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Few-nucleon physics is a field rich with high-quality experimental data and possibilities for accu-
rate calculations of strongly-correlated quantum systems. In this articls we discuss the traditional
maods] of the nucteus as & system of interacting nucleons and outline many recent experimental
results and thearatical developmenta in the field of few-nucleon physics.

We present discussions of nuclear structure and spectes, ciustering and correlations, elastic and
inalastic electromagnetic form factora, low energy electroweak reactions, and nuclear scattering
and response in the qunm-eh.sllc reg:rna Through a review of the rich experimental data and &
variety of th acal , & coh t description of the nuclear strong and electroweak
Interaction properties amsr;ea In th!s article, we attempt to provide some insight into the practice
and posaibilities of in few-nucleon physics today.
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I INTRODUCTION

Light nuclei provide & unique testing ground for the simple, traditional picture of the nucleus as a system of
interacting nucleons. The nucleon-nucleon (W} interaction, as reveated by pp and np scattering experiments and
the deuteron’s properties, has a very rich structure. In light nuclear systems, with only a few degrees of freedom, it
is possible to obtain accurate solutions for a wide variety of nuclear properties directly from realistic maodels of the
NN interaction.

Within this deceptively simple picture, we can test sur understanding of nuclear structure and dynamics over a
wide range of energy, from the few keV of astrophysical relevance to the MeV regime of nuclear specira to the tens
to hundreds of MeV measured in nuclear response experiments. Through the advances in computational techniques
and facilities, the last few years have wilnessed dramatic progress in the theory of light nuclei, as well a3 a variety
of intriguing new experimental results. Important advances have occurred in studies of the spectra and structure of
light nuclei, hadronic scattering, the response of light nuclei to external probes, and electroweak reacticns involving
few-nucleon syatems at very low energy.

The picture of nuclel presented in this article, a# nucleons interacting primarily through two-body interactions,
should be adequate at low to modest values of energy and momentum transfer. Its usefulness lies in its conceptual
simplicity, the nuclear properties are dominated by the two-nucteon interactions and one- and two-nucleon couplings to
electroweak probes. This description is not new, indeed our knowledge of the basic components of the AN interaction,
a short-range repulsion, an intermediate-range attraction, and a long-range attraction due to one-pion exchange, were
all present in the work of Hlamada and Johnston (1962) and Reid (1968).

The ability to pecform reliable calculations within such a model is new, however. Even ground-state calculations
of the three muicleon aystem with “realistic® nuclear madels were ouly completed in 1985, (Chen et af., 1985) with
four-nucleon ground-siate caleulations following in 1990 (Carlson, 1990b}), and even more recently ralculations of
low-lying states in A=5 to 7 (Pudliner et ai., 1995). AMo new is the connection, through chiral perturbation theory
(CPT), of such a picture within QCI} {Weinberg, 1990, Weinberg, 1991). Important conclusions of CPT, in particular
the relative smallness of many-bady forces, have been tonfirmed in the phenomenclogical models described in this
article.

If progress invelved only nuclear ground states, the picture would be interesting but of limited utility. However,
important progress has been made in the scattering regime as well. Realistic calculations of three-nucleon {nd)
scattering have been performed with momentum space Faddeev technigues (Glickle et af., 1996). Comparisens are
available with a wide range of experimental observables, including total cross sections, vector and tensor analyzing
powers, spin transfer coefficients, and scattering into specific inal-state configurations. The overail agreement between
theory and experiment is quite good, as many observables are well-reproduced in the calculations. Nevertheless, some
discrepancies remain acill unresolved. In particular, the difference between calculated and experimental results on the
polarization observable A, are quite puzzling, possibly pointing to the need for improved maodels of the three-nucleon
interaction and the inclusion of refativistic effects,

Significant progress has also been made in calculating low energy electroweak reactions with realistic strong inter-
actions and electroweak couplings. Reactions such as 'H(p,e*#.)?H, *H(p,7)°He, *H(d,7)*He, and *He(p,*v,} He
have great astrophysical interest, az well as being important testa of our undersianding of few-body reactions. They
are sensitive both to ground- and scattering-stale wave functions and the electroweak current operators. Several
methods have been used successfully in studying these low-energy capture reactions, including Faddeev, Correlated
Hyperspherical Harmonics {CHH), and Monte Carlo techniques.

The construction of realistic models of the nuclear current have "proven essential to success in this area. Two-
body currents associated with the VNV interaction, particularly those associated with pion exchange, are crucial both
on theoretical grounds, in order 1o satisly current conservation, and phenomenciogical grounds, as they provide a
much improved description of the properties of light nuclei. The Faddeev and CHH calculations of the 7H(p,y)*He
and TH{n,7)*I cross sections are in good ngreement with experimental valucs. The four-body capture reactions are
purticularly sensitive to the detailed model of the interactions and currents, as their cross sections vanish in the limit
of no tensor force and no two-body currents. Discrepancies exist between variational estimates of the *H(d,y)*He
and *He{n,7)'He cross sections and the corresponding experimental values, and it is not yet clear whether these
discrepancies are to be ascribed to deficiencies in the variational wave lunction or to the model of twe-body current
operator {or both), These questions should be resolved in the near future.

Electron scattering experiments provide further crucial tests of our understanding, in particular probing the elec-
iromagnetic current operator at higher values of the momentum transfer. Again, ground-state properties are well
reproduced within this picture. The framework presented in this article has been shown to provide, at low and
moderate values of the momentum transfer, a satisfactory description of the deuteron A(Q) and B{() structure func-
tions and threshold disintegration, the chatge and magnetic form factors of H, *He and *He, and the two-nucleon



distribution functions of the helium isotopes as extracted from the (e,’) data. The only ground-state ebservables
for which small but definite discrepancies exist between theory and experiment are the quadrupole moment and ten-
sar polarization of the deuteron at intermediate values of the momentum transfer (Q=0.5-1.0 GeV/c), and the *He
magnetic form factor in the region of the first diffraction minimum. The discrepancy in the deuteron quadrupole
moment ia significant, it is a challenge to abtain precise agreement with all the deuteron data in ¢lther a relativistic
or non-relativistic model.

Experiments with polarized and unpolarized electrons have measured inclusive and exclusive cross sections, longitu-
dinal and transverse response functions, and asymmetry observables at intermediate energy and momentum transfer.
The theoretical descriptions of these reactions have also progressed recently, with exact calculations of the response in
A=3 with the Faddeev method, and Euclidean and Lorenz transforms of the response in A=4. The overall agreement
with experiment is quite good in complete calculations, those which include realistic ground state wave functions, two-
body currents, and final state interactions. In particulac, the ratio of the longitudinal to transverse strength measured
in electron scattering is well described. The one-pion-exchange mechanism is important in each of these components,
and crucial to the overall success of the models. The failure to explain this ratio in calculations based on the naive
plane-wave-impulse-approximation (PWIA) had led to speculations of in-medium modifications of the nucleon’s form
factors, the so-called “swelling” of the nucleon. In complete microscepic calculations na such modification of the form
factors i3 necessary or even desirable,

The aim of this article is to review progress and highlight the prospects for microscoplc studies of light nuclei. In
the following sections, we present some of the methods used in calculating properties of few-nucleon syatems, and
provide some highlights of the available comparisons with the huge quantity of experimental data. We begin with
studies of nuclear spectra and structure, then discuss low-energy capture reactions, pd and nd scattering, and finally
the nuclear response. Necessarily, some of the theoretical and experimental developments are treated cursorily, but
we hope to convey a broad view of the intriguing and important studies in few-nucleon physics today.

I1. NUCLEAR INTERACTION

We consider the simplest picture of a nucleus, a system of interacting neutrons and protons. [n a ron relativistic
framework, the Hamiltonian is:

e
ﬁ"‘zvﬁi’ z ngl, +---, (2.1)

i<i i<j<k

where the nucleons interact via two-, three-, and possibly many-body interactions. Studies of the nuclear interaction,
both experimental and theoretical, have a long history, beginning essentially with the discovery of the neutron by
Chadwick in 1932, and proceeding through the justification of this simple picture of nuclei within QCD by Weinberg
(1991). A nice review of much of this history, along with a detailed description of current nucleon-nucleon (NN}
interaction models is given by Machleidt {1989). Here we merely explain some of the dominant features of the ¥V
interaction and their importance in the structure and dynamics of light nuclei.

A. NN interactions

The NN interaction hag an extraordinarily rich structure, as has been recognized for quite a long time. It is described
in terms of the nucleon's spin (&) and isospin (r), where both & and r are SU; spinors. The former variable represents
the Intrinsic angular momentum (spin) of the nucleon, while the latter is & convenient representation for its two charge
states—the proton and neutron. The generalized Pauli principle in this framework requires that two-nucleen states
be antisymmetric with respect to the simultaneous exchange of the nucleons' space, spin, and isespin cootdinates.
The predominant isospin-conserving part of the NN interaction is writlen as linear combinations of components
proportional 10 the two isoscalars, 1 and 7, - T

The long-range component of the NV interaction is due to one-pion-exchange (OPE). If isospin-breaking terms are
ignored, it is given, at long distances, by:

ojPF = %‘E ? {yx(ﬁ:)di -0y +T-(l'ij}5i,'] Ti' T 2.2)
.
Ya(ri) = oy (2.3)
Talry) = [1 + F—Z—’- + ﬁ] %. {2.4)
where the mass m, is the mads of the exchanged plon, and
Sy = doi-Fyo;Fy—oi oy (2.5

is the tensor operator. At distances comparable to the inverse pion mass {(x = 1/m, = 0.7 fm™'), OPE leads to &
large tensor component in the NN interaction. In nuclear systems, then, the spatial and spin degrees of freedom
are strongly correlated, and hence nuclear few- and many-body problems can be quite different than systems where
the dominant interaction is independent of the nucleons internal quantum numbers (spin and isospin), such as the
Coulomb interaction in atomic and molecular problems or Van der Waala forces in systems like butk helium,

‘To further illustrate this point, we reproduce the plots of the deuteron's nucleon densities (Fig. 1) for two different
orientations of the pair's spin, §; = +1 and 5, = 0, reapectively (Forest e¢ al., 1996). As is apparent in the figures, the
density is strongly dependent upon the orientation of the nuclear epin. Similar structures in the two-body distributions
seem to occur in alt light nuclei (Forest ef al,, 1996). While this figure was constructed using a particular model of the
NN intetaction, the Argonne vy (Wiringa, Stoks, and Schiavilla, 1995), any NN interaction including short-range
repulsive and long-range tensor components would produce a nearly indistinguishable plot.

‘At moderate and short distances, the ¥V interaction is much more complicated. However, the large body of pp
and pn scattering data accumulated over the past half century provide, by now, very strong constraints, and indeed
have been crucial in advancing our knowledge of the NV interaction.

One of the important early NN potentials was due to Reid (1968). It consisted of OPE at long distances, and was
of a partial-wave local form at short distances. That Is, it can be written as:



i = Y Voo [} [Yaberl {2.6)
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where the Y, are two-nucleon states of total isospin T and angular momentum J, the latter being composed of the
spin S and relative orbital angular momentum L. The sums over a and o’ run over these two-nucleon states. In the
uncoupled channels {$=0 and S=1, J=L} the interaction is diagonal in a, while in the remaining triplet {5=1) channels
the tensor operator Sy couples the L = J £ 1 states. In the Reid interaction, the radial forms of the intermediate-
and short-range parts of v, o (r} were simply taken as sums of Yukawas.

As more data became available, a variety of more sophisticated interaction models were introduced. At shert
and intermediate distances, these models can be quite different, ranging from onc-boson exchange (OBE) modcls
to models with explicit two-meson exchanges to purely phenomenclogical parameterizations. Examples include the
Paris (Cottingham et al,, 1973}, Bonn {Machleidt, Holinde, and Elster, 1987}, Nijmegen {Nagels, Rijken, and de Swart,
1978), and Argonne w4 (Wiringa, Smith, and Ainsworth, 1984) interaction models. The Nijmegen group employed
Regge pole theory to obtain an NN interaction model which includes numercus OBE terms with exponential form
factors at the vertices, plus repulsive central Gaussian potentials arising from the Pomeron and tensor trajectories.
This Nijmegen interaction is mildly non-local in the sense that it contains at most two powers of the nucleon pair's
refative tum. The resulting interaction can be written:

vylry = 3" vrir) 0% @n
r

where the operators OF; are producta of
o= Loiros, Sy, (L-Shy, by, plos-o;. (LS} @1, w74, (2.8}

and py; = (p; — p;)/2 i8 the relative momentum of the pair, and L is the relative orbital angular momentum. The
radial forms in the interaction are obtained from meson exchanges with phenomenological form factors. The coupling
condtants and form factor cut-offs are then adjusted to fit the deuteron properties and ¥V scattering data.

‘The Bonn group (Machleidt, Holinde, and Elster, 1987) used “old-fashioned” time-ordered perturbation theory, and
inchuded & number of one-boson exchangs terms, plus two-meson exchanges (27, xp, and 7w), correlated two-pion-
exchange (TPE) in the form of the exchange of an effective scalar meson (the o-meson), effective three-pion exchange,
and intermediate A isobars. Several forms of the Bonn interaction were presented, the “fuil” Bonn interaction is
energy-dependent and consequently difficult to use in many-body calculations. The Bonn B interaction is often used
in realistic calculations, it is an energy-independent model constructed in momentum-space; in coordinate space it
contains non-localities with the range of the nucleon's Compton wavelength (= 0.2 fm}.

The Argonne vy (AV14) interaction (Wiringa, Smith, and Ainsworth, 1984} is of a more phenomenclogical form.
At short and intermediate distances, its radial dependence is parameterized as a sum of funclions proportional o
T2, (Eq. 2.4) and consequently of two-pion-exchange range, plus short-ranga Woods-Saxon functions. The magnitude
of these terms, as well a3 the parameters of the Woods-Saxon radial shapes, are adjusted to fit the data. As in
the Nijmegen interaction, the AV14 is 3 mildly non-local interaction containing at most two powers of the relative
momentum. However, the AV14 interaction uses the operators:

Of = Loy 05, Sy, (L-8)y, LY, Lijoi-o;. (L-S) ] @[, 7iomy] - (2.9)

The first eight of thess operators (those not involving two powers of the momentum) are unique in the sense that all
such operators are implicitly contained in any reallstic ¥ interaction model, The choice of the kigher-order terms
invelving the second power of the orbital angular momentum operator is different than in the Nijmegen model, which
uses instead p? operatora in place of L. The primary motivation for this choice is convenience in few- and many-body
calculations, as the L? terms do not conttibute in relative S-waves.

