q%) + GEL(QM)] +
+(pB® + B GE,(Q%) . (1)

In eq.( 1) p is the constant which describes mixing of two n — p states with
different orbital moments (I = 0 and | = 2) at the point of the bound state,
i.e., the deuteron. This constant is defined by the correspondence principle.
Analysing the nonrelativistic limits of eqs.(1),(2), we can prove that p appears
to be the standard asymptotic D/S -ratio of the radial deuteron wave functions,
80 p = 0.0277 (numerical calculations show that the dependence of DCFF on the
variation of p is very weak). All four elements of the matrix B (s) (1,1’ = 0,2) !
are taken at the bound state point s = M3 (My = 2M - ¢, where My, M
are deuteron and nucleon masses and & is the deuteron binding energy). All
relativistic aspects of the two-nucleon problem are contained in G~ matrix:

GY, = /°° dsABt(s) [ do'g.(s,s't)AB(s')
am? "'M: a1 (st) "'_M: !

I

1
2 2 2
33,1 2M* + Y (2M?*-t)- (s —-2M*)

1For the choice of kinematic variables here and in eq.(2) see Appendix A.

2M’ si7a V(-OEM2 — t)s(s — 4M?) . 2

In eq.(2) I'? is the normalization constant, which is calculated from the
condition Gga(0) = 1. Matrix functions AB¥ (s) BY (s +ie) — BY (s — i)
are the discontinuities of the Jost matrix B(s). As usual, the Jost matrix is the
solution of the boundary problem in two-channel scattering theory:

S(s)B.(s) B_(s),
s > 4aM?, (3)

@)

cos 2¢ - e2%¢ isin2e - el
S(s) = S[8,m,¢] = ( i8in 2 - ef+M  cog2e - €207 )

The reduced Jost matrix B in eq.( 1) is the solution of the same eq.(3) with
the scattering matrix §=5 (3 £,7). Expressions for B and B in termsof n — p
phase shifts are cumbemome and are summarized in Appendix B.

The matrix functions g U (3,8, t) of three variables are the relativistic charge
form factors of the unconnected part of the matrix element of EM current
(n'P'|jxlnp). The results of the calculations of g/’ are given in Appendix C.
It is interesting to note that in the general case in the relativistic regime g/ -
functions are not factorizable in s,s’ variables, whereas in the nonrelativistic
limit such factorization takes place. It means that in the framework of the used
relativistic approach [4]-[6] it is impossible to introduce a concept of relativistic
deuteron wave function.

The experimental set of n — p phase shifts were taken from the analysis of
Virginia Tech group {7} and is shown in Fig. 1. This analysis was made in the
energy range 0 < Ejop < 1100 MeV. Extrapolation to higher energies is not as
important for the calculations of Ggq for the small and intermediate values of
Q2. The only essential circumstance is that 35)-phase shifts change sign from
positive to negative and have the minimum near the energy Ejas ~ 1GeV, then
go to zero in accordance with the Levinson’s theorem. Any realistic n —p 38 -
phase shift analysis has such a behavior. Two other states (3D, and %, ) give
a relatively small contribution to Gcq.

For the calculations of G4 we used (as a first step) the simplest choice of the
nucleon form factors: Ggp = (1 + Q*/18.23 fm~2)"2,GpMp/ttp = GMn/tin =
GEep, GEn =0 for all Q2

The result of the calculations are presented in Fig. 2. Our brief conclusions
are the following.

1. The appearance of zero and secondary maximum in |Gca(Q?)| at interme-
diate values of Q? is the direct conseq of the change of sign of the expe-
rimental 3S; - phase shifts at intermediate energies. It is easy to calculate that
the model’s §(E), which decreases monotonically with E and is always positive
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Figure 1: Neutron-proton phase shifts 35;,3 D;,% ¢, used in the calculations,
taken from the VPI analysis {7]. (Calculations with a more recent VPI analysis
are underway).

