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Abstract

Meson exchange diagrams following from a lagrangian with off-shell meson-
nucleon couplings are compared with those generated from conventional dynam-
ics. The off-shell interactions can be transformed away with the help of a nucleon
field redefinition. Contributions to to the NN- and 3/V-potentials and nonmini-
mal contact e.m. meson-exchange currents are discussed, mostly for an important
case of scalar meson exchange.
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L INTRODUCTION

A nucleon-nucleon interaction is efficiently parametrized in terms of meson ex-
change diagrams. Apart from the largely model independent one pion exchange
contribution, a small family of heavier mesons (w, p, &, sometimes also § and n)
effectively summing and representing the multipole pion exchanges and excita-
tions of nucleon resonances in intermediate states is considered. The structure of
the couplings of these (effective) mesons to nucleons is not very well known and
is treated phenomenologically: vertices are usually taken in some simple form,
neglecting effects due to possible transition of the nucleons off their mass shell,
and coupling constants and coupling parameters are fitted to data.

Some relativistic calculations [1,2] have found that including off-shell exten-
sions of these meson-nucleon vertices might give a more effective description. In
particular, Stadler and Gross [1] have shown in a covariant spectator formalism
that using a scalar-nucleon-nucleon (3NN} coupling with off-shel! extension can
give a reasonable triton binding energy (without explicit three-nucleon forces),
and at the same time improve the fit to NN data as compared to that of similar
model without off-shell coupling. Zimanyi and Moszkowski have shown that a
lagrangian with a derivative (off-shell) sNN coupling improves the description
of nuclear matter and finite nuclei in the relativistic mean-field approximation.
And a number of authors have studied off-shell couplings using sidewise disper-
sion relations, which suggest that the off-shell behavior should be related to 7V
scattering and higher nucleon resonances [3,4].

Here, we would like to demonstrate how we can use nucleon field redefinition
to translate the dynamical model of 1] into a model with nonlinear couplings with
standard on-shell vertices. First, as an example, we demonstrate the nontrivial
dynamical content of off-shell vertices using the well known o-model. Then, in
Sec. 111, we consider the scalar-exchange part of the Stadler and Gross [1] model.
We show that the off-shell coupling can be removed via a redefinition of the
nucleon field and identify the nonstandard nonlinear strong and electromagnetic
(e.m.) vertices. In leading order the difference between the model with off-shell
coupling and the standard one is represented by triangle and bubble diagrams for
the NV N-interaction, scalar-scalar exchange three-nucleon potential, and a contact
(seagull) meson exchange current. In Sec. IV we give explicit expressions for these
contributions and argue that they should be estimated numerically. Finally, in
Secs. V and VI we discuss electromagnetic interactions and some features of the
nonrelativistic limits of these interactions. In the appendix we show that similar
considerations also apply for pseudoscalar and vector exchanges.

II. --MODEL AS SIMPLE EXAMPLE

To illustrate the rich dynamical content of off-shell couplings, let us consider
the simple example of a -model. The standard lagrangian of the linear - model
is

£ = C3@) + £ (0,7) — gy — mb 8% +V (2, 1)
L) = 5P7(0u8) — 5@, B)7* 9, 22)
Lo, ) = %auaaﬂa + %B#ﬁa“ﬁ, (2.3)

where & = o + {777 - #. The nonlinear g-model results from replacing ® by a
nonlinear function of the pion field with constant norm $* = ®%* = f2. The
common choice is

() = frexp(2iv°yp), (2.4)

with ¢ = 7/(2f;) and ¢ = T -, which leads to a lagrangian
. 1 - )
L=LERw)+ ridd 8,89 " — frgdexp(2iv o)y, (2.5)

where the trace is taken in flavor space. In the lowest order in pion fields the
second term gives the kinetic energy for massless pions, while higher orders gen-
erate complicated nonlinear pion self-interactions. The last term of (2.5) in the
lowest order generates the nucleon mass m = gf,, the first order in the pion field
is the pseudoscalar TN N coupling, and higher orders represent multipion contact
terms.

Alternatively, ®() can be taken in the form

1- 3%+ 2i9% -G +iv0yp
¢ =fa— = =[x+ 2fx =2 ’ 2.6
(@) = f 1T a2 fx +2f s (2.6)
which yields
. 1 — 2f1|-g — L R -
kin = - 2 5 =
= N+ ———3, 7T - - —_— —q . ,
L= LCNo() 5§ gnr oo frgib + (1+zpl)1‘b(“° T F N
(2.7)

We can eliminate the higher order nonlinear terms from the 7NN couplings by
redefining the nucleon field as follows:



¥(z) = 1+ §*(2)¢'(z), (28)

which gives the equivalent lagrangian
. _ 1 _
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Note that ell of the nNN interaction lerms invslving the coupling of three or
more pions to a nucleon in the original lagrangian (2.7) have been replaced by
terms which are only linear or quadratic in the pion field, but which involve
couplings to off-shell mucleons.