The Paris interaction {(Cottingham et al, 1973) is somewhat of & hybrid model. At intermediate nucleon-nucleon
separations, it includes single w exchange along with TPE contributions calculated using #IV phase shifts, = Inter-
actions, and dispersion relations. In addition, it contains short range phenomenological terms. Indeed, all models
should be considered phenomenological at short distances; they are either written phenomenologically from the start
or, in the case of boson exchange models, include phenomenclogical meson-nucleon form factors.

Even within the boson exchange-type models, the interaction should not be taken literally as the exchange of single
bosons. OBE models often incorporate an effective scalar ¢ meson, which models the effects of correlated TPE,
its mass and coupling constant are among the parameters that are adjusted to fit the two-nucleon data. Also, the
refativety hard form factors obtained in NN interaction models can be thought of as simulating the exchange of

heavier mesons with the same quantum numbers, or of simulating other physical effects outside the direct scope of
the model.

While these modets all produce a qualitatively similar picture of the NN interaction, with OPE at long range,
an intermediate range attraction and a short range repulsion, quantitatively they can be somewhat different. Fer
example, the !P; phase shifts for some of these models are plotted in Fig. 2. There are several reasons for this, chief
among them that they have not all been fit to the same data. For example, models fit to np data do not precisely fit
the experimental pp data if only electromagnetic corrections are introduced.

Fortunately, high quality phase shift analyses of the pp and np data have become available recently (Amdt et al,
1992, Stoks et al., 1993). For exampie, the Nijmegen analysis relies upon the (known) long-distance electromagnetic
and OPE interactions, and makes a simple energy-dependent parameterization of the interior {r,; < 1.4 fm) region.
“The data and analysis are quite accurate, yielding a x? very near one per degree of freedom. The analysis is carried
out for both pp and np experimental data, and the accuracy is sufficient to “reproduce the experimental charged and
neutral pisn masses” from the nueleonh-nucleon data (Stoks et al., 1993). The Nijmegen group has also attempted to
determine the #N IV coupling constant from the phase shift analysis, (Stoks, Timmermans and de Swart, 1993) and
find a slightly lower value {2y /4% = 0.075) than that obtained previously. This particular result is in agreement
with recent analysis of xN data {Arndt, Workman and Pavan, 1994}, but is stitl a matter of some dispute {Ericson
et al., 1995, Arndt, Strakovsky and Workmen, 1995, Bugg and Machleidt, 1995). Another high-quality phase shift
analysis has been completed by the VPI group (Arndt et al., 1992).

Recently, several NN interaction models have been ft to the experimental database. These include updated
Nijmegen interactions {Nijm I, NijmIl, and Nijm93) (Stoks ¢t al., 1994}, the Argonne v y (AV18} interaction (Wiringa,
Stoks, and Schiavilla, 1995), and the CD} Bonn interaction (Machleidt, Sammarruca, and Song, 1996). These models
follow basically along the lines of their predecessors, however in order to provide a precise fit they are adjusted
separately to the np and pp database, which requires them to contain charge symmetry breaking (CSB) terms of both
isovector (7, +75,.) and isotensor {3#, . 7;; — 7 - 7;} type. Each of these models fit the V.V database extremely well,
with x? per degree of freedom near one. The cost of this excellent fit is 2 rather large number of parameters; the
AV18 intersction has 40 adjustable parameters and the other modern interaction models have & similar number.

The most recent Nijmegen models are partial-wave local, in the same sense that the original Reid model was, While
they retain a boson-exchange basis, the parameters are adjusted separately in each chennel. The Nijmegen group has
also produced an updated Reid-like model which is written as a sum of Yukawas. Such partial-wave local interactions
provide a very specific choice of nonlocality in the full ¥V interaction. The CD Bonn interaction employs another
choice for the non-local terms; the non-localities are essentially relativistic corrections, and are discussed briefly below,
Finally, the AV18 interaction is maximally local, containing at most terms proportional to L2

As has been mentioned, each of these modern interactions contains isospin-breaking terms. At the level of accuracy
required, the electromagnetic interaction must be specified along with the strong interaction in order to precisely
reproduce the data. These EM interactions consist of one- and two-photon Coulomb terms, Darwin-Foldy and vacuum
polarization contributions, and magnetic moment interactions (Stoks and de Swart, 1990). The [ull NV interactions,
then, are the sum of a (dominant) isospin-conserving strong interaction, specified electromagnetic interactions, and
finally additiona! isospin-breaking terms. The latter, for example, are introduced in the AV18 interaction as terms
proportional to:

Ouzysas = Tij, o0-03T5, ST (rie +154) {2.10)
where the isotensor operator is .
Ty =3aTga—Ti Ty + (211}

OPE includes effects of charged versus neutral pion mass differences. In principle one could use different coupling
constants for the different charge channels. however the Nijmegen analysis finds no necessity for this and the AVI8
interaction uses f2y,/4x=0.075 in ail cases. This sophisticated fitting of the two-body np and pp data, as well as
the nn scattering length, allows the study of isospin breaking effects in three-, six-, and seven-nucleon systems.

The properties of the deuteron obtained with these interactions are given in Table I. The binding energy E4 =
2.224575(8) MeV (van der Leun and Alderliesten, 1982) has been fit by construction; the asymptotic constants A5
(the S-wave normalization) and 5 (the D/5S state ratio) which govern the wave function at large distances are also quite
accurate. The quadrupole moment §4 and magnetic moment g2 are under-predicted in the impulse approximation;
hawever, the latter has significant corrections from two-body current operators and relativistic corrections, as discussed
below.

The phase shifts for several channels are displayed in Figs. 3-6 (Wiringa, Stoks, and Schiavilla, 1985). In Fig. 3
the np and pp phases are shown explicitly to demonstrate the difference between the np and pp interaction. Several
recent phase-shift analyses (Arndt et al., 1992, Bugg and Bryan, 1992, Henneck, 1993, Stoks ef al., 1993) ate also



shown. In the 1S channel {(5=0, T'=1, L=0), the two sets are both strongly attractive near threshold, indicating the
presence of a nearly bound state in that channel. The phase shifts differ by nearly 10 degrees near the maximum,
however. For somewhat higher energies, the interaction remains attractive, but the phase shift turns negative near
250 MeV in the lab frame. The results of several phase-shift determinations are also shown in the Rgure.

The mixing parameter ¢; is shown in Fig. 4, where it is again compared to several analyses. As is apparent,
significant, discrepancies remain among various analyses in that channel. This has been a subject of much debate,
particularly with regard to comparisons of singie- and multi-channel phase shift analyses. Nevertheless, the behavior
of all the modern interaction models are all quite similar in this regard. The ¢; phase is particularly sensitive to the
strength of the NV tensor interaction.

More typical is the case of the 33, phase pregented in Fig. 5, for which all modern interaction models produce
nearly identical results, in agreement with the Nijmegen analysis. Finally, the P, phase shifta are presented for the
various interactions in Fig. 6. )

Given this simple picture of (partial-wave) local NN interactions, one obvious concern is the importance of the
choice of the specific eadial forms for the individual components of the interaction. Friar et of. (1993) have investigated
this question, solving for the triton binding energy with a wide variety of local potential models. These interactions
contain non-localities only at the level of two powers of the relative momentum (i.e., p? or L?), and were found to
yield nearly identical results for the binding energy: 7.62 & 0.01 MeV as compared to the experimental 8 48 MeV,
Clearly, local two-body potentials are not sufficient to reproduce the three-nucleon binding energy.

B. Beyond static two-nucleon interactions

A natural question, then, is what other eflects are important in reproducing binding energies of light nuclei?
Two of them are immediately apparent, relativistic corrections and three-nucleon interactions. It has long been
known that these effects cannot be completely separated, they are related both theoretically and phenomenclogically,
phencmenologically in the sense that simple estimates of their contributions are comparable.

The simplest estimate of relativistic corrections is to consider a standard non relativistic calculation of the a-patticle.
The total kinetic energy is on the order of 100 MeV, or 25 MeV per particle. Thus one would expect relativistic
corrections on the order of 2% of this value, or 2 MeV. Three-body forces can be similar in size; at the longest
distances the three-hady force is of the well-known Fujita-Miyazawa type (Fajita and Miyazawa, 1357), corresponding
to single pion exchanges between three nucleons with the intermediate excitation of a A-isobar resonsnce. The
presence of this relatively low-lying resonance requires a three-nucleon interaction at a similar level, roughly & few
MeV in the a-particle.

A wide variety of relativistic calculations of light nuclei have been carried out. One-boson-exchange mechanizms can
be naturally extended to relativistic treatments; such & scheme naturally leads to a four-dimensional representation
of the NN interaction. Rupp and Tjon {1992) have investigated trinucleon binding as well as other properties within
a separable approximation to the Bethe-Salpeter (BS) equation, and find an incrense in binding compared to non
relativistic approaches.

Several groups have pursued relativistic one-boson exchange calculations within various three-dimensional reduc-
tions of the BS equation. These groups generally find a larger binding in the three-body system than is obtained in non
relativistic calculations; for example, Machleidt, Sammarruca, and Song (1996) have fit the NN data within a OBE
mode! using a Blankenbecler-Sugar (BbS) reduction. The resulting quasipotential equation can be cast into a form
identical to the Lippman-Schwinger equation, thus allowing a direct comparison with standard non relativistic results.
Clearly, though, any three-dimensional reduction is not unique. Upon extending the Blanckenbecler-Sugar formaliam
to the three-nucleon system, Machleidt ef al. find a triton binding energy of 8.19 MeV. Most of the additional binding
is retained even in a non relativistic version of the calculation, the additional binding in such a calculation (8.0 MeV)
is attributed to the non-local character of the interaction obtained within the Blankenbecter-Sugar formali

Trinucleon properties have also been investigated within the context of the Gross or spectator equation, in which
one particle is placed on shell in all intermediate states. This scheme has the advantage of having the correct Dirac
equation limit when one of the particles has a very Jarge mass. The NN scatteting and deuteron properties were
eriginally investigated by Gross, van Orden and Holinde (1992). Recently, Stadler and Gross (1997) have introduced
off-shell couplings in their OBE model. The triton binding energy has been found to be sensitive to them. In
particular, a set of parameters which reproduces NNV data reasonably well also yields the correct binding energy.

It is important to realize, though, that many of these corrections are scheme-dependent. For example, different
choices of # NN couplings, when converted to two- and three-nucleon interactions, are connected by unitary transfor-
mations. These different choices are exactly equivalent at the static level; however, when going beyond the static level,
arbitrary parameters associated with the unitary transformation are introduced. Different choices in the nen-static

N interaction also yield different thres-nucleon interactions. Since they are unitarily equivalent, physical properties
must be unchanged {Coon and Friar, 1986, Friar and Coon, 1994). The relationship between ofi-shell effects in the
NN interaction and the cheice of three-nucleon interactions have also been discussed by Polyzou and Gisckle (1590).

Without resorting to the specific OBE mechanism, it Is also possible to define the general properties of rebativistic
Hamiltonians which do not introduce antinucleon degrees of freedom. Within such a formaliam tie Poincaré invariance
of the theory plays a pivotal role. The formal requirements of the theory have been presented in an article by Keister
and Polyzou (1991). Information on the underlying dynamics is outside the requirements of Poincaré invariance, and
herce must be introduced from elsewhere, Fully relativistic caleulations within the relativistic Hamiltonian formalism
are not yet well-developed. Gléckle, Lee, and Coester (1986) have investigated the triton in a simple model, however,
and find less binding than in comparable non relativistic calculations,

It is also possible to perform calculations within a {v/c) expansion scheme, where terms proportional to powers of
the inverse of the nucleon mass are added to the Hamiltonlan in order to preserve the Poincaré invariance to that
order. Such a procedure is based upon the work of Foldy {1961), Krajeik and Foldy (1974), and Friar (1975).

One class of zelativistic corrections that has been consideted in such a scheme is purely kinematical. By replacing
the non relativistic kinetic energy with the corresponding relativistic expression, and including a [rame dependence
in the two- (and three-} nucleon interactions,

H= }; Vol em? £ (e Pi) + 3 Vialri.tusPig) (2.12)

i<y <<k

it is possible to construct a Hamiltonian with the correct transformation properties up to order {u/c}®. In this
equation, Py; and Py are the total momentum of the two- and three-body subsystems, respectively, while the
dependence upon the relative coordinate is explicitly displayed. The Hamiltonian is non local through the kinetic
energy operator and the frame dependence, but the non locality is rather small, on the order of the nucleon's Compton
wavelength (Carlson, Pandharipande, and Schiavilla, 1993).

To perform such a calculation, it is necessary to first refit the NV data and two-body binding energy with the above
Hamiitonian. The results of a comparison with a phase-equivalent non relativistic model are somewhat surprising, in
that these relativistic corrections to three- and four-body binding are in fact fairly small and repulsive; approximately
0.3 MeV of repulsion in the triton and almoat 2 MeV in the c-particle. Similar estimates for these kinematical effects
have been found by Stadler and Gross in the framework mentioned above. The small effect is primarily understood as
a cancellation between the change to a “softer” kinetic energy operator and the revised NNV interaction which must
be more repulsive to yield the same phase shifts. The resulting nucleon momentum distributions are in fact quite
similar in these relativistic and non relativistic caleulations (Carlson, Pandharipande, and Schiavilla, 1993).

Of course, other non-localities will appear in the NV interaction. At long distance these are introduced by rela.
tivistic corrections to OPE, and similar corrections would be expected in a OBE picture through vector and acalar
meson exchange. The v/c expansion scheme is currently being extended to treating the non-localities associated with
OPE. These non-localities are required for a fully consistent treatment of the two-body charge operator and the na-
clear Hamiltonian, and are naturally present in a relativistic OBE c¢alculation. However, various technical difficulties
make calculations of heavier systems more difficult within the OBE scheme; more direct comparisons of the different
relativistic calculations will undoubtedly prove instructive in understanding all the various results obtained to date.