(S(E) > 0 for all E), immediately leads to monotonically decreasing with Q?
values of |Gc4(Q?)| without any fine structure.
2. Almost up to the point of zero (Q? =~ 21 fm~2) of |Gc4(Q?)| the total
relativistic correction (TRC), i.e., the difference between G4 calculated rela-
tivistically (1,2) and its nonrelativistic limit, is positive and appears to be not
small. For example, for Q% ~ 14 fm=2 it reaches the value of 25%.
3. TRC becomes large in the region of the secondary maximum of |G¢ca(Q?)l,
increasing the magnitude of the form factor.
4. The obtained results are consi with the available data on G¢4 from MIT-
Bates [3]. Forthcoming data from Jefferson Lab E-94-018 [1] are extremely
important to test the proposed relativistic approach in the region of higher
transferred momenta, where relativistic corrections appear to be significant.
We would like to make the following comments to the obtained results. First,
the dependence of |Gca(Q?)| structure on the choice of different sets of experi-
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Figure 2: Relativistic deuteron charge form factor (solid line) and its non-
relativistic limit (dash-dotted line). A result with nonzero values of Ggn, =
—pnTGEp is also shown with a short-dash line. A representative result of the
relativistic approach of Arnold, Carlson,Gross {8] (dash-double-dotted line) is
presented for comparison.

mental n — p phase shifts available from the literature is strong enough. Pos-
sible variation of §,£,n may shift the position of zero in |G¢4(Q?)| from the
indicated point Q* = 21 fm=2 to the point Q? = 16 fm™2 or to the point
Q% = 23 fm~2. At the same time the secondary maximum is located in the
interval 26 < Q2 < 32 fm~2, and its height may change by a factor of seven.
We can see that for improving our understanding of {Gc4(Q?)] it would be
desirable to obtain a more definite phase shifts analysis of n — p scattering in
triplet channel in intermediate energy region Ejap < 1 GeV. Secondly, let us
indicate the dependence of |Gcqa(Q?)] on the possible choice of nucleon EM
form factors. Since the uncertainties of Gg,(Q?) in the considered range of Q2
are very small, the main effect in |Gcqa(Q?)| may be caused only by variation
of GEa(Q?). It seems to be generally accepted that the maximal deviation of



GEn(Q?) from the zero-value approximation Gg,, = 0 is given by known formula
GEn(Q?) = —pnTGEp(Q?), where pn = —1.91 is the neutron anomalous mag-
netic moment and T = Q2/4M3. The results of the calculations of {Gcq(Q?)|
with this nonzero values of Ggn(Q?) are shown in Fig.2. One can see that the
effect is sizable and the contributions of relativistic effects and nonzero Ggn
have a similar behaviour.

Finally, we show for comparison in Fig.2 the results of calculation of Gcg in a
relativistic approach, developed in ref. [8]. It may be seen that zero of |Gcqa(Q?)]
predicted in ref. [8] is shifted to the lower values of Q2 and the height of the
secondary maximum is approximately the same as in our calculations. Note that
in more recent calculations in the similar approach [9] the predicted position of
zero in |Gcq(Q?)| remains almost unch

Here we restricted ourselves only to the dlsCuslen of the deuteron charge
form factor Gog . Even in this case we omitted such interesting questions
as an analytical representation of relativistic corrections in different orders in
(v/c)?, the new representation for realistic deuteron wave functions, the role
of relativistic rotation of nucleon spins and orbital momentum { = 2 in the
deuteron, the problem of extraction, using the present approach, of Ggn(Q?)
for ultralow values of Q* from experimental data on elastic ed-scattering, and
contributions from meson-exchange currents. It would also be interesting to
perform a detailed comparison of the present approach with other relativistic
approaches to the description of deuteron structure.

All these questions, as well as the calculations of the deuteron magnetic and
quadrupole form factors will be discussed in forthcoming publications.
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A Kinematic variables.
By definition s is the invariant mass of n — p system squared:
&= (pn+ Pv),z. .
In laboratory (LS) and center-of-mass (CMS) systems we have
s=4M?+2E =4M* + 4p*,

where E is the nucleon’s energy in LS and p is modulus of the nucleon 3-
momentum in CMS.
Q? is the magnitude of the 4-momentum transfer squared:

QP=-gi=-t>0.