We now emphasize two points. The two lagrangians (2.7) and (2.9) are equiv-

alent only if all of the nonlinear terms in the factor f = 1/(1+ (pqz) are retained.

If this factor is truncated to lowest order, f ~ 1 — @2, the lagrangians are ne
longer equivalent. The second point is that the lagrangian (2.9} is deceptively
simple. In particular, at most two pions couple to a nucleon at any point. Still,
it contains all the complexity of the nonlinear g-model with all of its multipion
contact terms. Naively, one might argue that the off-shell term is unimportant
in realistic nuclear applications, since it is nonzero only for off-shell nucleons.
Indeed, in the lowest semiclassical order of two meson exchange it does not con-
tribute. But as momentum loops are included the off-shell vertices give results
compatible with original nonlinear g-model. Iterating the off-shell vertices of
(2.9) along the same nucleon line immediately generates multipion contact terms
with any number of pions, since the off-shell factors (# — m in momentum space)
of the vertex cancel the attached nucleon propagators.

However, it might be nontrivial to define the effective theory based on the
lagrangian (2.9). This is because the nucleon field has complicated transformation
properties and one has to be careful in defining the regularization so that the
symmetry is preserved and the theory is equivalent to the usual nonlinear o-
model. We are interested in a more phenomenological approach in which only a
limited set of Feynman diagrams (regularized by ad hoc hadronic form factors) is
used in a kernel of a dynamical equation. In this case, the dynamics defined by
(2.9) is no longer fully equivalent to the g-model, but it is still clearly distinct from
the standard prescriptions employing the linearized form of the 7N N interaction.

We now turn to a discussion of off-shell couplings associated with the exchange
of scalar particles.

III. FIELD REDEFINITIONS FOR OFF-SHELL SCALAR COUPLING

Let us now consider the scalar coupling with the off-shell extension which plays
an important role in the dynamical model discussed in Ref. [1]. We will first show
how the off-shell part of the sN N coupling can be removed with the help of the
nucleon field redefinition. The field redefinition generates the nonlinear scalar-
nucleon and photon-scalar-nucleon vertices. In the next sections, we present the
contributions of these vertices to the NN potential, the 3N potential and the
e.m. exchange currents in the leading order beyond conventional resuits.

The part of lagrangian relevant to our discussion is

L = L4 + Logs + LR (0) + Lonn () + Lovn () + Lowwa (), (3.)
LK (6) = S0 (0u) — (OB — m, (32)
Lovn(W) = 9By + P (i,0 — mip) — (@ Py + mP)2ew, (33)
Lonn() = YA P A, A¥ = Af + AN (34)
Lowma) = S0 (A5, )9 4, (35)

where £4" includes all of the kinetic terms for the bosons (scalars and photons),
Lkin (4} is the nucleon kinetic lagrangian with the mass term, and L. is a
photon-scalar vertex.

The function &, contains an isospin matrix for the mesons with nonzero
isospin (i.e., ®, = 7- &,). The parameter a, in the off-shell part of the sNN
vertex is related to the parameter v, of [1] through a, = v,g,/m and the sNN
vertex function in the momentum space reads

- V . R
Lo(p'sp) = 14 5= (' +p - 2m) (3.6)
m
In (3.4) we have separated a minimal part of the YN N vertex
A= Z(1+ 197", (3.7)
with the proton charge e > (, from the remaining purely transverse one AA*. The

minimal contact (seagull) interaction is contained in L£.,nns(t9). It is obtained
by minimal substitution of the derivatives of the nucleon field in (3.3)

8, — Al (3.8)
—(iB ") = VAL . (3.9)



The nonminimal part of the photon-nucleon coupling AA# has been given in a
framework of effective meson-nucleon theories by Gross and Riska {7]. In sim-
plified models, Aj and AA# are often taken as the Dirac and Pauli parts of the
YN N vertex, proportional to F} and Fy, respectively.

The similarity of (3.2) and (3.3) suggests that the off-shell vertex can be
removed by the nucleon field redefinition [2]

V(@) = Fo(®o(2)) ¥'(2), (3.10)
V(z) = (2)F,(®,(x)), (3.11)
Fo(z) = 1//1+ a,2,(z). (3.12)

In terms of the new field ¢’ the lagrangian (3.1} reads
L=k g £RR () 4 Lo

i ‘ﬁ& ] i_' 113 -1 _ -1 !
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O F, AR Fop Ay + %—ng (AL, 8,} Fof A, . (3.13)

As in the previous section, the off-shell meson-nucleon vertex can be transformed
away in favor of complicated nonlinear contact interactions. The leading term of
the nonlinear scalar-nucleon term is the conventional scalar-nucleon vertex, the
terms with derivatives of the scalar field (8, F,) contribute only for the scalar
with nonzero isospin.