‘Three-nucleon interactions can also arise from the internal structure of the nucleon. Since all degrees of freedom
other than the nucleons have been integrated out, the presence of virtual A resonances induces three-body forces. The
lougest-ranged term involves the intermediate excitation of a A, with pion exchanges involving two other nucleans.
The vwi-pion-exchange three-nucleon interaction (28 TNI) was originally written down by Fajita and Miyazawa (1957):

Vi = Az [{X.—,— Xa} + % (x5 Xlk]] . (2.13)
where
Xiy= [Y,(r.-j}ai coy +Tx(rij)5f,'] i Ty, {2.14)

and the two terms are anti-commutators and commutators, respectively, of two operators X;.

This interaction is attractive in light nuclei. Of course, other effects enter as well; several groups (Sauer, 1992,
Picklesimer, Rice and Brandenburg, 1992a, Picklesimer, Rice and Brandenburg, 1995) have performed calculations
with explicit A-isobar degrees of freedom in the nuclear wave functions. They generally find that the attraction from
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the long range two-pion-exchange TNI is canceled by dispersive effects at shorter distances and hence there is little
net attraction.

Within a nucleons-only picture, several explicit models of the three-nucleon interaction have been proposed. One of
them was put forward by the Tucson-Melbourne group (Coon et al., 1979), a three-nucleon interaction based upon a
pion-nucleon scattering amplitude derived using PCAC, current algebra, and phenomenclogical input. This interaction
containg the long-range 2rTNI, but also has additional structure at shorter distances. More recent versions (Coon
and Pefia, 1993) contain p-exchange as well as plon-range forces between the three-nucleons, with the #-p components
of the interaction being repulsive in light nuclei. These models have been used in many different, calculations, and the
short-distance NN cut-off can be adjusted to reproduce the triton binding energy. The cut-off dependence of the
results is significantly smaller in models which include p exchange (Stadler et ol,, 1995).

Another mode! has been derived by the Brazilian group {Robilotta and lsidro Filho, 1984, Robilotia et of , 1985,
fiobitotta and Isidro Filho, 1986, Robilotta, 1987), by using iree-level diagrams of effective Lagrangians which are
approximately invariant under chiral and gauge transformations. After proper adjustments of the parameters, the
resulting force gives similar results in the trinucleon bound states as the Tucson-Meltbourne model. Recent studies of
this model are presented in Stadler et al. {1995).

A somewhat different approach has been taken by the Urbana-Argonne group (Carlsen, Pandharipande, and
Wiringa, 1983, Pudliner et al,, 1995). Given the uncertainties in the three-nucleon interaction at distances sharter
than pion-exchange, the interaction is taken as the sum of the 2x'TNI plus a shorter-range term:

Vi =V + V;ﬁ. £2.15)
with
Vi = U Y THr)Ti(ra) - (2.16)

cye

The second term is of two-pion exchange range on each of the two lega. It ia meant to simulate the dispersive effects
which are required when integrating out A degrees of freedom. These terms are repulsive, and are here taken to be
independent of spin and isospin.

The constants Az, and Up in front of the two terms are adjusted to reproduce the triton binding energy, and to
provide additional repulsion in hypernetted chain variational calculations of nuclear matter near equilibrium density.
However, the resulting value for the A;, coefficient ia close to that obtalned from the analysis of observed pion-
nucleon scattering. Clearly the energy lavels of light nucle! must be well reproduced if accurate predictions of other
observables at low and intermediate energy transfers are to be obtained. Since one of the major goals is to tie together
the medium- and low-energy properties of light nuclei, it is natural to make simple assumptions about the nature of
the TNI in pursuit of that goal.

Undoubtedly the real situation is much more complicated: relativistic effects and a significantly more complicated
three-nucleon interaction are certainly present. It will take far more than calculations of trinucleon binding energies to
shed light on these questions. For example, calculations of three-nucleon scattering are, on occasion, at variance with
the experimental data. Also, the isospin dependence of the TNI could prove crucial in studying light newtron-rich
nuclel and neutron stars, Given recent improvements in experimental data and few-body techniques, though, it is
quite possible that & more thorough understanding of these issues will be soon realized.

L. Effective chiral lagrangian approachea

Before leaving the subject of nuclear interaction models, one must take note of the recent interest in NN potentials
derived from effective chiral lagrangians. The chiral expansion gives a systematic power-couating scheme in which the
nucleon-nuclecn interaction can be obtained. The advantage of such a scheme is a direct connection to QCD, in that
in principle it should be possible to compute the coefficients of the low-energy effective theory directly from QCD.

Weinberg demonstrated that a systematic expansion exists in powers of pfA, where p is a typical nucleon momentum
and A is a characteristic mass scale (Weinberg, 1990, Weinberg, 1991). He then proceeded to consider the leading
terms in the expansion. Ordéiiez, Ray, and van Kolck (1994) more recently extended the analysis to third order,
considering the most general effective Lagrangian involving low.momentum pions, non relativistic nucleons, and A
isobars. They also employ & Gaussian cutoff to regularize the theory. At the present state of affairs, the low-energy
constants in the Lageangian are adjusted to fit the NV data. While the interaction obtained in this manner provides
a good fit to the NN data, the fit is not yet of the guality obtained In the more phenomenoclogical models. In
addition, the work mentioned above employs an energy-dependent interactfon scheme which is difficult to employ in
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a many-body context. Other schemes, which do not employ a simple Gaussian cutoll, result in contact interactions
proportional to &{r;;}. Such terms are also problematic in any Schridinger description of the nucleus (Phillips and
Cohen, 1996).

However, the advantages of such a systematic treatment of the NV interaction are not to be ignored. They also
allow one to begin to place reasonable constraints on the size of three- and multi-nucleon interactions, and indeed can
be used to construct specific models. One of the Important challenges is to join such systematic schemes to direct
calculations of few- and many-nucleon systems.
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II. BOUND STATE METHODS

Given a model for the nuclear Hamiltonian, a first and important test is solving for the nuclear ground states.
Although the nuclear interaction models described above are simple to write down, solutions have proven to be rather
difficult to obtain. For the three-nucleon system, this was first done in the early 1980's via the Faddeev method (Chen
et al., 1985). By now, a variety of methods have been used for studying light nuclear spectra. In this section we briefly
describe Faddeev, Correlated Hyperspherical Harmonics, and Variational and Green’s function Monte Carlo methods.
These have all proven successful for the three- and four-nuclson ground states, but nevertheless have different strengths
which we will attempt to assess.

A. Faddeev methods

The Faddeev decomposition of the three- (and now four-} body problem has proven to be a tremendous compu-
tational tool in studies of light nuclei., Indeed the Faddeev methods, both in coordinate (Chen et al., 1983) and
momentum (Witala, Gloclkle, and Kamada, 1991) space, were the first to achieve very accurate solutions of the three-
body bound state with realistic interactions. In addition te being useful for studies of bound states and low-energy
(below breakup) scattering, one of the primary advantages of the Faddeev decomposition is its applicability to higher-
energy scattering problems. We first discuss the application to bound states, deferring the scattering problem until
later.

The Faddeev decomposition rewrites the Schrdinger equation as a sum of three equations in which (for two-particle
interactlons, at least) only one pair interacts at a time. The resulting equations are solved in either momentum or
coordinate space. While the decomposition is identical, the methods employed in practice to obtain sclutions are in
fact quite different. The coordinate space methods typically solve an integro-differential equation, so necessarily one
of the pritary ¢oncerns is inclusion of correct asymptotic boundary conditions. Momentum space calculations, on the
other hand, typically proceed through the Green's function, and hence an important consideration is the treatment
of the aingularities in the scattering operators. In the sections below, we briefly depict applications to bound state
problems, later low-energy and breakup scattering will be described.

1. Coordinate-space Foddeev methods

In coordinate space, the Schriddinger equation for three nucleons interacting with two-nucleon interactions only can
be written:

[E-Ho—tiz —tia—vas] ¥3=0 , (3.1)

where Hy is the (non-relativistic) kinetic energy operator and vy is the pair interaction between mucleons i and 5.
The Faddeev decomposition consists of defining three sets of vectors x;, yi through cyclic permutations of i, j, k:

X =y —ry , (3.2)
¥i=2 VB[ - (r; +1)/2 (3.3)
and rewriting the Schridinger equation a3 three equations:

[E - Ho —v33) wix1,y1) = vas [z, ¥2) + ¥(xa,73)} ,
[E = Hy —w3] $(xz,¥:) = w3 [$(xs,¥a) + vi{x1,¥1)] ,
[E— Ho—via] (x5, ¥3) = w13 [Wlxi.31) + vi{x3,73)] ,

which, when summed, reproduce the original Schridinger equation for
%3 = 9(xy, y1) + ¥(x2, ¥2) + (x3, ¥3) - (34)

The kinetic epergy operator is diagonal in x and y,

1 1
H,,:—; vi- ;v: . 3.5)
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While rewriting the Schridinger equation as three separate equations may appear conveluted, for identical particles
the three solutions ¥ are in fact simple permutations of each other. Hence solving one of these equations is equivalent
to solving the full Schrodinger equation. Each equation involves only one of the pair potentials, so a significant
simplification has been achieved. The primary advantage of this rearrangement is in its application to scateering
problems, as we shall see. However, the method works equally well for bound states.

Rewriting the Schrédinger equation in this way requires us to specify the permutation properties of the Faddeev
amplitudes ¢, and also discuss how the spin-isospin degrees of freedom are to be treated. The latter is an essential
point in nuclear physics, where the number of degrees of freedom grow so rapidly with the number of nucleons. First,
we consider the Pauli principle, which can be satisfied by enforcing antisymmetric conditions on the interacting pair
in the Faddeev amplitude (x;,¥;) via

S lxe, yo) = —E(GE) ¥{x0, ¥:) . (3.6)

In this equation E{jk) is the total {space, spin, and isospin) permutation acting on particles j and k. For spin-
polarized fermions this would imply: ¥(~%;,¥1} = —¥(x,¥1), while for nucleons the generalized Pauli principle
simply requires the pair orbital angular momentum £, spin 8'*, and isospin t* satisfy £ + s7* + t** equal to an odd
integer.

The spin-isospin dependent nature of the Hamiltonian requires one to solve, in general, for 47 = 64 possible functions
of x and y that can be classified by their totat epin 5 and isospin T. Projecting onto a specific isospin state yields fewer
components; for example, the ?He ground state (T = 1/2, T, = 1/2) has a total of 16 spin-isospin states. In addition,
the amplitudes ${x;, ¥;} can be decompased into partial waves in the angle u between x and y. This decomposition
converts a Faddeev equation in three variables into many eguations in the two magnitudes z and .

The usefulness of this partial wave expansion depends upon the problem under consideration. For three- and four-
body hound states the wave function is confined to a fairly small spatial region; hence the angular momentum basrier
ensures a fairly rapid convergence in partial waves. In order to perform this decomposition, a particular angular-
momentum coupling scheme must be chosen. Various angular-momentumn coupling schemes have been employed, for
example jJ coupling in which the interacting pair total angular momentum Jy = Jy + jx = (I +3,) + (I + =8} 15
coupled to the total angular momentum of the spectator ji = 1 + ;. Similarly, the isospins can be coupled to a total
tsospin T'.

For a calculation of the J=1/2 ground state in A=3, the interacting pair's spin and orbital angular momentum
must be coupled to a specific total angular momentum. These states are then combined with the spin and orbital
angular momentum of the spectator to yield the total J=T=1/2. Each term in this partial-wave expansion is called
a channel. Accurate calculations of three-nucleon ground states typically keep all interacting pair WV partial waves
with § < 4, which requires 34 channels. The first five of these channels {those with 7 < 2) are given in Table I1.
Scattering calculations for J=3/2 require 62 channels for each parity; of course, the required number of channels
increases with the total angular momentum of the system.

For realistic calculations, ene would like to include three-nucleon interactions Vi, as well as the Coulomb interac-
tion. As the former are short-ranged functions, they can easily be added to the Faddeev cquations. Three-nucleon
interactions typicatly arise from “integrating out” the higher energy degrees of freedom, and hence can be decomposed
into a eyelic sum: ¥ijx = Vi + Vi + iy, where the first index indicates the particte in a higher energy intermediate
state. The Faddeev equations can then be written as:

[E — Ho — vas — Vias] w(x1.¥1) = (v2s + Vi) [W(xa,¥3) + ¥(x0.33)] , {an

plus permutations. The fact that the three-nucleon interactions are short-ranged allows for significant freedom in
how they are introduced in the Faddeev equations. Coulomb interactions could be handled similarly, in principle, but
in fact there are more effective technigques for dealing with these long-ranged interactions. The Coulomb interaction
and boundary conditions on the amplitudes v play a crucial role in scattering calculations, so we will defer these
discussions to a Jater section.

Given the decomposition of the amplitudes into partial waves, one must still solve for the various channels as a
function of the magnitudes x and y. A detailed discussion of the pumerical procedures involved is given in Payne
(1987). The most efficient scheme for solving the Faddeev equations involves transforming the Faddeev equations inta
linear equations by writing the amplitudes as gplines for the space z and y. In this way it is possible to set up the
finer grids in the regions where the interaction is stronger.

