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Abstract. Although achieving of high accelerating field in a plasma has been demonstrated
experimentally, a practical use of such a scheme for building a large accelerator is
questionable. A novel scheme of beam acceleration by a plasma wave is considered in this
article. The scheme is based on an initial excitation of a plasma wave by a probe beam with
comparatively modest intensity. This seed excitation is then amplified by plasma instability, so
that the test beam which follows the probe beam with a small delay will be accelerated by the
plasma wave with an amplitude significantly exceeding the initial amplitude of the wave.
Because of small interaction between the synchronization beam and the plasma, such a scheme
allows one to excite a plasma over large length and, consequently, to build a large accelerator.

INTRODUCTION

Beam acceleration by plasma wave first suggested in reference (1) has created new
horizons in achieving high accelerating gradients in linear accelerators. In comparison
with a general linear accelerator based on an electromagnetic wave propagated in a
waveguide, it allows one to reach an order of magnitude higher accelerating gradient
of about 1 GeV/m. Achieving such high gradients has been recently demonstrated
experimentally by a few groups (2, 3), but many technical and scientific problems
have to be resolved before such an accelerator can be built.

Plasma acceleration has a serious advantage in comparison with classical
accelerators: it does not involve high electromagnetic fields on vacuum chamber walls
and therefore does not have a problem of high voltage breakup. In general, the plasma
accelerator is based on plasma excitation by an intense laser (1) or electron (4) pulse.
We will call this the probe bunch. Then, after a short delay, when the amplitude of the
plasma wave reaches the maximum, the accelerated bunch is injected. We will call that
the test bunch. While creating the initial plasma does not represent great difficulties,
both electron and plasma excitations have the common problem of creating a
sufficiently intense probe bunch. To resolve this problem one needs to reduce the
amount of energy pumped into the plasma, which requires a smaller electromagnetic
field volume and, consequently, smaller wavelength.

There is another basic reason pushing us to smaller wavelength. It is determined by
properties of the plasma oscillations. To make an estimate we consider the flat plasma
wave propagating with phase velocity equal to the light velocity, ¢, in a boundless
plasma. For simplicity we will use non-relativistic formulas. In this case from the
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equations divE = 4nn and mv = ¢E one can deduce that the electric field amplitude is
E_ . =4nent/k, while the amplitude of the electron velocity oscillations is

V=eE__ /mw. Here n, is the electron density, e is the electron electric charge, £ is
the relative density perturbation, & = An, /n,, and k is the wave vector'. Taking into
account that ¥ =w/c, the oscillation frequency is equal to the plasma frequency,
o, = 1/47;71ee2 / m , and expressing values through & and the wavelength, A =2n/k,
one obtains
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The first equation shows that the large relative density perturbation, &, yields
relativistic motion of plasma electrons, and thus additionally increases the motion non-
linearity, which limits &€ to about& <0.1. The second equation can be rewritten in

practical units as follows, A, =321/E,  cem - that for E =1 GeV/m and
£ =0.1 yields A=0.32 mm.

Practical use of so small wavelength in a high-energy accelerator creates two
fundamental problems. First, how one can phase the accelerating voltage of different
accelerator sections. Second, how one can suppress harmful focusing effects due to
transverse components of the accelerating field. The second issue is additionally
complicated by the fact that the focusing effects are different along the accelerating
bunch. The accelerating scheme considered in this article addresses these two issues as
well as how to excite the plasma wave without creating a very intense probe bunch.

_~The main problems of the considered before schemes arise from the fact that the
punch performs two functions. It carries the energy for plasma excitation and it
excites and synchronizes the plasma wave. It can work well for a small accelerator, but
with increased accelerator size it will require thousands of intense high-energy probe
bunches for plasma excitation. This makes an accelerator too expensive and therefore
unrealistic. To resolve the question of section synchronization one needs to separate
these two functions. The basic idea is in the following. One creates an unstable plasma
but before the instability has developed, a low-intensity probe bunch is injected,
making a seed excitation. The probe bunch excites many modes, but the plasma only
amplifies the mode with the correct field configuration, thus creating a high-quality
accelerating wave. After the amplitude of the plasma wave reaches the maximum, the
test bunch is injected for acceleration. To create the required plasma properties it is
immersed into a longitudinal magnetic field.

To formulate the main requirements for such plasma acceleration we will start our
consideration from basic low frequency analysis of plasma properties when the vertex
part of the electromagnetic field is omitted (Section 1). This model is comparatively
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simple and well describes waves with phase velocities less than light velocity. Then,
we will discuss a two-beam instability as a candidate to make the plasma unstable
(Section 2). Finally, we will consider possible parameters of the suggested accelerator
(Section 3).