While the off-shell interaction can be easily included in covariant dynamical
equations for NN and 3N systems, one cannot take the nonlinear vertices to all
orders, and hence in practice the two forms of the lagrangian are not equivalent
(although they are in principle). In an energy region where the effective meson-
nucleon description is valid, the importance of the multimeson exchanges and/or
exchanges of heavy mesons decreases with increasing summed mass of exchanged
mesons. In particular, since the mass of the effective scalar meson is typically
m, = 500 MeV, it might be interesting to consider the effects of nonlinearities up
to second order in the scalar field, and see if the differences between a truncated
version of {3.13} and the orignial (3.1) can be explained mostly by the second
order terms.

Since the original lagrangian (3.1) depends on the off-shell parameter v {or
a), so also will physical observables, like phase shifts and the 3V binding energy
{(parameters of the model [1] are fine tuned to leave the deuteron binding energy
unchanged). However, the leading order one meson exchange interaction does not
depend on v, at least for external legs on-shell. But nucleon interactions with two
exchanged mesons, or interactions with external fields with at least one meson

simultaneously exchanged, are already dependent on the choice of ». We present
the corresponding v-dependent operators below, first for the two-scalar exchange
NN and 3N potentials and then for the one-scalar exchange e.m. current.

IV. TWO-SCALAR EXCHANGE AND NUCLEAR INTERACTION

Since the local field redefinition does not change the physical S-matrix el-
ements, the N N-interaction generated by the lagrangian (3.13) with nonlinear
sNN couplings should give the same result as the lagrangian (3.1) where the
nonlinear couplings are replaced by off-shell couplings. It is easy to see that the
leading, second order contributions due to a single scalar exchange are the same
in both frameworks. In this section we show that this is also true of the fourth
order, two scalar exchange terms. The demonstration illustrates explicitly how
the off-shell couplings generate higher order contact terms.

Two scalar exchange contributions with off-shell couplings are represented by
the box and crossed box contributions of Fig. 1. Using (3.6) the corresponding
amplitudes are

Moz =i92/ g D(g1)D{g2) a(p} ) T3 (0, )G{@)Th (g, pr)u(p1)

(27)
x &{ph) T2 (ph, Q1)G(Q1)THQ1, p2)ulps) (4.1)
Meross = ig: / (;,;34 D{q:1)D(g2) ﬂ(pi)f‘:(p’l,q)G(q)f‘g(q,pl)u(pl)
xi(ph) T4 (ph, Q2)G(Q2)THQs, p2)Yulp:) (4.2)

where G(p) = 1/(m — p — i€) is the nucleon propagator, D(g) = 1/(m? — ¢* — ie)
is the scalar propagator, and the momenta are defined in Fig. 1.

The sum of these amplitudes should be equal to the sum of the box and
crossed-box diagrams with the on-shell vertex I'; = 1 and the triangle and bubble
diagrams of Fig. 2. These triangle and bubble diagrams are generated from the
quadratic contact vertex

1 932”8’ 2ot ggyg T2 & T .t
Losnn (W'} = —7’#")"1‘31{) + mw Dy x O, P50, {4.3)

which follows from the Taylor decomposition of the nonlinear vertex in {3.13). In
the momentum representation the quadratic contact vertex is

alid 2 a - abe v ~ ~
D (a2, 1) = —2g3 5 (8 4 e r" 2 + @) (44



where a and b are isospin indices associated with the incoming ®¥(g;) and out-
going ¥*(q) scalar fields. The amplitudes corresponding to these diagrams in
Fig. 2 are

Mo = =ig} | D@ D) 2%
{6 (e} )Gla)u(py)a(ph u(pa) + 6P} u(p (PG (@ u(p)]
ot [alh)G @) ulpr) () O ulp)

—(p )7 (1 )alrh)G(Q1)r u(pn)] } . @)

4 2
Mpyp = 1:93/ (;34 D(QI)D(QZ) 2%{6naﬂ(pl,1)u(p1)ﬁ(p;2)u(p2)

p2 . -
v 8;]2u(pa)Qr"u(pl)a(p;)cer“u(pz)} SN CY)
where we have introduced @ = (g +¢2)/2. The equivalence of Mpgz + Meross tO
the sum of conventional box and crossed-box diagrams and M;,.; + M, given
above follows from simple algebra. The substitution ¢ =+ —¢ + p} + p; in the
integral, which leads to replacements q1,q2,Q1, @2, @ = —¢2,—g1,Q2, @1, -4, is
useful in the proof.