For bound states, it is then useful to scale the binding energy out of the problem by writing the solution as a
product of a term that has the correct exponential asymptotic behavior and an unknown function. The advantage
of the coordinate-space formulation is that the Hamiltenian is local, or nearly so, and hence many of the matrices
are quite sparse, In the end, the bound state problem is an eigenvalue problem, and standard power methods (i.e.,
Lanczos) can be used to solve for the eigenvalues and eigenvectors corresponding to the lowest-energy states.
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2. Momenium-space Faddeev methods

In momentum space, the Faddeev equations are written as three integral equations:

Y1 =G Th {12 +4a) ,
=G Ta{a+1) ,
Ya=Go Ty (1 +4a} {3.8)

where the 4 are again the Faddeev amplitudes, Gy is the propagator for three non-interacting particles,
1

= E-H,’ (3.9)

Go
and the T, are three-body scattering operators. lgnoring three-nucleon interactions for the moment, the T; are
scattering operators for two interacting particles in a three-particle space. They are labeled by the index of the
non-interacting particle, and are obtained from a solution of the equation:

Ti= Vit + U Go T( . (3.10)
The Faddeev amplitudes 4, are now written in terms of the momenta p and q, where

po=(ki —ka)f2
4 = 2 ki ~ (ky +ka}/2)/3 . 3.11)

The T; are diagonal in the spectator momentum q;, and can be decomposed by the spin, isospin, and angular
momentum of the two interacting particles coupled to those of the spectator particle. They are related to the
standard two-body scatiering operators (2} by:

U
{palTlp'ga’y = %tfﬂl.{p. 2B - 3% 4m) |, (3.12)
where the labels o, o refer to spin, angular momentum, and isospin states, These “channels® are precisely the same
as in the coordinate space Faddeev equations. In this equation, the last argument of the two-body scatiering operator
1(2) i3 the energy of the two-particle subsystem. The three-body problem necessarily involves the off-shell two-body
propagators; the energy £ — 3¢%f(4m) is what Is available for the interacting pair.
Coupling the angular momentum, spin, and isospin again yields a seties of coupled equations, here in the magnitudes
p and g. With the channels labeled by o, the Faddeev equations (3.8) are of the form:

(praltn) = #ﬂ. ) f e j de'q Hpgal Tl ¢'o)

'm — 3¢ f4m
x X [ar's? [ aata i d ol B e oG "o i), (3.13)

where E is the sum of the two cyclic permutations E=E{12) E(23) + E(13) E{23).

These equations are not as difficult to solve as it may first appear, since the matrix elements of E are purely
geometrical factors, and the T} operator is diagonal in ¢. Nevertheless, solving such a problem is a significant
technical challenge. A complete discussion of the exchange operator is given in Gléckle (1983).

The equations are somewhat more difficult to solve in the presence of three-nucleon interactions. As in coordinate
space, it is possible to add the three-nucleon equation in different ways. One pasticularly useful scheme is to use the
symmetry of the solutions of Eq. 3.8 under particle interchange, to decompaose the three-nucleon interaction as before
Vige = Vije + Vi + Viis. and rewrite the Faddeev equations as

# = Go tE¥ + Gofl + tG0) Vil + E)b, ) (3.14)

where the first term on the right hand side is simply a shorthand for Eq. 3.8 and the second term incorporates the
effects of the three-nucleon interaction. The operator E hera is again the sum of the two cyclic permutations. This
form of the equations has been written down in Glickle (1982) and used in Stadler, Glackle, and Saver (1991}, for

axample.
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A generalization of the Faddeev equatijon for four particles, the Faddeev-Yakubovsky equations, have recently been
employed to solve the four-nucleon problem (Gléckle and Kamada, 1993, Glickle and Kamada, 1993, Gléckle et al.,
1994). The number of channels that must be included grows very rapidly in this case, and a furthet complication is thaz
there are now six spatial dimensions rather than the three required for three-body calculations. As the decomposition
of the wave function iz very similar in the Faddeev and CHH methods, the four-particte case is deferred to the next
section.

While a certain degree of technical sophistication ig required to solve these equations, there is a considerable
simplification for bound states, in that there are no singularities in the Faddeev equations. Since the energy is
negative, there are no zeros in the denominator in the equations for tff]n and T, or in the full Faddeev equation.
Hence, the Faddeev equations take the form of a generalized eigenvalue equation. These can be solved by standard
power methods, adjusiing ihe eneigy £ in the kernel until the equation is satisfied. Of course, for scattering problems
the situation is more complex.

B. The correlated hyperspherical harmonics variational method

In recent years the correlated hyperspherical harmonics (CHH) variational method has been used to describe the
bound states of the 4=3 and 4 nuclei as well as d + n and d + p scattering states at energies below the three-bedy
breakup threshold (Kievsky, Viviani and Rosati, 1994). The atcurscy of these calculations is comparable to that
achieved in “exact” Faddeev and Green's function Monte Carlo (GFMC) calculations, as will be shown in Section [V.

The wave function of & three-nucieon system with total angular momentum JJ, and total isospin 7T, is expanded
into a sum of Faddeev-like amplitudes as in Eq. (3.4). The amplitude #(x;,y;) is expressed as

Wi ¥0) = Y Faitba(zi p)¥alik,i) | (3.15)

Yolitsi) = { Yo GVe )], [afel] s, } | [E0eE) | (3.16)
where each channel a is specified by the orbital angular momenta £,, L, and A, and the spin (isospin) s7* (%) and &,
{t%) of pair jk and particle i. Orbital and spin angular momenta are coupled, in the LS-scheme, to give total angular
momentum JJ,. The correlation operator Fa, is taken of the Jastrow form, and its construction is discussed below.
Since yi{x;.¥;) must change sign under the exchange j = & to ensure that the wave function is antisymmettic, it
follows that £, + &% 4 ¢J* must be odd {the F,, i3 assumed to be symmetric under the exchange j + k). Furthermore,
£, + L, must be even or odd depending on whether the state has even or odd parity. In principle, the sum over a
should be extended to all channels compatible with the restrictions above. In practice, however, as in the Faddeev
method, it is truncated and only a limited number of channels are included.

The GHH decomposition is quite similar to the Faddeev, the primary differences being (1) the inclusion of the corre-
lation operators £ in the definition of the wave function, and (2) the further decomposition of ¢, into hyperspherical

harmonics. The hyperspherical coordinates are introduced as
FERTE RN (3.17)
cosd; =1./p, (3.18)

where the hyper-radius p is independent of the particular permutation 1 considered. The dependence of the radial
amplitudes ¢, upon the the hyperspherical coordinates is thus expanded as

=5 sl it ey .19
¢a(2i.yi)—Zj’5—!5‘b‘i N (i) - {3.19)
The hyper-radial functions w2 (p) vanish exponentially for large p, and are determined variationally as discussed below.
The hyperspherical polynotniala Y,* are defined as
Y2 {ts) = Nfobo pLatiitbeatlitcag2g,) | (3.20)
where NfeI= are normalization factors, P27 are Jacobi polynomials, and n is a non-negative integer, v =0,..., My,
M, bemg the selected number of basis functions in channel a.

The correlation factor F,; takes into account the strong state-dependent correlations induced by the nucleon-nucleon
interaction. It improves the behavior of the wave finction at small internucleon separations, thus accelerating the
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convergence of the calculated quantities with respect to the required number of HH basis functions in Eq. {3.19), Two
diflerent forms have been employed for F,,:

Foi=falrpu) PHH , (3.21)
= fa{rje)galri;)ga(ru) CHH . {(3.22)

The projected hyperspherical harmonic (PHH) wave function only includes correlation effects between nucleons i
and £ in the active pair, while the CHH wave function includes in addition correlation effects between these and the
spectator nucleon . The product of correlation functions in the CHH expansion introduces an explicit dependence on
the coordinate u¢ = R; - §i, which leads to a different channel mixing than that in the PHH expansion. For soft-core
interactions the convergence pattern with respect to the number of basis functions appears to be somewhat faster
in the PHH expansion than in the CHH one, presumably because the PHH expansion does not contain the channel
mixing mentioned above. However, the CHH expansion is well suited to also treat hard-core interactions to which the
PHH expansion and the Faddeev method are not applicable.

The correlation functions are obtained with a procedure similar to that used in the construction of symmetrized
product trial wave functions in variational Monte Garlo (VMC) calculations. When two of the nucleons are close to
each other and far removed from the other ones, it is expected that their relative motion be predominantly influenced
by their mutual interaction. The radial wave function for two particles in state § = jgl,g,ss",t‘{; is then obtained
from salutions of Schrodinger-like equations, which can be coupled or uncoupled depending on 8 (for an extended
discussion, see below).

The Rayleigh-Ritz variational principle

< 6, 03|H — E|¥; >= 0 (3.23)
is used to determine the hyper-radial functions u%(p} in Eq. (3.19). Carrying out the variation 6, %, with respect to
the functions ug(p), the following equation is obtained:

2 < Fou YW ik, 0)|H — El¥y >0=0 (3.29)

where {1 denotes the angular variables ¢;, %, and ¥;. Performing the integrations over {1 and the spin-isospin sums
leads to the set of coupled second order differential equations

o0 ! a0 d a0 o0’ a
z [5togz + o g + crlto + ENE )it =0 (3.25)
wherga’ = 1,..., 00 and n' = 0,..., M,.. The total number of equations is

Tieq = HZ": (Mg +1) . {3.26)

a=1

After discretization in the variable p, the set of differential equations (3.25) is converted to a generalized cigenvalue
problem of the form

(2-E-N)G=0, (3.271)

where G is a vector of dimension given by n., x n,, n, being the number of grid points in p. Details on the numerical
techniques employed as well as explicit expreasions for the coefficients X.;'.‘;\:-(P} along with theit derivation can be
found in Kievsky, Rosati, and Viviani (1993},

The CHH methed has alzo been appled to systems with A=4 and 6, although calculations with realistic interac-
tions have only been carried out for the a-particle {Viviani, Kievsky and Rosati, 1995). The A=4 wave function is
decomposed in both the CHH and Faddeev-Yakubovsky approaches as

12
' : By = Z[ll’A(XA.nYA.i.ﬂAJ) + Wﬂ(xﬂ.i.yn.f,la.s)] B (3.28)

i=l

where the sum is over the even permutations of particles ijkl. The set of Jacobi variables xy i, ¥, and z4 ; correspond
for k=A and B to the partitions 3+1 and 242, respectively, and are defined as
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set A set B

Zas= V3/2r — Rasi) Zpi= N—Ty, (320
3.

Yai= V33(re - B, ¥e.= VZ(Ru - R;) .

XAi= Yj—Fi, XEi= Ty —FIi,

where R,; (Riji) 13 the center of mass of particles if (ifk). In the LS-coupling scheme the amplitudes 14 and ¥p
are expanded as

ValzanYaauXa) = E Foptaalzas, VA.i,zA.l)y:p ' (3.30)

Vo= { [[¥e. 0¥ Faily,, Yo (:‘:A..)]L_ x

[[Ia;s,] 5. “]s.. .9;] . }”' [[[t;t;] T_.t"] % ti] o’ {3.31)

and

wﬂ(‘ﬂ.p-)’ﬂ.p-zﬂ.p) = Epwp¢8w(fﬂ.pu yﬂ.psz.p)y&Bp s (3-32)

o

yi= { [{}';,_ (38,50, (F5.5)] fi3a Y1sa (is.p)] L

[ el ]}, [Bodrlundn ] (333)

respectively. A channel a is now specified by the orbital-spin-isospin quantum numbers 14, f1q, L3, f12a Lo, Saa.
Sbas Soi Taa and Tia. The total orbital and spin angular momenta are then coupled to give JJ,. The overall
antisymmetry of the wave function requires that y4 and ¥g change sign under the exchange { & §, As for the A=3
case, the correlation operator £y, consists of the product of central pair correlation functions.

It is important to realize that either basis (3.31) or (3.33) is complete if all channels o are included in the suma (3.30)
and (3.32). In this case it would be sufficient to expand the wave function @, in terms of either set of Jacobi variables.
In practice, the sums over o are truncated, and it is advantageous from the standpoint of variational calculations
{such as those described here) to take into account both configurations 3+1 and 2+2. Table {1 lists the channels
included in the most recent calculations.

The expression for the hyper-radius is now generalized to

A= \/I?u Yt = J::B.i +yhi+zhi. (3.34)
which again is independent of the permutation {, and the hyper-angles appropriate for the partitions A and 3 are
given by .

cosdy = Taufp=x84/P,
condf = yau/(osingu) (3.35)
con gl = yof(psindu) .

The radial amplitudes ¢, and ¢p, are expanded in terms of HH basts functions as

.
GaalZa0Vadtaa) = Z ﬂ'—:’?—)zﬂj yx:-t::_.{y:m(¢;u¢1l) . (3.36)
n.m
Baalz2p t1puias) = 1 o sheynstinys 08,000 3.3
n,m
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where

Yin(8.1) = N, (sin gy PR Y (g0 20y PRt~ b0 b (cog 9 (3.38)
The labels m and n of the Jacobi polynomials run in principle over all non-negative integers, K2, = 10 + 20 +2m+2,
and N2, are normalization factora. By using the expansions above, the wave function can be schematically written

as

b= Y Yinl gm, (339)

a,n,m

where U stands for « or w, depending on whether channel « is constructed with partition 341 or 242, respectively.
The factor H include the remaining dependentes on p and angular variables, the latter denoted collectively as Q.
The lincar differential equations resulting from the minimization of the Hamiltonian are then solved by the same
techniques outlined above.

C. Monte Carlo methods

Monte Carlo methods have often proven useful in the study of strongly-interacting quantum systems, and few-
nucleon systems are no exception. They are primarily useful when explicit numerical schemes such as Faddeev or
CHH methodd cannot be carried out because the dimendions of the necessary grids grow too large. Two principle
Monte Carlo schemes have been developed-Variational and Green's function Monte Carlo.

Variational Monte Carlo (VMC) s an approximate variational method that uses Monte Carlo techniques to perform
standard numerical quadratures. Green's function or Diffusion Moute Carlo methods, on the other hand, employ
Monte Carlo methods to evaluate the imaginary-time path integrals relevant for a light nucleus. They typically use
the VMC wave functions as a starting point, and cool them in order to measure ground state observables. In this
section we describe their application to ground-state properties; each can algo be emplayed to gain information about
nuclear dynamics. -

1. Varistional Monte Carlo

Variational Monte Carlo (VMC) employs an explicit form of a trial wave function, typically containing 20-30
variational p ters. These par s are optimized by minimizing the expectation value of the epergy; Monte
Carlo methods, specifically the Metropolis et al. {1953) algorithm, are used to evaluate the spatial integrals,

The trial wave functions used in VMC calculations typically have a simple form:

[¥r} = [s 11 Fm] [sl'[F.—,] 1%, (3.40)

i<f<k ici

where S represents the symmetrization operator, respectively, acting over the A-particle space. In this equation for
[¥+}, the Jastrow state |¥,) carries the quantum number information and, for A > 4, much of the long-distance
physics. Important clustering properties and binding or threshold effects are incorporated here. The Jastrow wave
function |¥ ) i3 written as:

led=At I1 fatlrd TI f5tne) I f;.,{n,)m]. (3.41)

i<jes €L fEP iEpJEP

where A s the antisymmetrization operator. The central pair correlations f¢ are functions of the pair distance only.
However, the long-distance behavior may be different for nucleons in different shells, and hence the f¢ are labeled
by the single-particle orbits of the two nuclecns. The determination of these Jastrow factors is described below. For
these larger systems, |€) is written as a sum over a small number of shell model configurations, and the coeflicients
of the various configurations being variational parameters.