1. LONGITUDINAL WAVES IN PLASMA COLUMN

Let’s consider a plasma column with radius a
inside a vacuum chamber with radius b as shown in
figure 1. Neutral plasma has a uniform density
distribution across the column and is immersed into
longitudinal magnetic field By. The electron density
n. and the ion density n, satisfy to the neutrality

condition, ZZ,.n,. —-n, = Z:Zmnul =0. The motion
i a

of the electrons and ions in such a system is
described by the following system of equations:
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Linearizing these equétions and looking for an axial symmetric solution,

v(r,z,0,0) | |v(r)
1, (r,2,0,8) = n, (r}e’ ™™, €)
p(r,z,0,1) | |o(r)

one obtains (see Ref. (5)) the dispersion equation -
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Here Jo(x) and Ji(x) are the Bessel functions, Io(x), Ii(x), Ko(x) and K,(x) are the
modified Bessel functions, g(w) and & (w) are the longitudinal and transverse plasma
dielectric permittivities,
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and @, and €, are the plasma and Larmor frequencies,
4, Z, e
w, = "——~——-— ,
ma

Only fast plasma oscillations, related to electrons, are important for the instability
considered below, and therefore we will eliminate below the ion contribution into the
dielectric permittivities, leaving only the electron contribution with the electron
plasma frequency @, and electron Larmor frequency €..

(6)
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FIGURE 2. Function f{k,) of equation (4) as function o for ka = 4, bla=15 and Q./w,=2.5.

Equation (4) cannot be solved analytically and therefore its solutions were studied
numerically. For every given k this equation has an infinite number of roots




corresponding to a different number of potential variations as a function of radius. As
will be seen below we are interested in the case of a sufficiently strong magnetic field
and therefore, to simplify further analysis, we will consider below a plasma where Q, >
ope. In this case there are two well-separated groups of roots, as illustrated in figure 2
by a plot of function f{k,@). The first group is at low frequencies. Its roots belong to
the solutions with primarily longitudinal motion of the electrons. They are grouped
near the frequency where g(w) approaches infinity, @=0. The second group is at high
frequencies. These roots belong to the solutions with primarily transverse motion of
the electrons. The roots are grouped around the frequency where £, (@) approaches

Zero, @ = 1,a) pez +Q,% . To produce a clear picture only the first few roots from both

groups are shown in figure 2. We denote roots using two numbers, like @y,. The first
number, equal to 0 or 1, denotes the group number, and the second number denotes the
number of potential variations — the number of zero crossings by potential dependence
on radius. Note that when the sign of function g(w) / £,(w) becomes positive the
argument in Bessel functions becomes imaginary and they need to be replaced by the
modified Bessel functions. This transformation was used for plotting the curve in
figure 2.

The solution with zero number of variations in the first group has highest
frequency among all other roots in the group. Its asymptotic for the case of long
waves, ka <<1, 18

s (F) = 0 ka2 )
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showing that this mode has linear dispersion and consequently constant phase velocity
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In the case of short waves, ka >> 1, the asymptotic can be easily obtained for the cases
of small and high magnetic field,

a)pe/\/i R Q!oc(l)pe s

Wo o (k) = { ®)

pe R Qe >>C!Jpe

Asymptotics for intermediate values of the magnetic field lie between these two
values.
In the second group the solution with zero number of variations has the lowest

frequency among all other roots in the group. Its asymptotics for the cases of long and
short waves are
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Solutions with higher number of vanations have the same asymptotic at small
wavelength, while for short wavelength asymptotics, they are in the range of
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FIGURE 3. Dispersion curves for the first three modes of both low (bottom three curves in both
pictures) and high (top three curves in both pictures) frequency groups; left picture - Q./a,=1.0, right
picture - Q./®,.~3.0.

Figure 3 illustrates behavior of the dispersion curves for the cases of small and
high magnetic fields. Dispersion curves for solutions with zero, one, and two
variations for both high and low frequency groups are shown. One can see that the
magnetic field does not significantly affect curves belonging to the low frequency
group, while it significantly changes the curves of the high frequency group.
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FIGURE 4. Dependence of potential on radius in vicinity and at resonance; b/a = 5 and Qlawy=3;
solid line - @ /@, =3, ka = 2.64, dotted line - w /@, =3.048, ka = 2.12, dashed line - & /a), =2.953,
ka=2.12
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FIGURE 5. Dependence of the wave phase velocity (in units of w/(apka) ) at resonance (ano= )
as a function of ratio {/a,.; b/a=5.