If the scalar field has a zero isospin, 6%°,6°% — 1 and terms with other
isospin structures disappear. The terms containing ) in Egns. (4.5) and (4.6)
are suppressed by extra powers of 1/m. Hence, at least in the leading order,
the v,-dependent two-scalar exchange contributions have very simple structure.
The v,-dependent two-scalar exchange NN potentials follow from (4.5) and
(4.6) by a straightforward nonrelativistic reduction of the vertices, in particu-
lar a{p' yu(p} — 1.

The triangle and bubble diagram contributions to the NN potential in the
leading order in 1/m were recently constructed by Rijken and Stoks [6] for pions
and g-mesons, where only positive-energy nucleons were considered in interme-
diate states. It would be interesting to check whether the contributicns derived
above could account for a sizable part of dynamical difference between a model
with the standard sN N coupling and a model with its off-shell extension. To this
end one should fix all other meson parameters and fit the conventional model to
the NN data. Then one could compare the effects of adding either an off-shell
vertex or the triangle and bubble interactions to the potential.

The two-scalar exchange also contributes to the three-nucleon potential shown
on Fig. 3. In particular, from the v-dependent quadratic vertex (4.4) one gets

Van = 22 g} D(ki) D(ks) a(p})ru(pr) @) 7" u(p)
7 a . eab,_c Vo (1 y ;
i(py) [J b4 jetotr 8_7nh.(k1 - kg)] ul{ps} + acyel . (4.7)

The potential simplifies when only lowest order in v/c is retained, which means
replacing all the vertices by unity. This gives a very simple, central three-nucleon
potential, which is attractive for v, < 0, in agreement with the increased bind-
ing for negative v, observed in [1]. Together with the triangle contributions to
the NN interaction discussed above, this three-nucleon potential should account
for part of the large effect of the off-shell scalar coupling on the triton binding
energy [1]. It might be interesting to check this numerically and to compare the
importance of the three-nucleon force to variations of the N N-interaction due to
additional two-scalar exchanges.

V. ELECTROMAGNETIC INTERACTION

Since the e.m. part of the transformed lagrangian (3.13) also contains compli-
cated nonlinear multimeson interactions, the comparison of the e.m. observables
calculated using nonlinear models or models with off-shell couplings requires some
care. However, in the spirit of the previous section one can try to explain a part
of the difference by estimating the leading order effects, which for the e.m. inter-
action are nonminimal single-scalar exchange e.n. currents. Making the Taylor
decomposition of the e.mn. part of (3.13) with the help of F, = 1 —q,%,/2 we get

Lom. =W F A" Fyyf' A, + %@’Fs [AE.®,} Fou' A,
~ P AR A, — -‘fé"-iﬁ‘ {AA#,®,} %' A, . (5.1)

The minimal part of the contact YN Ns vertex proportional to Aj disappears,
since the lagrangian (3.13} does not contain derivatives of the scalar field in the
linear s NV vertex. Instead, a2 nonminimal, purely transverse contact interaction
appears. It is, of course, not clear that the lagrangian with off-shell coupling
from which we start should have a minimal contact e.m. coupling. But, in any
case, the field definition (3.12) transforms the nuclear electromagnetic current
(3.4) into an interaction current, which to lowest order in the scalar field is

as - :
Sy NNs = m?’qp’ {A¥, @} v A4,. (6.2)



This must be added to the transformation of whatever other contact interaction
replaces (3.5) in the original lagrangian. One can easily write down the interaction
current §j% ... (q), corresponding to (5.2) and given in Fig. 4

. a ; _
358 conlq) = gsg 2 Do(py — po) a(p) ) (T*A¥(py + q,p1) + A (B, P, — )TV u(m1)

x&(ph)ru(p2), (5.3)

where for a scalar meson with isospin I = 0 one has to replace r* — 1. This
current should account for some part of the difference between the e.m. observ-
ables, e.g., deuteron form factors, calculated in the conventional framework and
one with the scalar off-shell coupling.

In the lowest order in v/c, this term gives the following contribution to the
charge density

2
8

v PO -
”i {61, - B} Dalph — p2), (5.4)

Ps,con =

where é; is the charge of the first nucleon as an operator in isospin space. This
term has a structure which is very similar to the retardation contribution from
sigma exchange estimated in Ref. [8], which was found to give a nonnegligible
contribution to the deuteron and trinucleon form factors. We therefore expect
{5.4) also to give a nonnegligible effect.