For example, in recent calculations of six-body nuclei (Pudliner e al., 1995):
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1#(JMTT.)) = A[$a(00)@a(rs .0 )Pp{ra.al] x
3 B[V (0500 (Realelxs Xols] ., % rsmlron,, (3.42)
LS

where |$,{00)) is an anti-symmetrized product of four-nucleon spiners coupled to J=7T"=0 with no spatial dependence,
and the spatial dependence in the p-wave orbitals ¢;, i3 taken from the solution of a single nucteon in a Woods-Saxon
well. Additional clustering properties, for example the a-d breakup in A=6, as well as three-body correlations can
also be incorporated in the Jastrow wave function if they are found to be important, Note that the wave [unction
is translationally invariant in that it involves only pair separations and the separation between p-shell nucleons and
s-shell clusters. The wave functions ¥; are constructed to be eigenstates of the total momentum J. Since the pair
correlation operators commute with J, the tatal wave function also has good total angular mementum.

The “two-body™ spin-isospin correlation operators Fy; in Eq. (3.40) carry the short and intermediate-range physics,
including the tensor correlations and the isospin dependence in the short-range repulsion. They are parameterized as:

Fy= [] + Z um(ri RYOT |, (3.43)
m=28

containing operators Off that are a subset of those employed in the interaction:
OF =1, 00-04, 85, (L-S)y]®(l,7: 7)) (3.44)

The product f(ry)F5y is required to satisfy the short-distance properties of the wave function as two nucleons are
brought close together. The dependence upon the pair distance r;; is obtained as a solution of Schrodinger-like
equations in the various two-body channels. These correlations are obtained from equations similar to those used
for the low-density limit of Fermi-hypernetted-chain variational calculations of nuclear matter (Wiringa, Fiks, and
Fabrocini, 1988, Arriaga, Pandharipande and Wiringa, 1995). Schematically, they are written as:

—(L/m)V3[Fr)$(r) st + foiy + APNILF (P} a5 = 0 . (3.45)

This equation is solved for the varlous J,S,T' channels and the correlations are recast into the operator form, as in
Eq. {3.43). The functions ¢(r) contain the appropriate spherical harmonics far the given channel. For the spin triplet
channels the combination [f{r)@{r)]ssr satisfy two coupled equations with L=J-1 and L=J+1 (Witinga, 1991). The
variational parameters are included in the functional form of A(r). For s-shell nuclei the form is adjusted so that

e At = expl=r)fr, (3.46)

where -y is related to the separation energy of the last nucleon. Spin dependence in the breakup channels can be
treated by including a non-zero long-distance behavior in the apin-dependent correlations u,(r). For larger systems,
however, the product of the f,, or fu,.in [¥,) times the Fj; are adjusted to go to a constant. The pair correlation
functions Fi; are defined to carry the spin-isospin dependence of only particles i and j. However, the associated
amplitudes uq, are functions of the coordinates of all the nucleons; the presence ol the remaining particles requires a
quenching of the non-central correlations. The full structure of this quenching is described in Arriaga, Pandharipande
and Wiringa (1995).

The structure of the three-nucleon correlations Fijy can, in principle, be quite complicated. The most itnportant
correlation is that due to the three-nucleon interaction ¥j;., and the operator form is taken from:

Fijp =1 - fV.jy. * (3.47)

where 3 i3 again a variational parameter. Additional three-body correlations have been investigated by Acriaga,
Pandharipande and Wiringa (1995).

Given the wave function, one can in principle evaluate the expectation value of any operator using Metropolis
Monte Carlo techniques. Variational Monte Carlo methods have often been employed in studies of other quantum
systems, including, for example, atoms and molecules, the electron gas, and liquid and solid Helium. The state
dependence of the interaction, though, requires a somewhat different treatment than ia traditionally used in VMC
calculations. Typically, cne uses the Metropolis method to obtain points distributed proportional to a probability
density W (R}, often choosing W{(R) = |(¥(R)|PT{R))|, where the angled brackets indicate sums over the internal
degrees of [reedom, the sping and isospins. Hence an estimate of an expectation value is obtained from:

©0) = [ R (R)O|Er(R)} T, (Fr(R,)IONT(R))/W(R)) (3.48)
[an{¥r(R)er(R)} Y ¥ (RAPAR)/WR) -

20



In the case of the Hamiltonian, we are averaging the “local” energy {¥r|H|¥7}/W (R) over the points to yield an
estimate of the ground state energy.

Several variations on the standard methods are incorporated to treat light nuclei. First, instead of computing the
fult wave function {¥r} in Eq. {3.40), one can sample over the order of pair and triplet correlation operators Fy and
Fija that are implied by the symmetrization operators S in Eq. (3.40). These orders must be sampled independently
for the left and rlght hand wave functions and a posttive definite choice made for a probability density W(R).

In all cases, Monte Carlo methods are used to evaluate the coordinate s'rnce integrals, while spin-iscepin awma
are explicitly evaluated. The oumber of spin degrees of freedom grows as 24, while the isospin grows a little more
slowly due to charge and {approximate) isospin conservation. The efficiency of the variational calculations can be
dramatically improved by calculating energy differences hetween different wave functions. Nevertheless, these explicit
spin-isospin summations require computing time that grows exponentially with A; a requirement that has limited
standard Variational Monte Carlo calculations of nuclear systems to light nuclei. In principle it should be possible
to sample over at Jeast some of the degrees of freedom, but an exact practicat scheme that yields a variance small
enough to be useful has yet to be found. However, Cluster VMC algorithms invoke a cluster approximation to sum
over a cornected set of apin-isospin degrees of freedom, and have heen applied to studying the ground state of 140
{Pieper, Wiringa and Pandharipande, 1992) and spin-orbit splitting in *N {Pieper and Pandbaripande, 1993}. Such
calculations are also a uselul starting point, for example, for Glauber calculations of electron scattering in heavier
systems (Pandbaripande and Pieper, 1992).

Once the variational parameters have been optimized, the expectation value of any ground-state observable can be
evaluated using Eq. (3.48), Off-diagonal observables, such as momentum distributions, can be similarly evaluated.
They simply require an additional integration variable corresponding to the off-diagonal displacement. Experimental
quantities of interest include charge and magnetic form factors, sum rules, etc. In addition, other quantities can
be computed that are not directly observable experimentally, but are useful in approximate theories of reactions,
including momentum diseributions of sucleons and nucleon clusters. A summary of some recent results is given below,
additional results are presented in Arriaga, Pandharipande and Wiringa (1995) and Forest ef of. (1996).

2, Green’s function Monte Carle

Diffusion or Green’s function Monte Carlo (GFMC) methods rely upon the path-integral approach to evaluate the
imaginary-time propagation of the wave function:

I} = Jim expl~(H — Eo}r]|¥7) (3.49)

where |¥y) i3 the ground state of K with energy Ey, and [¥7) is a trial state. In order to evaluate this propagation,
the imaginary time 7 i¢ split up into small time slices Ar, and an equation of the form

{%{r + A7) = exp[~{H ~ Eo)A|i¥(r)} (3.50)

is iterated.

This method has a long history, starting with calculations of the o-particle using a spin-isospin independent inter-
action by Kalos {1962). It has also been used extensively for problems in atomic and condensed matter physics. The
first application to state-dependent interactions waa provided by Carlson (1987), and more realistic interactions were
used in Carlson (1988) and Carlsen (1990b). Recently calculations for A=6 and 7 been performed, which are the first
direct microscopic calculations of these p-shel] nuclei.(Pudliner et ol, 1995, Pudliner et al., 1997)

The firat element in performing such a calculation is evaluation of the matrix elements of the short-time propagator:

(R, x'|exp(—HATHR, x} = G(R',R; Ar) = H Go,if[ri — r:l)]

i=l,A

.
x Z(x'l[l—% 3. Vm(R')] xaals I M]Ix;)

' N
Xixz i<jck i< m-”(rﬁ'r'-")

Ar

*{xa| [1 -5 2 Vuk(R)] Ix). (3.51)
i<y

where the x represent A-nucleon spin-isospin states, Go, and go i; are the free one- and two-bedy imaginary-time

propagators, respectively, and gy is the interacting two-body propagator.
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The free propagators are simple Gaussians:

P
Gos = Myexp [- m%] . {3.52)
= ri;)?
gosy = Naexp [— m(‘ﬂ,TT’] : (3.53)

with rormalizations N; such that the norm of the flux is preserved (f dr; Go; = 1). The pair propagator gy; is the
imaginary-time equivalent of the two-body T matrix, it is & matrix in the two-body spin-isospin space and must be
calculated numericatly. The prr.q:mg.at»:wl satisfles an evolution equation:

R

ol [% + Hu] gulr'urirxi) =0, (3.54)

where
Hyy = --(l/m)vi‘j +y (3.55)
and yq; and x;,- are two-nucleon spin-isospin states. The g,; also satisfy a boundary condition
Oyl (x',2i 7=0)xgg) = 8(r — £y, - (3.56)

Techniques for calculating and storing gi; are described in detail in Pudliner et al. {1997).

Once the propagator G{R, R'; Ar) is constructed, a practical algorithm must be implemented to carry out the
iteration of the wave function, Eq. (3.50). The scheme currently used for sampling the paths is described in detail
in Pudliner et ol. (1997), here we simply sketch the basic ideas. Since the wave function (propagators) are vectors
{matrices) in spin-isospin space, a scalar quantity must he defined to sample the paths. In principle, any set of paths
can be chosen as long as the probability uged to choose the paths is divided out when computing expectation values. To
minimize the variance, though, it is important to follow as closely as possible standard importance sampling techniques
used in traditional Green's function and Diflusion Monte Carlo (Pudliner et al., 1997). In essence, this requires
sampling from a kernel so that the probability of a configuration at R is proportional to Ex('lfT(R)ix)(,tI'l'(R; ).
In the limit that the trial wave function ¥ is exact, and the propagator is sampled exactly, this method would
produce the correct ground-staie energy with no variance.

To this end, we introduce an importance function I that depends upon the full trial and GFMC wave functions.
The calculations proceed by sampling paths from I[¥r{R'), ¥(R"; )}, The impertance function must be real and
pusitive, a convenient choice is:

(R B (R (3.57

+cz

X

fRr(R), #(RY] = | 3 (#r(R)x) (x| ¥(R: 7))
X

where ¢ is a amall positive coefficient. The second term ensures that all paths are allowed with a positive probability.
In this equation and those that follow, the dependence upon the symmetrization S in the pair and triplet orders will
be suppressed, both in the wave function, Eq. (3.40), and the propagafor, Eq. (3.51). The pair and triplet orders are,
in fact, sampled in both cases. Details of the sampling and weighting of paths are described in Pudliner et al. {1997).

Branching techniques are used to split {delete) paths with large (small) importance functions I[¥r(R"), ¥(R’; )] in
a statistically unbiased maboer. After iranching, expectation values can be recovered from the equivalent of Eg. {3.48)
evaluated between the trial and propagated GFMC wave functions:

ZA¥r(R)| 2 (R )/ I[¥r(Ra) B (R 7)) -

This is the basis of the importance sampled GFMC algorithm for non-central interactions. Iterating this equation
propagates the amplitudes of the wave function in a way designed to minimize statistical fluctuations in calculated
expectation values.

The matrix element in Eq. (3.58) is a “mixed” estimate; it is of the form

(O = FrIOEXD(=Hr)|¥r)
" = rlep-H7) 1)

{Ofr}) =

(3.59)
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The value Oy 15 the matrix efement of the triat {variational) and the true ground state. The mixed estimate is
sufficient to evaluate the ground state energy, since the Hamiltonian commutes with the propagator. Indeed, an upper
bound to the true ground-state energy Ey is obtained for any value of

(e = {Tr)exp(—Hr/2)H exp{—HT/2)|¥r)
i = W exp(— Hr/2) exp(—Hr{2)|¥)

2By - (3.60)

Of course, the actual convergence is governed by the accutacy of the trial wave function and the spectrum of the
Hamiltonian. Often knowledge of the spectrum can be used to estimate the remaining error in a calculation that
necessarity proceeds to only a finite .

For quantities other than ihe energy, one typically esiimatcs the true ground-state expectation value by extrapo-
lating from the mixed and variational estimates:

{¥rlO[¥T)
{Pr|2T)

which 19 accurate to first order in the difference between ¥ and ¥7. The variational wave functions used in this work
are typically quite accurate, so this estimate is usually sufficient. For momentum-independent guantities, one can also
retain a time history of the path in order to reconstruct an estimate of the form:

{¥r|exp(—H/2)}0 exp(~-H7/2){¥r}
(Ur|exp(-Hr/2)exp(—-HT/ {0}

For momentum-dependent operators (3, however, the statistical fluctuations associated with this estimate can be quite
large.

Two caveats remain in present-day GFMC calculations of light nuclel. First, due to the well-known “sign-problem”
in all path integral simulations of fermions, the statistical error grows rapidly with r. Present-day calculations are
typlcally limited to + of the order of 0.05 —- 0.1 MeV~1. This is not as severe a situation as one might suppose,
since we have quite accurate variational wave functions available for these nuclel and we have a significant knowledge
of the excitation spectra in these systems. For calculations of six- and seven-body nuclei, it is useful to perform a
shell-model like diagonalization in VMG to determine the opttmum amplitudes for the various symmetry components
of the p-wave part of the wave function.{Pudliner ¢ ol 1997) Nevertheless, for some problems it may be quite wseful
to have p path-integral approximation which provides another type of approximation to the true ground state. For
example, the fixed-node {Anderson, 1975, Ceperley and Alder, 1980) and constrained-patk methods (Zhang, Carlson,
and Gubernatis, 1995) have proven quite valuable in condensed matter problems. These constraints can often be
retaxed to yield an even better estimate of observables.