Dependence of the potential on the radius is determined by the value of
g (co)/s (@) at corresponding eigen-frequency, wmq(k). If g, ((o)/s , (@) is negative
the potential is
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For the positive value the Bessel function in equation (11) has to be replaced by the
modified Bessel function Ig(x). As can be seen from figure 3, the high frequency zero
variation root w;o crosses frequency line @ = ). where the transverse dielectric
permittivity approaches infinity. At this point, @ o(k;) = €2, and the dependence of the
potential on the radius inside the plasma vanishes, creating an ideal longitudinal
accelerating wave, which does not have a transverse electric field and for which
acceleration does not depend on radius. The dependencies of potential on radius for
the resonance wave vector, &;, and for 20% longer and shorter wavelengths are shown
in figure 4. Figure 5 depicts the dependence of the phase velocity at resonance as a
function of the ratio {/w,. For frequency €2/m, < 1 the resonance condition cannot be
fulfilled. Note that the phase velocity at resonance is higher than the phase velocity of
the low frequency plasma wave (see equation 8) for O/, > 2.51.

2. TWO-BEAM INSTABILITY

The probe beam excites many small amplitude modes in the plasma. To create a
good-quality accelerating wave from this seed excitation only one mode with correct
structure and phase velocity has to be amplified. In our study we will analyze the two-
beam instability as a candidate to amplify the beam acceleration in the plasma.

To simplify formulas we will consider a simple model where a non-relativistic
electron beam propagates along the plasma columf beam has the same radius as
plasma and its velocity is vo. The beW ny/Aslurfiform and is much smaller
than the electron density in the plasma, lowdensity of the beam allows one to
consider this system as a neutral plasfa, and therefore the dispersion properties of
such a system are described by the same equation (4) as properties of the plasma

column. But the beam permittivities of equation (5) have to be corrected to take into
account the electron beam motion,
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where @y and o, are the plasma the frequencies related, correspondingly, to electrons
of the plasma and the beam, and v is the electron beam velocity.

In the first approximation one can consider the plasma and the beam independent
so that waves propagating in the plasma and in the beam do not interact with each
other. The general instability criterion states that the instability can develop if the



phase velocities of waves related to the plasma and to the beam are equal. Because of
low electron density in the beam, the phase velocity of the plasma wave related to the
beam is much smaller than the velocity of the beam and we can simplify the criterion
comparing the wave phase velocity and the electron beam velocity. First, we want to
avoid an instability at low frequencies. This implies that the electron beam velocity
has to be higher than the phase velocities of the low frequency plasma waves, v > vy.
Second, we would like to excite a resonant wave considered above where the
transverse dielectric permittivity approaches infinity and the transverse electric field
vanishes. As can be seen from figure 5, this requires a strong magnetic field so that
(974 @p > 2.51.

The rest of this section will be devoted to study of properties of the resonant wave.
To find the instability increment we will rewrite equation (4) in the following form
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One can see that if £,(w) approaches infinity the expression in the right-hand side
approaches zero and consequently Bessel functions at the left-hand side can be
expended in Taylor series, J1(z)/Jo(z) = z/2 + ... , yielding the following equation:
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Substituting &(®) from equation (12) and expending the obtained equation in Taylor
series near the resonance we obtain
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Here we took into account that at the resonance, @ = Q,
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Equation (15) is the cubic equation relative to the variable x (dimensionless frequency
deviation from resonance value of Q) as a function of y (dimensionless wave vector
deviation from resonance value of &,) and » (dimensionless deviation of the beam
velocity from the resonance velocity vo). At resonance, y = u = 0, and equation (15)
yields the increment equal to '

Amex = Im(®) =, Im(x) = 5_‘/5_

E Qs'’? . (18)
Numerical analysis of the roots of equation (15) exhibited that the maximum value of
the instability increment is achieved at resonance. Dependence of the real and
imaginary parts of equation 15 roots for § = 0.001 is shown in figure 6. The instability
increment is proportional to the imaginary part of a root, A= pIm(x), while
frequency is determined by its real part, @ =Q+ w,Re(x). The width of the
amplification band is characterized by
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FIGURE 6. Dependence of the roots of equation (15) on the dimensionless wave vector y;
Q/w,=3,6=0001, bla=5,u=0.
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Numerical analysis also proved that the maximum increment and the bandwidth do not
depend significantly on a small change of the electron beam velocity

It is important to note that presence of the electron beam changes also the group
velocity of the plasma wave in the vicinity of resonance. Without the electron beam, as
can be seen from figure 3, the group velocity, dw;o/dk = - 0.1-vy, is negative, while the
group velocity of the same mode is positive dwjo/dk = 0.5-v (see figure 6) in the
presence of the beam. Positive group velocity in the whole amplification band implies
that this instability is the convective instability, i.e. an initial perturbation grows with
time but simultaneously moves downstream together with the electron beam, and
therefore the amplitude of the wave does not grow to infinity at any given longitudinal
coordinate.