VI. OFF-SHELL EFFECTS AND NONRELATIVISTIC EXPANSIONS

It is instructive to compare our results for off-shell scalar exchange to results
which have been previously obtained from the study of off-shell pion exchanges.
These studies have been carried out in the framework of conventional perturbative
expansions of boson-nucleon vertices in powers of v/e, time-ordered diagrams
for potentials and currents, and wave functions obtained from Schrédinger-like
equations. In this framework, the nucleons are on their mags shells, but energy is
not conserved at the vertices and therefore the potential and the current operators
do not commute with the hamiltonian. The definition of these operators off-shell
is not unique, is subject to ambiguities, and varies for different methods. For pion
exchange [9-11] it has been shown [5,9] that all the results of various methods
are, to leading relativistic order, covered by a generic formula

A(R) = i {An e U] + AAG), 6.1)

where An, is a corresponding nonrelativistic operator, U is hermitian
interaction-dependent operator ~ (v/c)?, and a parameter i depends on the

10

particular method used [see below (6.6)] and the PS-PV mixing parameter pu,
defined in {A.5) with v, — u for pions. The last term on the r.h.s. of (6.1),
AA(p), follows from the explicit dependence of the underlying lagrangian on
the mixing parameter y, at the one-pion exchange level it is just the nonmini-
mal contact exchange current. If the chiral lagrangian is employed AA(u) = 0.
The commutator terms generate additional exchange currents, a contribution
to one-pion-exchange potential, and, if two-pion exchanges are included, also
two-pion-exchange VN and 3N potentials.

In this section we show, that for scalars there is no additional unitary freedom
and terms analogous to the commutator in (6.1) do not appear. Therefore, the
one-scalar-exchange potential does not depend on the off-shell parameter 1 and
the explicitly »-dependent potentials and currents derived in this paper corre-
spond to the [ast term in (6.1) and they appear because the original lagrangian
does depend on v.

Let us first recall the results for the pseudoscalar mesons [9-11]. From the
lagrangian with mixture of the PS and PV couplings one gets

0 = {d-ﬁ+ Yo + ig(1 — )0y P — 5“%(6- Vo) - %ﬁ(m)}w = Hy.

(6.2)

Removing the odd operators by a standard FW procedure (see e.g., chapter 4 of
(14]), one gets

U+t (L= ) g5 7, (8))
Huell = W7 7,7 81 (6:3)

where ¢, defined as in [10,11], is so-called Barnhill parameter [12] which deter-
mines in which order are the odd terms eliminated. In the momentum space, the
vertex function for i-th nucleon interacting with pion derived from (6.3) is

i [ . 74t
T(pjpi) = — (& - @) [ 1+ 2—%
2m dm?*

e+ 70 g (AR~ sk o~ )AB w0 ) | 00

where AFE; = E] — E; is the energy difference for final and initial on-mass-shell
nucleon and gp; is an energy of the absorbed meson. For pions, the unitary
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freedom appears because one can extend the vertex off-energy- shell, ie., set
AE; # goi. In fact, it has been shown [5,13] that various ways to construct
two-nucleon operators effectively replace

AE; — g = (B} + By — By — Ey) = B(E' - E), (6.5)

where 3 is an arbitrary parameter, introduced in [13], and for most techniques
in use # = 1/2. The unitary parameter j from (6.1) is given by

L+a=28[u+1+c(1—u)], (6.6)

and it combines dependence on the off-shell parameter p with dependence on ¢
and 3, which parametrize all of the various ways of doing FW transformations
and constructing interaction-dependent operators. For any value of fi one gets a
hermitian hamiltonian and a description conforming with approximate Lorentz
and gauge invariance.

Let us now consider the case of scalar mesons. From the lagrangian (3.1) we
obtain the equation for the time dependence of the nucleon field

i&¢={&ﬁ+ﬁm—gﬂuwf¢+%ﬁiﬁ¢}—%WQyﬂ@w%¢
:{d‘-ﬁ+7°m-—g'y°¢+g[&'-ﬁ, Q]—%i(ﬂtfb)}u’;=ﬂw, {6.7)
where the second form follows from approximation

O ~ (@ F+"m)v (6.8)

on r.h.s. (recall that only terms linear in ® are retained). Removing the odd
operators, we obtain from the second form

: 1o vg (. 7
Hit — _ 0l - ——_I7. . - & O£ .
Fw =97 gz i6-0,{¢ IJ,‘I’}}]Jr2 ( (8, P) ++ [2_ ,‘ﬁD
(6.9)