The other concern is that in all currently available GFMC calculations, an approximate interaction which containa
no p? lerms has been used in the propagation. Perturbation theory is then used to determine the expectation value
of the difference between the two Hamiltonians, This approximation has proven to be quite accurate in studies of the
three- and four-body systems. Although the equations above are atill correct for an interaction with p?, LY or (L-S)?
interactions, a direct implementation of the method will yield large statistica] errors. Again, variational schemes based
upon constraints to the path Integral may prove useful.

GEMC has proven to be quite accurate in the three, and now four, body systems in which it has been tested.
Recent applications o larger systems (Pudliner et al., 1995, Pudliner et al., 1997) provide the first real tests of these
microscopic models beyond A=4. It is also possible ta compute low-energy scattering with path-integral techniques,
as well as obtain information about a variety of dynamic nuclear response functions. A selection of results will be
presented later in this article.

{0} = 2{O)mix = {3.61)

{0 = (362)
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IV. LIGHT NUCLEAR SPECTRA

The spectra of light nuclear systems provide the first test of nuclear interaction models. Only if the spectra are
well reproduced can one expect to accurately calculate other low energy and momentum observables, Jike radii, form
factors, and scattering lengths. In this section we present a brief review of results in light nuclei, the most recent
calculations including systems up to A=7.

These calculations also provide a substantial test of the consistency of chiral perturbation theory in nuclei; it is
a priors unclear how well a microacopic picture [ramed in terms of nucleon degrees of freedom only with two- and
{small) three-nucleon interactions can reproduce nuclear spectra and structure.

A. Three- and four-nucleon systems

The simplest system, A=3, was the original teat of realistic interaction models. The Los Alamos-Iowa (Chen et
al., 1985) group obtained the first precise results for realistic interaction models by solving the Faddeev equations in
configuration space. Faddeev calculations in momentum space were later performed by the Bochum [Witala, Glockte,
and Kamada, 1991) group. More recently, correlated-hyperspherical-harmonics (CHH} {Kievsky, Rosati, and Viviani,
1993) and Green-function-Monte-Carlo (GFMC) (Carlson, 1995) calculations have also been performed for A=3,
basically as testa of the methods. The binding energies obtained with the various methods are in excellent agreement,
typically within 10 keV or less. The GFMC calculations are limited by statistical Auctuations and the approximations
in the treatment of p*-components of the interaction, to an sccuracy of 20 keV. A comparison of results obtained
with different methods for the Argonne interaction models is given in Table IV, In sil cases the agreement between
different methods is very good.

A noted previously, local two-nucleon interaction models underbind the triton by 800 keV compared to experiment.
This naturally leads to too large a charge radius, and also affects the nid scattering lengths. A variety of recent results
for realistic interaction models are presented in Table V. The local interaction models (Nijm II, Reid 93, and AV18)
produce a binding energy of 7.62 + 0.01 MeV for the triton, a8 compared to the experimental 8.48 MeV. The Nijm I
interaction is non-local in the central channel, and gives a slightly larger binding of 7.72 MeV.

The relativistic calculationa of Machleidt, Sammarruca, and Song {1996) and Stadler and Gross (1997) give greater
binding energies. In the fist instance, both relativistic and non-relativistic (but non-local) ealcuiations have been
performed. The NI interaction has been adjusted to pravide an excellent o the np and pp data, and the resulting
binding energy is about half way between the local NN interactions and the experimental value. The Gross equations
have also been solved for a realistic NN interaction model (Stadler and Gross, 1997). In this case fewer parameters
are used in the OBE model, and hence the statistical fit to the NN database is not as good. They have included an
off-shell acalar oNN couplings, and ase able to reproduce the experimental triton binding energy and a reasonable fit
to the NN phase shifts with a suitable choice of these couplings. Gross and Stadler emphasize that this type of model
is equivalent to another OBE model without such of-shell couplings, but with an additional specific family of N-body
forces. -

Upon including specific three-body interactions, A natural choice is to adjust the three-nucleon-interaction (TNE)
strength to yield the correct binding energy. In the framework of the Tucson-Melbourne TN1 model, this has be done
by adjusting the cut-off at the 7NN vertex; harder cut-offs produce a larger effect. Table V lists several combinations
of realistic NN interactions with specific cut-offs that reproduce the experimental binding energies {Nogga, Hiiber,
Kamada, and Glickle, 1997). In the Urbana/Argonne TNI models VIII and IX, the strength is constrained to fit
the triton binding energy when used with the Argonne (isospin-conserving} ;4 or via Interactions, respectively. As
discussed later, adjusting the TN in this way also yields nd scattering léngths that are in agreement with experimental
values.

Clearly, though, it is also important to go beyond A=3. Chiral perturbation theory, for example, predicts that
four-nucleon interactions are much less important than three-nucleon ones which are, in turn, much smaller than two-
nucleon interactions. This can only be tested by studying larger systems. Also, it is important to study neutron-rich
and proton-rich systems to understand the isospin dependence of the TNL. Ideally, one would like to be able to proceed
from light nuclei to light p-shell nuclel to neutron stars with the same Hamiltonlan and similar accuracy. While this
has still not been achieved, significant progress has been made.

The four-body system is the next step, and has also been studied by several groups. While the nucleors are in
predominantly spatially-symmetric configurations for both the three- and four-body ground states, the o-particle is
tightly bound. This tight bindlng, an approximately 20 MeV nuclean separation energy, yields a rather high central
density. In addition, the fact that there are four triplets in the four body system as compared to one in A=3 implies
that the TNI is comparatively more important here,
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Again, the alpha particle is severely underbound in the presence of static two-nucleon interactions only. Tjon (1975)
originaily noticed the strong correlation in three- and four-body binding energies. Carlson {1990b) provided the first
complete calculations with realistic two- (2nd three-) nucleon interactions, and found that a TNI fit to the measured
triton binding energy afso produced a resutt for the a-particle binding energy close to the experimental value. More
recently, several other groups have calculated A=4 binding energy using both Faddeev-Yakubovsky (Glickle and
Kamada, 1993) and CHH (Viviani, Kieveky and Rosati, 1905) methods. Although the agreement between these
calculations is not quite as good as that for the three-hody system, it is nevertheless satisfactory, as indicated by a
comparison of results presented in Table VI.

With two-nucleon interactions alone, the results are accurate to within 0.2 MeV. In the CHH calculations the authars
provide an estimate of .05 MeV for the error arising from channel truncation, which yields an estimate consistent
with the GFMC resuits. These newer, more accurate GFMC results are also consistent with the older result of .24.2
+ 0.2 MeV (Carlson and Schiavilla, 1994}, The Faddeev-Yakubovsky results are slightly (0-2 MeV) higher than the
others, For the A¥18 interaction, recent calculations are in similar good agreement: the CHH method {Viviani, 1997}
yields & binding energy of 24.11 MeV compared to the GFMC result of 24.1 &+ 0.1 MeV.

When three-nucleon interactions are added, the agreement s not quite as good. The CHH and GFMC calculations
differ by approximately 0.8 MeV. However, the A=4 CHH calculation in the presence of TNI has an estimated
truncation error of 0.4 MeV, and it will soon be possible to perform a larger, more complete calculation. The present
best VMC calculation is slightly lower than the CHH calcutation, but both yield significantly less binding than the
GFMC result, which coincides with the experimental hinding energy. These results should be considered substantial
agreement, note that the kinetic energy in this system is of the order of 100 MeV, the energies are calculated to an
aceuracy much better than 1% of this value. Of course, it would be useful to reduce the difference through more
accurate calculations.

it is worthwhile to consider other expectation values to understand the a-particle structure. For example, while
the kinetic energy and NV interaction contributicns are of the order of 100 MeV, the TN1 is of the order of 10 MeV.
Hence the two-nucleon interaction is still dominant; in fact, a further breakdown of the individual contributions to
(tz) indlcates that (1) the short-range repulsion and intermediate range attraction are sizable but of opposite sign,
and (2} the one-pion-exchange potential is extremely important, having an expectation value of almost 75% of the
full NN interaction. Finally, we note that the alpha particle has a D-state percentage of nearly 15%, largely arising
from the one-plon-exchange interaction.

B. Light p-shell nuclei

In the low-lying states of light p-shell nuclet, a considerably different regime of the NV interaction is tested. Here
negative parity states become important for the first time. At present, only Monte Carlo methods have been used to
study these systems with realistic interaction models; certainly, this will change in the years ahead.

Historically, p-shell nuclet have been studied with the nuclear shell model. Recently, a great deal of progress has
been made in so-called “no core” shell.mode! calculations (Zheng ef al, 1995). These yield quite good spectral
results starting from a microscopic NN G-matrix. As an average energy constant has been added to these shell-
model calculations, it is difficult to directly compare the corresponding results with those from the direct microscopic
calculations described below. However, comparisons of the two approaches, particularly regarding ground- and excited-
dtate expectation valves, are likely to be quite valuable,

The first p-shell “nucleus” is *He, which is not bound. The two lowest-lying states are negative-parity resonances
consisting dominantly of a psa or pasz neutron outside of an a-particle core. The low-energy scattering technigues
described in the next section are adequate to treat this system; in the calculations described here the neutron is
confined to a radius of 12.5 fm from the a-particle. Assuming this distance to be Jarge enough so that there are
essentially no interactions between the two clusters, the experimental r-a phase shifts (Bond and Firk, 1977} can be
directly converted to energies. For the radius chosen, the py; state is nearly at resonance, while the p, state is
slightly above.

For the AVI8/IX model, the GFMC calculation of the 3/2~ states gives an energy of -26.5(2) MeV, as com-
pared to the experimental -27.2 (Pudlinet e¢ al., 1995). The 1/2~ state is well-reproduced; the GFMC calculation
gives —25.7(2), compared to the experimental -25.8. Thus, this calculation yields approximately two-thirds of the
experimental spin-orbit splitting in 5He.

GFMC calculations produce a series of decreasing upper bounds to the true energy as the iteration time r is
increased. For ®He, the calculations appear to be well converged, indeed little dependence upon r is seen for any
observable for 7 > 0.03 MeV ™. Hence the only uncertainty remaining Is the degree to which the difference between
the full isospin-dependent Hamiltonian and & simpler static vp model can be treated in perturbation theory. While
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this is apparently quite a good approximation in A=3 and 4, for larger systems it remains to be tested.

‘The initiat sets of calculations for A=6-7 have recently been completed (Pudliner et al., 1995, Pudliner et el., 1997},
and these results are quite encouraging. Figure 7 compares the GFMC spectra to experiment for these systemns, the
overall agreement is quite satisfactory. While the absolute energies are slightly higher than experiment, the level
splittings appear to be well described. These calculations provide a significant test of the three-nucleon interaction.
While the errors in the calculation are on the order of 1 MeV, the TNI expectation values are approximately 10 MeV.

In Fig. 8 we show the convergence with imaginary time for one of the most recent six-body caleulations. Similars
calculations in A=4 and 5 show that the results are well converged. Statistical fuctuations that occur in all path-
integral calculations of fermion systems (Schmidt and Kalos, 1984) limit the calculations to v € 0.06 MeV~! , and
hence only the telatively high-lying components of the trial wave function are projected out. The two curves are fits
to the data for v > 0.01 MeV ™! with a ground state plus excited state contribution. The dashed curve fits the data
only up to T = 0.06 MeV~!, while the solid includes all the data up to 0.1 MeV~!. The latter yields a ground-state
energy approximately one standard deviation below the average from = = 0.04 - 0.06 MeV~!, which is shown as
horizontal lines in the figure. A variety of tests of the GFMC method have been performed, These tests confirm
that the GFMC is able to correct for very poor choices of short-ranged correlations, but is not able to adequately
suppress all low-lying excitations within the present limit of 7 = 0.06 MeV—1. Tn order to perform the most accurate
calculations pozsible, the starting VMC wave functions have been optimized with respact to the presence of different
symmetry components in the single-particle part of the wave function. These small-basis diagenalizations reproduce
the standard dominant spatiatly-symmetric components of the ground state wave function that were originally obtained
in shell-model cateulations.

Ground-state energies for A=3-7 are presented in Table VII, and a variety of expectation values for specific ground
states ave presented in Table VIII. In the tables, the energy is an upper bound obtained from averaging results
from t = 0.04 to 0.06 MeV~". It may be possible to further improve these calculations. For example, it is possible
to compute estimates for an arbitrary mixture of states with different symmetries, as Is currently done in the VMC
calculations. In addition, it should be possible to place constraints on the path-integral calculations to extend them to
much larger 7. Indeed, such approximate techniques have proven to be very valuable in condensed-matter simulations.

‘This is particularly impertant for studying low energy and momentum transfer properties of the nuclei. The present
VMC calculations do not provide enough binding compared to the lowest breakup threshold, and hence have been
adjusted to give the experimental ground-state radius of Li. The radii, magnetic, and quadrupole moments in the
VMU calculations are given in Table IX. Due to the limit of the present GFMC caleulations to 7 = 0.06 MeV~!, it
is not clear that they have convered to the true ground state value for this Hamiltonian.

GFMC has also been employed to study isospin-bresking in light nuclei. The calculations use an average isoscalar
interaction, and evaluate the electromagnetic and strong interaction isospin-breaking terms in perturbation theory.
Using the AV18 model, the isovector energy differences between the H-*He and ®*He-%Be are [airly well reproduced,
a3 shown in Table X (Pudliner et al., 1997}. The isotensor energy differences involve more difficult cancellations, and
are not as well reproduced.