B Jost matrices B, B.
The formulae for pairs (S, B) and (5, B) have the most convenient form in the

p-plane:
S(p)B4(p) =B-(p), —~0<p< oo,

where S = S[6(p), n(p),e(p)], see eq.(4). Let us introduce two new matrices K
and B:

Bi(p) = R(Fp)Bx(p),
R(p) =T- graifesn ( o 4 ) (a? = Me).
Now the equation for B has the form

{ S)By ()= B-(p), » —0<p<®, (g
S(p)= R(P)SER'(-p) = 5[4,7,¢].
The last equation defines the reduced phase shifts 5,&, 7 as functions of input
experimental phase shifts §,&,7.
The solution of eq.(5) was found in ref.[10] in the form of series

Bi(@) = Bap(p) ([ + Y Bem(®)l,
m=1

where i)
5 0
Brolr) = ( gl(p)e pa(p)eFiP) ) ,
autp) =enl-Lv. [~ 200

witp) = ol-Lv.p. [ 100

= Zon(p)m.o(p' (Bs a4 (6)

In eq.(6) for odd n

A=l e‘(‘;*'-')
Galp) = i(-1)F - — - Q" ( g )

and for even n
1 2i8
Gu) =it S (57 % ).

Smn is the Kroneker delta.



C gg'—matrix.

In terms of invariant variables s, s', ¢ and the nucleon EM form factors the matrix
elements have the form:

9°(s,8',8) =
g(s,8',t)[g1(s, 8", t){cos @1 cos g — % siney sins) - GEn(Q7) +
+—2%4—gq(a, s't)- (% sin o cosay ~ cosa; sinas) - G (Q%)],
9P (s 8\ t) =

1 .
9(3, 8, t){g1(5,8',t)(~VZPsg cos o sincz + ﬁPgl sina; cosaz) - Gy

1
—2—lﬁgg(a, &', 1)(V2Pyg sin oy cos s + %Pm cosay sinaz)Giyn},
a0\ t) = gP(s',,0),

932(‘1 s, t) =
J ! l ' 2 !
g(s, 8 ,t){g;(s,a ,i)[(§P21P11 + EonPgo) cos{a; — az) +
1 1
+(EP21P;, + stoPéo) cosaj cosay +
1 1 .
+(35(PuPiy - PuPia) + 5(PuPio ~ PaoPjy)) sin(es - a) -
1 1
_E(P”PZ’O + onPh) sinay sinaz] . G‘EN - E—M-gz(s, 6’;2) "
1 1
['1—2((1’211’2'2 = PPyy) + 5(PuPy - PuPy)) -
1 1
12 3
—%(sz}’;o ~ Py Pp,)8inay cosag +

cos(ay ~ @2) ~ (5 Paa Py + 3 PaoPpo) cosa sina —

1 2 .
+(5PuPj1 + 5PuPlo)sin(ar - 0a)] - Gien}

- REORED) 1 L1
900,80 = (n::f;’)("—dM’) R OPT VAT

nils,dt)= s+a' -t

1/2
g2(8,8',t) = [(—l)(M’A(a,a',t) + ss’t)] '
A3, o', t) = 8 +8% + 1% - 2(s5" + st + 5't).

where

Py are the Legendre polynomials, Py = Pim(z) and P}, = P (z'), where
. — (s ~a2—t)
2(s,5',8) = NrEroIerk
z'(s,8',t) = —z(s',s,1).

The angles a, a2 of the relativistic rotation of nucleon spins in deuteron are

= t a3(008) ,
o A Varve ] +Var Vit Ve M)
a; = arctan 22(0,0" t)(/o+ VI +2M)

M(sto =) (VirVor2M) 4o AMI=1)"

7= Q*4M? ; G% yn = §(GEMp + GE,Mn) are the nucleon isoscalar charge
and magnetic form factors.
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