Note that, unlike for pions, there is no Barnhill freedom at the order considered.
The reason is that the interaction-dependent odd terms of the untransformed
hamiltonian {6.7) are of the order ~ 1/m and hence the corresponding unitary
transformation would generate the contributions ~ 1/m?, while we keep only the
terms up to ~ 1/m?. In momentum space, the hamiltonian (6.9) generates the
sN N vertex for i-th nucleon

12

. 0 . 4 14
0p) = 1= oy (5 4 7)° + 2060 (7 52 ) = 5 (BFs = m)| - (610)

For our scalar exchange this off-energy shell extension (6.5) is not allowed.
The point is, that if the last v-dependent term is present in (6.10), the vertex
and the one-scalar exchange potential derived from it are not hermitian, i.e.,
C(pl, p:) # D(pi,p}). 1t is clear already from (6.7), since the hamiltonian defined
in {6.7) is hermitian only if

. S
i(8:®) = +° @, 6.11
i@ =+ | a (6.11)
that is only if energy is conserved at the vertex.

We could attempt to re-write the eq. (6.7) with the hamiltonian which is
equivalent to the old one on energy shell and which is hermitian

000 = {7+ +m — o1 = V8 + 35 9) - Loty =,

(6.12)

but with the help of {6.8) one easily sees that to first order in ®, the hamiltonian
H' is equivalent to the standard r-independent one

H ~d-g++"m - g7°®, (6.13)

and it gives only the standard part of (6.10). This can also be checked by straight-
forward FW transformation of {6.12). Therefore, we conclude that there is no
consistent way to continue the sN N vertex off-energy shell. Consistent operators
are obtained only if one puts 3 =0, i.e., i = —1 in (6.5) and (6.6}, respectively,
as in the S-matrix approach [16]. Then, the nucleon potentials and exchange
currents are identified with the straightforward Taylor expansion in powers of
of v/c ~ p/m of the corresponding Feynman amplitudes. This identification is
made in previous sections. In particular, only the standard v-independent part of
the sNN vertex contributes to one-scalar-exchange potential and this potential
does not depend on v even when the relativistic corrections are included and the
potential is considered off-energy-shell.

VIL. CONCLUSIONS

The lagrangian with the off-shell vertices can be conveniently related to the
more conventional one by means of the nucleon field redefinition. The trans-
formed lagrangian contains simpler bNN vertices, but has complicated contact
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multimeson terms. One can also start from a conventional lagrangian and intro-
duce off-shell couplings and some contact terms. Notice that this way one never
gets the coupling with off-shell extension hoth before and after meson is emitted.

The nonlinear interactions generate triangle and bubble diagrams for the NN
interaction, complicated three-nucleon interactions and meson exchange currents.
We list leading order contributions to these operators.

For the scalar, pseudoscalar and isoscalar vector mesons one can completely
transform away the interaction terms with derivatives of the nucleon field, for
the isovector vector mesons this is possible only at the lowest order, linear in the
vector field.

Since in the low and intermediate energy region the importance of nucleon
operators is increasing with decreasing exchanged meson mass, it would be in-
teresting to numerically estimate the effect of these lowest order operators, since
they might represent a large part of the difference between a model with off-shell
coupling and one with conventional vertices.

Uniike for the pion case, for scalars there is no additional unitary freedom de-
pendent on the off-shell parameter v in the framework of a hamiltonian formalism
with a v/c expansion.
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APPENDIX A: PSEUDOSCALAR AND VECTOR EXCHANGES

In this appendix we demonstrate how the removal of the off-shell [1] coupling
works for pseudoscalar and vector mesons. In a generic form the lagrangian with
an off-shell coupling reads

L=C8" 4 Lo+ LX) + Conn ()
+C'7NN(¢) + E‘yNNb("l’)) 1 (Al)
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Lonn(¥) = gPT oy
+5 B0 (70 —my) — SO Py, +mP)(TOW,  (A2)

Cywmo(¥) = 5% {Af T2} ¥ 4, , (A.3)

where we use b == s, v, ps to denote different mesons and B = b, v stands for both
mesons and photons. The 8NV N vertex I' contains some Dirac matrix structure,
and it can carry a Lorentz index for spin 1 mesons and an isospin index for isospin
I mesons. In more detail, we take for scalar mesons I'y, = 1, for pseudoscalar
mesons I'p, = —i7® and for vector mesons I'* = y#. The vBB vertex could also
contain an anomalous tensor coupling, but the off-shell extension of this part has
not been considered in [1] and we omit the anomalous coupling here for the sake
of simplicity . The bNN vertex function in momentum space reads

T(w',p) =T (¥ p) + % (' —m)I@,p) + T, p)(B—m)), (Ad4)