In summary, realistic models of the NN interaction can now be explicitly solved for up to T-body systems. To
date, the calculations confirm that the standard picture of these nuclei a8 interacting through realistic two- and three-
nucleon interactions is capable of adequately reproducing the nuclear spectra and much of strong-interaction dynamics.
Certainly discrepancies remain, but the calculations have advanced to the stage that these can be confronted. In
particular, relativistic effects and the spin-isoepin structure of the three-nucleon interaction can be addressed.
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V. THE NUCLEAR ELECTROWEAK CURRENT OPERATOR

The simplest description of nuclei is based on a non-relativistic many-body theory of interacting nucleans. Within
this Framework, the nuclear electromagnetic and weak current operators are expressed in terms of those associated
with the individual protons and neutrons-the so-called impulse approximation (JA). Such a description, though, is
certainly incomplete. The nucleon-nucleon interaction is mediated, at large internucleon distances, by pion exchange,
and indeed seems to be well represented, even at short and intermediate distances, by meson-exchange mechanisms,
which naturally lead to effective many-body eurrent operators. It should be realized that these meson-exchange
current {MEC) operators arise, as does the nucleon-nucleon interaction itself, as a consequence of the elimination of
the mesonic degrees of freedom from the nuclear state vector. Cleacly, such an approach is justified only at energies
below the threshold for meson {specifically, pion) production, since above thia threshold these non-nucleonic degrees
of ceedom have to be explicitly included in the state vector.

The investigation of MEC effects on nuclear electroweak observables has a long history. The need for their inclusion
was soon realized after Yukawa postulated that pions mediate the nuclear force. Villars (1947} and Miyazawa (1951}
first comsidered their contributions to the magnetic moments of nuclei, and found that they accounted for most of
the existing discrepancies between experimental values and previous IA predictions. However, it was not until 1972
when Riska and Brown (1972) showed how pion-exchange currents could resolve the long-standing 10% discrepancy
between the calculated and measured cross section for radiative proton-neutron capture, that the importance of
such interaction currents was established at a quantitative level. Since then, there have been several calculations of
two-body current effects in other processes, such as the deuteron electro-disintegration at threshold {(Hockert, et al.,
1973, Lock and Foldy, 1975, Fabian and Arenhdvel, 1976, Fabian and Arenhével, 1978, Leidemann and Arenhdvel,
1983, Mathiot, 1984, Leidemann, Schmitt, and Arenhdvel, 1990, Schiavilla and Riska, 1991), the charge (Kloet and
Tjon, 1974, Riska and Radomski, 1977, Hadjimichacl, Goulard, and Bornais, 1983, Strueve et al., 1987, Schiavilla,
Pandharipande, and Riska, 1990) and magnetic (Barroso and Hadjimichael, 1975, Riska, 1980, Maize and Kim,
1984, Schiavilla, Pandharipande, and Riske, 1988) form factors of the trinucleons, the §-decay of tritium {Blomgvist,
1970, Riska and Brown, 1970, Chemtob and Rho, 1971, Ciechanowicz and Trublik, 1984, Saito, Ishikewa, and Sasakawa,
1990, Carlson et ol., 1991}, the magnetic moments end weak axial current matrix elements of medium- and heavy-
weight nuclel (Dubach, Koch, and Donnelly, 1976, Dubach, 1980, Mathiot and Desplanques, 1981, Suzuki et al.,
1981a, Suzuki et al., 1981b, Dennelly and Sick, 1884, Towner, 1987). However, because of uncertainties in the many-
body wave functions of heavy nuclei, the few-nucleon systems have played a rather special role, since for their ground
(and, very recently, continuum) states the Schrédinger equation can be solved with a high degree of accuracy using a
variety of different techniques (see Sec, IIT). These studies have conclusively proven that a quantitative satisfactory
description of electroweak observables requires a current operator conaisting, at a minimum, of one- and twoe-body
components.

Two-body electromagnetic and wenk current operators have conventionally been derived as the non-relativistic
limit of Feynman diagrams, in which the meson-baryon couplings have been obtained either from effective chiral
Lagrangians {Riska, 1984) or from semi-empirical models for the off-shell pton-nucleon amplitude (Chemtob and
Rho, 1971). These methods of constructing effective current operators, however, do not address the problem of how
to mode! the composite structure of the hadrons in the phenomenological meson-baryon vertices. This structure
is often parameterized in terma of form factors. For the electromagnetic case, however, gauge invariance actually
puta constraints on these form factors by linking the divergence of the two-body cutrents to the commutator of the
charge operator with the nucleon-nucleon interaction. The latter contains form factors too, but these are determined
phenomenologically by fitting nucleon-nucleon data. Thus the continuity equation reduces the model dependence of
the two-body currents by relating them to the form of the interaction. This point of view has been emphasized by
Riska and collaborators (Risks, 1985z, Riska, 1985b, Riska and Poppius, 1985, Blunden and Riska, 1992, Tsushima,
Riska, and Blunden, 1993} and others (Buchmann, Leidemann, and Arenhével, 1985, Ohta, 193%a, Ohta, 1989b), and
is adopled in the treatment of two-body currents that we discuss below.

The nuclear slectromagnetic p(q) and j{q) and axial A.(q) current operators are expanded into a sum of one-,
two-, and many-hody terms that operate on the nucleon degrees of froedom:

la) =5 o) + 3 e+ (5.1
i i<§
M) =T+ i+ ' (5.2)
i (T4
A = Al + 2 Al @+, (5.3)
[ i<y
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where a is an isospin index,

The cne-body operatora p?) and jgl) are obtained from the covariant single-nucleon current

# =) [R@ + F@Y T i) (5.4

where p (p‘) is the initial (final} momentum of the nucleon of mass m, and #3(Q?} and F2{Q?) ate its Dirac and Pauli
form factors taken as function of the four-momentum transfer Q* = —g,q" > 0, with g, = p, — p,. The Bjorken and
Drell {Bjorken and Drell, 1964) convention is used for the y-matrices, and o** = {i/2) [v*, 7°}. The j, is expanded
in powers of 1/m and, including terms up to order 1/m?, the charge (a=0) component can be written as

A1) = dlfhn (@) + 2cla) {5.5)
with '
Al =g, (5.6)
i

- =5 (2m-e)q-{os xp) v, (5.7)

p(.“ {q) = N - 1] gelan
A=\ AT )T T

while the current components (p = 1, 2,3) are expressed as

T VIR AU S R S o
W@ = g {pi, ) - gmmg x0T, (5.8)
where {--- , ---} denotes the anticommutator. Here we have defined
1
« =3 [GEQ%) +CEQIm.) . (5.9)
1 2
w =5 [CRQN + 6@ (5.10)

and p. o, and T are the nucleon’s momentum, Pauli spin and isoapin operators, respectively. The two terma propor-
tional to 1/m? in P:.Ir)tc are the well known Darwin-Foldy and spin-orbit relativistic corzections (deForest and Walecka,
1966, Friar, 1973), respectively.

The superscripts § and V' of the Sachs form factors Gg and Gy denote, respectively, isoscalar and isovector
combinations of the proton and neutron electric and magnetic form factors (Sachs, 1962). The Gz and Gy are
related to the Dirac and Pauli form factors in Eq. (5.4) via:

Gsl@?) = F(@Y) - g—,f‘:(o’) . (5.11)
Gu{Q%) = R(QY) + RAQT) (512
and are normalized so that
S GH@*=0) = GH@P=0)=t , (5.13)
Gi(QP=0) = pp + po = 0.880 1y (5.14)
GY(QP=0) = pp — o = 47064 (5.15)

where u, and g, are the magnetic moments of the proton and reutron in terms of the nuclear magneton . The
Q*-dependence of the Sachs form factors is determined by fitting electron-nucleon scattering data (Galster et al,
1971, lachello, Jackson, and Lande, 1973, Hohler et al., 1976, Gati and Kriimpelmann, 1986). The proton electric
and megnetic form factors are expetimentally fairly well known over a wide range of momentum transfers, see Figs. 9
and 10. In contrast, the present data on the neutron lort factors, particularly the electric one, are hot as accurate
and, therefore, the available semi-empirical parameterizations for them differ widely, particularly at high momentum
transfers, as shown in Figs. 11 and 12. Until this uncertainty in the detailed behavior of the electromagnetic form
factors of the nucleon is narrowed, quantitative predictions of electro-nuclear observables at high momentum transfers
will remain rather tentative. We will re-examine this issue later in this review.

28



The one-body operatot Af,‘f is obtained from the non-relativistic limit of the nucleon axial current given by:

2
AL =w(p") [GA(Q’)v" + %q“ '7.'.;—"1-(1)) . (5.16)

The Q*-dependence of the axial {G.) and induced pseadoscalar (G p} form factors are parameterized, respectively, as

Gal@)) = ﬁz—ﬁ . (5.17)
Ge(0) [genni{Q?)/oxnn (0
e (5.18)

where g4=1262+0.006 as determined from neutron f-decay (Bopp et al, 1986), and (m,/2m)Cp(Q? =
m:)=8.2 +2.4, m, being the muon mass, as cbtained {rom muon capture in kydrogen (Bernabéu, 1982}, The value for
the cutoff mass A, ia found to be approximately 1 GeV /c? from an analysis of pion electro-production data (Amaldi,
Fubini, and Furlan, 1679) and measurements of the reaction v, +p—+ n+pu* (Kitagaki et al., 1982). In the induced
pseudoscalar form factor Gp(Q?) the §)*-dependence s dominated by the pion pole contribution, and gy e (Q%) is the
/NN strong interaction form factor. Retaining only the leading contribution in 1/m in the non-relativistic reduction
of A% leads to the well known expression for the Gamow-Teller transition operator

AR = - Lo (5.19)

The next to leading order correction invelves, in the limit Q=0, a non-local operator, which arises from the time

component (=0} of 4% and is given by:

An! = — g
@ (q) i

N

-ﬁr.,.— o [pe. e, L (5.20)
Our interest in the present review is focused on weak transitions involving very small momentum transfers @2, and
therefore the Q?-dependence of the axial form factor lias been Suppressed.

The axial charge operator has pseudoacalar character, and there is no obvious observable in the few nucleon aystems
which eould be significantly affected by transizions induced by such an operator (Nozawa, Kohyama, and Kubodera,
1982). For example, in the f-decays of *H and ®He as well as In the weak capture reactions 'H(p,e*v,)?H and
He(p,e* v, ) He the matrix elements of the axial charge operator vanish, since the former involve transitions in which
the initial and final states have the same parity, while the latter proceed predominantly via J=:0% & 1* transi-
tions. However, the axial charge operator, particularly ita two-body component, influencea the rates of several AT=1
J*:0* =2 0~ transitions (Guichon, Giffon, Samour, 1978, Nozawa et of., 1984, Towner, 1984, Kirchbach, Xamalov,
and Jiiger, 1984, Jager, Kirchbach, and Truhlik, 1984, Kirchbach, Jiger, and Gmitro, 1984, Kirchbach, 1986), such
83, for example, the rates of the mirror transitions *N{0~,120 keV)—+120(0F, g.s.)+e~ +v, or u_+190—+15N(0~,120
keV)+u, (Riska, 1984). We will not discuss the axial charge operator any further in the present review.

The electromagnetic current operator must satisfy the continuity equation

qQ-ilq) =[H, plq)] , (5.21)
where the Hamiltonian H includes two- and three-nucleon interactions
v
H:Z;;m'-+2u‘-,+ 3 Vi (5.22)
i < i<fck

To lowest order in 1/m, the continuity equation (5.21) separates into separate continulty equations for the one-, two-,
and many-bady current operators

2
a- i = [;’—;‘.pff.%n(q)] . {5.23)
a-ia) = vy, ofmle + {(a)] (5.2)

and a similar equation involving three-nucleon currents and interactions.
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The one-body current in Eq, [5.8) is easily shown to satisfy Eq. {5.23). The iscspin- and momentum-dependence
of the two- and three-nucleon interactions, however, lead to non-vanishing commutators with the non-relativistic one-
baody charge operator, and thus link the longitudinal part of the corresponding two- and three-body currents to the
fortn of these interactions. In the present review, we will limit our discussion to two-body currents, since, so far, no
systematic investigation of three-body current (and charge} operators has been carried out.

This section falls into four subsections. The first subsection, A, deals with the two-body current operators that
are required by gauge invariance. We dencte them as “model independent” (adopting a nomenclature introduced by
Riska (Riska, 1989)), since they are constructed from the nucleon-nucleon interaction, and contain no free parameters.
We discuss in subsection B those two-body currems, denoted as “model dependent™which, being purely transverse,
are not constrained by the continuity equation. To this ¢lass belong the currents associated with the pmy and wry
mechanisms as well as those due to excitation of intermediate A-isobar resonances. However, it should be noted that
the isoscalar pry transition current his, in the framework of the topological soliton or Skyrme model approach to
nucleon and nuclear structure been linked to the chiral anomaly (Wakamatsu and Weise, 1988, Nyman and Riska,
1986, Nyman and Riska, 1987). This connection is extensively discussed in the review article by Riska {Riska, 1989).