3. ACCELERATOR SECTION PARAMETERS

Utilization of the resonant condition in plasma acceleration addresses three
important issues. First, it removes the transverse electric field and thus prevents beam
focusing by the accelerating field. Second, it suppresses the dependence of the
accelerating field on the transverse coordinates. Third, it reduces the dependence of
accelerating frequency on plasma density because the frequency is mainly determined
by the magnetic field

o~Qll+0,2/20?) . (20)

But realization of this resonant condition requires high Larmor frequency, /w, > 2.51,
and, consequently, high magnetic field. For acceleration gradients of about 1 GV/m
the field value is beyond or on the boundary of today’s state-of-art achievements. For

‘an estimate of the accelerating section parameters (table 1) the magnetic field of 12 T
is used.

The choice of instability increment is determined by the accelerating frequency
and its achievable accuracy. Picking up an accuracy of plasma density of about 1%,
and €)/w,~3, one obtains from equation (20) the relative accuracy of the accelerating
frequency of about 510, which implies that the plasma wave keeps correct phase for
about 1000 oscillations. For an accelerating frequency of 340 GHz and amplification
of 10 times, one obtains the instability growth time of about 1 ns. This time is
significantly less than that required for an electron to pass the accelerating section.

To create such a beam-plasma system the following mechanism is suggested. An
electron beam with pulse length of about 50 ns and rise and fall time less than about 10
ns is directed to a vacuum chamber with gas density equal to the required plasma




density. We will call this beam the excitation beam. At this time there is no plasma
and the system is stable. To create the plasma, immediately after the beam current
reaches its flat top a short laser pulse is aimed along the beam. A laser pulse with
comparatively modest energy can ionize all gas on its way, Thus the pulse creates a
plasma with the required density and makes the system unstable. After a small delay,
which is mainly determined by the synchronization accuracy, the probe bunch follows.
This bunch makes the seed excitation, which then is amplified by the instability. After
the plasma wave amplitude reaches the required value (about 3 ns) the test bunch is
accelerated by the plasma wave. This procedure does not require very good
synchronization for the excitation and laser pulses, but requires sub-picosecond
synchronization for the probe and test bunches, which can be comparatively easily
achieved by accelerator means. :

Main parameters of the accelerating section are shown in table 1. The parameters
were estimated on the basis of the non-relativistic theory considered above with simple
corrections taking into account an increase of the longitudinal mass for relativistic
electrons. Because of the low intensity of the probe bunch and, consequently, the small
energy loss on plasma excitation, the probe bunch can excite a plasma column of
rather large length. The length of the acceleration section was chosen to be 10 m,
which is mainly determined by engineering matters.

TABLE 1. Parameters of the accelerator section

Accelerating gradient 0.2 GeV/m
Wave length of the RF 0.89 mm
Section length 10 m
Plasma (electron beam) diameter 0.75 mm
Magnetic field 12T
Plasma density 1.6-10™
Energy in plasma per unit length at max. field 74 mi/m
Plasma frequency, w,/2n 112 GHz
Instability increment 1.10° s
Energy of the excitation electron beam 2 MeV
Current of the excitation electron beam 200 A
Density of the excitation electron beam 5.4.10%
Energy in electron beam per unit length 1.4 J/m
Energy in ionization laser pulse Sm]
lonization laser wave length 300 nm
Nutmber of particles in excitation bunch 1.1-10°
Rms bunch length 50 um
CONCLUSION

The novel scheme of plasma acceleration considered above is based on the narrow
band instability in a plasma. It allows one to choose and amplify only one of many
modes excited by the probe beam in the plasma, and, consequently, it allows one to
form a well-defined accelerating wave. The scheme has been illustrated by non-




relativistic analysis of the two-beam instability. This analysis showed a possible way
of carrying out such a scheme for non-ultra-relativistic particles. In particular it can be
considered for acceleration of heavy ions in the energy range of 1-6 GeV/nucleon
while more studies are required to make a realistic scheme. Further study is required
for developing a similar scheme for acceleration of ultra-relativistic particles.

ACKNOWLEDGEMENTS

I would like to thank S. Corneliussen for his help u@z:l@

REFERENCES

T. Tajima and J.M. Dowson, Phys. Rev. Lett. 43, 267 (1979).

Y. Kitogawa ef al., Phys. Rev. Lett. 68, 48 (1992).

Advanced Accelerator Concepts, edited by J. S. Wurtele, AIP Conf. Proc. No. 279 (AIP, New York,
1993).

P. Chen, J. M. Dawson, R. W. Huff and T. Katsouleas, Phys. Rev. Lett. 54, 693 (1985).

R. C. Davidson, Theory of nonneutral plasmas, Addison-Wesley Publishing Coompany, Inc., 1988,
ch. 2.7, pp. 45-49.

W=

“ o