For the pseudoscalar mesons the off-shell couplings (A.4) is just the usual pseu-
dovector vertex,
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Lpalp',p) = —i ((1 — vpa)Y® + ﬁ(ﬁ’ - ﬁ)'rs) , (A.5)

which also follows from adding the total derivative to (A.1). For pions v, is
usually named p. This is possible since {y*,7°} == 0 and it completely removes
the derivatives of the nucleon fields from the interaction terms, introducing in-
stead terms with derivatives of the meson field, i.e., replacing the difference of
nucleon momenta by the meson momentum ¢ = p' — p. Hence, the field redefini-
tion removing this part of vertex should be equivalent to the usual chiral rotation
which dials between PS and PV couplings. Nevertheless, let us recover these re-
sults proceeding in a same way as used for scalar and vector mesons, though for
pseudoscalar mesons the procedure appears somewhat artificial.

To transform away the off-shell BN N, we redefine the nucleon field with the
help of the function F = F(I'®), obeying

AP (TP)y° = F(FD), {A.6)

50 that
$(x) = F(T(2)) ¥'(x), (A7)
Y(z) =Y {a)F(I'e(z)) - (A.8)
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In terms of '
L= %-1,{3’17(1 + al'®)V* F(0,9') — le-(auqﬁf)mm + al'®)Fy’
—mp' F(1 + aT®)Fy' + gy F3(T @)y
+%1/3'F(1 + al®)y* (8, F)9' — %1,5’(8# F)y*F(L + al'®)y’

U F A FY Ay + SO F {A5,10} Fy' A, (A.9)

Requiring that the first line in (A.9) equals the nucleon kinetic lagrangian
£Xin(y") implies

¥ = F(1 + al'®)y*F = Fy*(1 + al'®)F, (A.10}
which can be satisfied only if [v#,T'] = 0. However, this does not mean that it is
possible to transform away interactions with derivatives of nucleon fields only in
this case: the offending terms might be eliminated by adding a total derivative.
Indeed, let us denote

T¥ = F(1 + al®)y*F, (A.11)
T# = Fy*(1+ aT'®)F, (A.12)

and add to the lagrangian {A.9) a total derivative
PR ’
20, (Y - T4, (A.13)

where f = f(I'®) is to be determined to allow reduction of all terms with deriva-
tives of nucleon fields to £4™(¢'). These terms now equal

L (/4 DT~ T4) B - 5@ TH + D) -TENY . (A1)
Requiring that
P = (4 DD - T = T5(f +1) - TS, (A.15)
leads to a condition
(2f + T =TLQ2f + 1), (A.16)

or, assuming existence of F~}, to the relations
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(2f + 1)(1 + al®)y* = y*(1 + aTB)(2f + 1), (A.17)

which is satisfied with
c—al'®

f(re) =

where ¢ is an arbitrary number, which can be set to ¢ = 0. Using the solution
{A.18) in the constraint (A.15) leads to an equation for F'

- F(ﬁ + 5‘25 {*, 1“«1:}) F. (A.19)

Assuming that the solution F of (A.19) exists, the transformed lagrangian (A.9)
with the total derivative {A.13) added and with the function f(I'®) given in
(A.18) is

£ = 2@ (0,0) — 5O’ — i F(1+aT®)FY + g FX (D)
+%z§' (~,“F—1(auF) — (B FYF'y* + gF [v*, (T9,®)] F) 3’
L F AR Fy A, + %J)’F (A T®) Fy' A, . (A.20)
For scalar mesons I' — I'; = 1 and hence T commutes with +#. The matrix
~# can be factorized from (A.19), we get F? = 1+ a,®,, and from (A.20) one
immediately recovers (3.13).
For pseudoscalar mesons I' — Ty, = —iv°, and T anticommutes with .

Considering now F — Fp,(—i7°®p,), for which Fy,v* = v#F;,, we obtain from
{A.19) the relation

FpuFj, =1, (A21)
te., £, = Fy,. Using these properties of Fy, we obtain from (A.20)

L = Ll (W) + I - (0,250) FO' ~ (1 = vpoJ' iy @ ¥
Fm(l - F2)' + gfﬁ'(Fpnﬂ (0 Fypn) — (B Fpe )" F,,,)w'
By AV Fyp §' Ay, — 82240 Fpg { Al 70} Fon ¥/ A (A.22)

;I‘:eQ r;lost general form of Fp,(-iv>®,,), satisfying the constraints (A.6), and

21) is
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Fpa(=i7°®5s) = exp (ingﬂ ot £(23,)) (A.23)

where 7 is real number and f* (@ normalized to f(0) = 1. Up to
the quadratic terms in ®,, the la.granglan {A 22) does not depend on the form
of f(®3,) and we can replace f(®%,) = f(0) = 1:

2—”:7)9;03 151,711.75(3#@”)@[;' — ipsll — Vpa + U)‘f;"Ya‘I'psd"

gps

Lo cff, () +

2
, 9os 70 ue R -
+7(1 — vps + _) '!b' s"/’ + ’?(2"?9 - T]) pa- YT Dps X (auq’m) Y’
PR A, + 19”"’ W {(1— vpe) AL + nAA Y5, } ¢ A, (A.24)

The transformed lagrangian contains a ps/V N vertex with the PS-PV mixing (the
mixing parameter is v, — 7) and the quadratic contact vertices of the standard
form. The e.m. coupling with AJ is just the the usual Kroll-Rudermann cou-
pling [15], it is obtained by the minimal coupling from the psNN vertex with
a derivative and it contains the same factor (v, — 7). For pseudoscalar mesons
the interactions with derivatives of nucleon fields is replaced by the PV form
of meson-nucleon coupling with derivative of the meson field. Thus, in this case
transforming away the off-shell coupling means eliminating the PV psN N vertex,
which is achieved if one sets 5 = vp,. The transformed lagrangian then simplifies
to

km (TJ'J ) - igps’lj”)/s‘ppsw'
+ups(1 — gﬁ)g:?‘a Py + 2 gps pa Pyre - ps X (O ‘I>,,s)¢
AR A, +iy”2’%’— . {AA“ ,754>p,,} P A, . (A.25)

For the vector mesons ® -+ v,, I' & 4* and the off-shell vertex in momentum
space reads

P5(p,p) = o + 5= (B - m)v“ + A4 (p—m))

= (1 — vy )y* + 5 ((p +p)* +ic* (p' —p),) (A.26)
From {A.19) we get for the vector mesons
7 = Fy(v* + a,v)F . (A.2T)

Let us first consider isoscalar vector mesons. In this case, v, commutes with
9, and hence with F, (). Therefore, we can multiply (A.27) by v, and find the
solution
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1
Vvita,'

which as a matrix in the Dirac space is defined by its Taylor series. The trans-
formed lagrangian reads

Fy(D) = (A.28)

— pkingo Tt !
L £'N (w)'*'gv'l/} l-i—avﬁw

* w'(w {OuF) - (auFu)F;w“c;—”Fuw,(amm)w

G, A Fy' Ay + a—”d?Fu (AL, 8} Fyy' A,
o~ Cki"(r,b') + g’ —

at:'

1/) {AA* 6} 9" Ay

Y i "%' (7 @) - @un*o)w. (A9

For isovector vector mesons a solution to all order in meson fields does not
seem to exist. The problem is that in this case v, = ¥ ¥, and the components
of the vector field do not commute

[V, vg] = 26 7+ (T X T3). (A.30)

Still, if only terms linear in the meson field are retained, the choice F, = 1 —
a,?/2 eliminates the interaction terms with derivatives of nucleon fields. Up to
a guadratic order, the most general form of F, is

Fym~1- E-'U + ca. 00 + datva by, (A.31)

and it is easy to check that it does not solve (A.27) up to the quadratic order for
any choice of ¢ and d. This means that any field redefinition leaves some inter-
action terms quadratic in vector field and containing the derivatives of nucleon
field.

To sum it up, the linear approximation to function F is in all cases (with
71 = Vyy for pseudoscalar mesons) given by

Fael- %rq), (A.32)
and the transformed lagrangian up to this order reads

L) = LK (") + g Ty’ ~ gaﬁ' {AA" T} ¢/ A, .. (A.33)
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For scalar, pseudoscalar and vector isoscalar mesons the transformation can be
carried out to all orders and different contact interactions appear. For vector
isovector mesons it seems impossible to transform away the interaction terms with
derivatives of nucleon fields to higher than linear order in meson field. Although
the closed solution exists for most types of mesons, if more than one off-sheli
vertex is considered one has to resort to approximate solution approximating F
by a power series.
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FIG. 1. Box and crossed box contributions to the two-meson exchange NN potential.
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FIG. 2. Triangle and bubble contributions to the two-scalar exchange NN potential
generated by the contact interactions in the transformed lagrangian.

FIG. 3. Contribution to the trinucleon potential generated by the contact interactions
in the transformed lagrangian. Two other diagrams with cyclic permutation of nucleons
are not shown.
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FIG. 4. Contribution to the electromagnetic meson-exchange current generated by
the coutact interactious in the transformed lagrangian. Quly the diagram with the
contact vertex attached to the first nucleon is shown.

22

23