In subsection C, we derive the structure of the most important two-body charge operators. The latter are model-
dependent, and may be viewed as retativistic corrections. The use of these two-body charge operators in conjunction
with non-relativistic wave functions is founded more on phenomenological success than on solid theoretical argument.
From this standpoint, however, theoretical predictions for the charge form factors of nuclei with A=2-6 based on
caleulations carried out within swch simple an approach have come remarkably close to data, as will be shown later in
the present review, However, a study that sy cically and consi ly deals with the constraints that relativistic
covariance imposes ot bolh the electromagnetic current and interaction models as well as on the nuclear wave functions
in systems with A > 2 s still lacking, although progress in this direction has been made in the past few years {Rupp and
Tjon, 1992, Carlson, Pandharipande, and Schiavilla, 1993, Forest et al., 1995, Stadler and Gross, 1997). The deuteron,
however, has been studied extensively in relativistic approaches, relativistically covariant calculations of the deuteron
structure functions and tensor polarization have been carried out within the framework of quasi-potential reductions
of the Bethe-Salpeter equation with one-boson-exchange interaction models {Hummel and Tjon, 1989, Hummel and
Tjon, 1990, Van Orden, Devine, and Gross, 1995),

I the last subsection, D, we list the expressions for the axial two-body current operators commonty used in the study
of weak transitions involving few-body nuclei (Carlson et ol., 1991). Their derivation is discussed in the review article
by Towner (Towner, 1987}, and will not be repeated here. We only emphasize that, in contrast to the electromagnetic
case, the axial curtent operatot is nol conserved. lts two-body components cannot be directly linked to the nucleon-
nucleon interaction and, in this sense, are completely model dependent. Indeed, the partially-conserved-axial-current
[PCAC) relations, which play a role analog to that of current conservation in the electromagnetic case, lead to
modelHndependent predictions only for the axial exchange charge operator,

A. Electromagnetic two-body current operators from the two-nucleon interaction

All realistic N interactions include isospin-dependent central, spin-gpin and tensor components
[v7(reg) + 07" (ripdes - oy + o {rig)Sig) T Ty (5.25)

where the o7 and tr terms include the long-range one-picn-exchange potential (OPEP). The r; - r; operator, which
does not commute with the charge operators in Eq. (5.24), is formally equivalent to an implicit momentum depen-
dence {Sachs, 1948). This is shown by considering the product of space-, spin-, and isospin-exchange operators,
denoted respectivety as Ly, E.'_,. Ef;, where

Fy
By =exp i " do- (o -ps] - (5.26)
L1}
B =t (5.27)
e l4+r-T
o =—2‘ £ (5.28)

They must satisfy E; Ef, Ef; = ~1. The line integral in Eq. (5.26} is along any path leading from r; to r;. Thus
two-body current operators associated with the 7 - 7;-dependent interactions, Eq. {(5.25), could be constructed by
minimal substitution in the space-exchange operator:
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]
Pi -+ p~& Alr) {5.20)

where A{r;) is the vector potential. Due to the arbitrariness of the integration path in Eq. (5.26), such a prescription
does not lead, however, to unique two-body currents {Nyman, 1967). Therefore, an assumption has to be made about
the dynamical origin of the interactions in Eq. {5.25) in order to construct the associated currents.

At intermediate and large intertucleon separation distances, the ™, v°7, and v'" interactions are assumed to be
due to 7- and p-meson exchanges. The tNN and pNN coupling Lagrangians are given by:

Lenn(z) = ﬁlﬂﬁ(zh"%ﬂil(ﬂ < Bumiz) , (5.30)
Lonn(z) = gowa(a) [ (1 + 7207°8.) pule)] - To(2) (5.31)

where #(z) and p(z) are the #- and p-meson T=1 fields, ¥{z) is the T=1/2 nucleon field, m, and m, are the
meson masses, fean, gona and x, are the psendo-vector /NN, and the vector and tensor pNN coupling constants
(f3 p pe A =0.075, g:NN /An=0.55, and x,=6.6), respectively. By petforming a non-telativistic reduction of the one-
bogon exchange Feynman amplitudes, the x- and p-meson exchange interactions are obtained in mementum space
as

ps (k) + [ra (8} + 20, (k) Peri - & — [vx (k) - v, (R)] Sy (k)] T (5.32)
where
-2 1
00slh) = B g (5.33)
w, (k) = _fa_NLf..l_ (5.34)
T imt B2+ mi )
vylk) = Ty (L) (5.35)

12m? k% +m?
The tensor operator in momentum space is defined as
S;(k) =Ko, 0y—30;-ke;-Xk . {5.36)

The isovector two-body curtents corresponding to m- and p-exchanges can be derived by minimal substitution
8, =+ 8, iA,(x)} in the /NN and pN N coupling Lagrangians, Eqs. (5.30)-(5.31), and in the free x and p-meson
Lagrangians:

1 m?
La(2) = 38um{z) - 8m(z} ~ iz} - wlz) . {(5.37)
. 2
Ly(z) = -é [Bupu () = Bopu(z)] - [8°9° (z) - 8"pH(2)] - %ﬂ“(z) -pulz) . {5.38)

The non-relativistic reduction of the Feynman amplitudes shown in Fig. 13 leads to the momentum-space two-bady
opératora:

FP (e ky) = 3i(7e % 7). GEQ?) [u.(k,-)a.-(a,- "K;) = va (ki) s (s - ki)

BES

R otk — velkl o Ko 9| (5.39)
i '3

B2, (ks k) = =iy x 75); GREQY [u..(k,-)a‘ x (o % X;) = vplhidory % [ x ki)

~2elb =9 (g - e x k) (g X )
Ll ¢l
+{os x k) o+ (ki x k) + (g } k) o - Oy % k)]

=K uysted - st (5.40)
* El
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where k, and k; are the fractional momenta delivered to nucleons i and j with g = k; + k;, and the form factor
G £(Q®) hag been included to take into account the electromagnetic structure of the nucleon. The continuity equation
requires that the same form factor be used to describe the electromagnetic structure of the hadrons in the longitudinal
part of the current. operator and in the charge aperator. Again, it places no restrictions on the electromagnetic form
[actors which may be used in the transverse parta of the current. Ignoring this ambiguity, the choice made here
{GYX{Q)) satisfies the “minimal” requirement of current conservation. However, for a somewhat different discussion
of this point we refer the reader to {Gross, 1992).

The first two terms in Eqs. {5.39)-(5.40) are seagull currents corresponding to diagrams () and {b} of Fig. 13, while
the remaining terms are the currents due to #- and p-meson in flight, These operators with the vl (k}, v,(k}, and
v,5(k) propagators suitably modified by the inclusion of form factors have commonly been used in the investigation
of exchange current effects in nuclei. Their fitst systematic derivation was in face given by Chemtob and Rho in their
seminal 1971 paper {Chemtob and Rho, 1971). While these simple two-body currents satisfy the continuity equation
with the corresponding meson exchange interactions, they do not satisfy the continuity equation with the realistic
models for the nucleon-nucleon interaction that are used to construct nuclear wave functions. A method of obtaining
current operators which satisfly the continuity equation for any given vf;, v, and u}; interactions has been proposed
by Riska (Riska, 1985b) and, independently, Arenhovel et ai. (Buchmann, f..eidemann, and Arenhivel, 1985). In this
method these interactions are attributed to exchanges of families of m-like pseudoscalar (P5) and p-like vector (V)
mesons. The sum of all T=1 PS- and V-exchange terms is then obtained as

vps(k) = [v"" (k) — 20" (k)] /3 , (5.41)
vwik) = [} + o (R)] /3, (5-42)
vvs(k) =vT(k} , (5.43)
where

vk =4ar jm e jo(kr)em(0) | (5.44)

[
VTR = % [o Adr Lialkr) — 1] 07 () , (5.45)
Wk = % ‘fow r’drj;(kr)u"(r) R (5.46)

The expression for v°7 (k) teflects the fact that in all nucleon-micleon interaction madels derived from a relativistic
scattering amplitude a §-function term has been dropped from the spin-spin component. The currents cperators j:ilps
and j),, obtained by using vps(k), vv(k), and vys(k} in place of v.{k), v,(k), and v,s(k} in Eqs. (5.38)~(5.40)
satisfy the continuity equation with the v, v°" and v'" potentials in the model interaction used to fit the nucleon-
pucleon scattering data, and to caleutate nuclear ground- and scattering-state wave functions. In particular, there
is no ambiguity left as to the proper form of the short-range behavior of the two-body cutrent operator, as this is
determined by the interaction model. Configuration-space expressions may be obtained from:

e = faxenx A8 Mt mgh o 1) 64n
where a=PS or V, and are given explicitly in (Schiavilla, Pandharipande, and Riska, 1989).

Although the Riska prescription obviously cannot be unique, it has nevertheless been shown to provide, at low
and moderate values of momentum transfer (typically, below =~ 1 GeV/c), a satisfactory description of most ob-
servables where isovector two-body currents play a large (if not dominant) role, such as the deuteron threshold
electro-disintegration (Buchmann, Leidemann, and Arenhdvel, 1985, Schiavilla and Riska, 1991), the neutron and
proton radiative captures on proton (Schiavilla and Riska, 1991) and deuterons (Viviani, Schiavilla, and Kievsky,
1996) at low energies, and the magnetic moments and form factors of the trinucleons (Schiavilla, Pandharipande, and
Rigka, 1989, Schiavilla and Viviani, 1996}.

In addition to spin-spin and tensor components, all realistic interactions contain spin-orbit and quadratic
momentum-dependent terms. The construction of the assaciated two-body current operators is less straightforward.
A procedure similar to that used above to derive the x-like and p-like currents has heen generalized to the case of
the two-body currents from the spin-orbit interactions {Carlson et of., 1990). It consiats, in essence, of attributing
these to exchanges of o-like and w-like mesons for the isospin-independent terms, and to p-like mesons for the isospin-
dependent ones. The explicit form of the resulting currents as well as their derjvation can be found in the original
reference {Carlson et al., 1990).
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The quadratically momentum-dependent terms represent, on the one hand, relativistic corrections to the central
and spin-orbit interactions, which are proportional to p® (p ia the relative momentum) and, on the cther hand,
quadratic spin-orbit interactions. To construct the associated two-body current operators s, in general, difficult
or impossible, because of the many approximations typically used to simplify the structure of these interaction
components. Furthermore, some interactions, such as the Argonne models (Wiringa, Smith, and Ainsworth, 1984,
Wiringa, Stoks, and Schiavilla, 1995}, contain terms proportional to L?, which do not appear in any natural way in
bosen exchange models. Hence, in view of the fact that the numerical significance of these operators is anyway small,
the two-body currents associated with the quadratic momentum-dependence are obtained by minimal substitution,
Eq. (5.29), into the corresponding interaction components (Schiavilla, Pandharipande, and Riska, 1989).

The currents associated with the momentum dependence of the interaction are fairly short ranged, and have bath
isoscalar and isovector terms. Their contribution to Isovector observables is found to be numerically much smaller
than that due to the leading =-like current (Schiavilla, Pandharipande, and Riska, 1989, Schiavilla and Viviani, 1996).
However, they give non-negligible corrections to isoscalar observables, such as the deuteron magnetic moment and
B(Q)-structure function {Schiavilla and Riska, 1991, Wiringa, Stoks, and Schiavilla, 1995), and isoscalar combination
of the magnetic moments and form factors of the trinucleons {Schiavilla, Pandharipande, and Riska, 1989, Schiavilla
and Viviani, 1996), as will be reported later in this article.

B. “Model-dependent” electromagnetic two-body current operators

The two-body currents discussed in the previous subsection are constrained by the continuity equation and do
not contain any free parameters, since they are determined directly from the nucleon-nucleon interaction. They can
therefore be viewed as “model independent”. There are, however, additional two-body currents which are purely
transverse, These will be referred to as “model-dependent” two-body currents.

The class of model-dependent currents that has been considered in the literature containg two-body operators
associated with electromagnetic transition couplings between different mesons or with excitation of intermediate
nucleon respnances {specifically, the A-isobar).

1. The pny and wwey current operalors

Among the currents due to transition couplings, the pwy and wmy mechanisma, illustrated by the Feynman diagrams
in Fig. 14, have been considered most commonly in the literature (Chemtob, Moniz, and Rho, 1974, Gari and Hyuga,
1976). The associated two-body operators have short range, because of the large p- and w-meson masses and, therefore,
their contribution to electromagnetic observables at low and moderate values of momentum transfers () < 1 GeV/c)
ia typically small. These currents can be derived from the Feynman diagrams in Fig. 14 by considering the transition
current matrix elements given by

2
< WO e, > - Dy, i (548)
P

and a similar expression for the wxy transition current matrix element with G,.{Q%)/m, teplaced by G ., (@*)/m,, (¢
is the polarization vector of the vector meson). The values of the transition form factors G,e, and G,x, at the photon
point are known to be Gpxy(Q? = 8) = gpuq = 0.56 (Berg ot al., 1980) and G, {Q? =0) = gyny = 0.68 (Chemtob
and Rho, 1971) {rom the measured widths of the p = 7 + 4 and w — 7 + 9 decays, while the Q3-dependence is
modeled using vector meson dominance:

G'.,(Qz) = goma/ (1 + Qz/m?a) ) (5.49)
Coury(Q%) = gura/ (1 + Q:/m:) . (5.50)
A non-relativistic reduction to lowest order of the amplitudes in Fig. 14 leads to the momentum-space expressions:
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Note that the next to leading order terms in the non-relativistic expansion of the pmy amplitude are proportional
to {1 + x,)/m?, where &, is the large pNN tensor coupling. They have been found to substantially reduce the
contribution of the leading term, Eq. (5.51) in a calculation of the deuteron B{Q) structure function {Schiavilla and
Riska, 1991). The importance of these 1/m? corrections was first stressed by Hummel and Tjon {1989} in a relativistic
boson-exchange-model calculation of the deuteron form factors, based on the Blankenbecler-Sugar reduction of the
Bethe-Salpeter equation.

Monopole form factors at the pion afid vector-meson strong interaction vertices, given by

2 2
A —m,

ALk

are introduced to take into account the finite size of nucleons and mesons. It should be emphasized that the contri-
butions due to these operators are rather sensitive to the values used for the (poorly known) vector meson coupling
constants to the nucleon and cutoff parameters A,, e=w, p, and w (Carlson, Pandharipande, and Schiavilla, 1991).
In recent calculations, the values of these have been taken as A, = 0.9 GeV and A, = A, = 1.35 GeV from studies
of the magnetic form factor of the deuteron (Wiringa, Stoks, and Schiavilla, 1995) and radiative capture of neutrons
on ?H (Viviant, Schiavilla, and Kievsky, 1996) and *He (Schiavilla et aZ, 1992).

Jalk) = a=mp . (5.53)

2. Currents aasociated unth A.isobar degrees of freedom

The theoretical framework adopted in the present review article views the nucleus as made up of nucleons, and
assumes that all other sub-nucleonic degrees of freedom may be eliminated in favor of effective two- and many-body
operators acting on the nucleons' coordinates. This greatly simplified description, in which color-carrying quarks and
gluons-the degrees of freedom of quantum chromodynamics, the fundamental theory of the strong interactions-are
assembled into colorless clusters, the nucleons, and these clusters are taken ns effective constituents of the nucleus
founds its validity on the success it has achieved in the quantitative prediction of many nuclear observables. However,
it is interesting to consider corrections to this picture by taking into account the degrees of freedom associated with
colorless quark-gluon clusters other than the nucleons as additional constituents of the nuclens. At least when treating
phenomena which do not involve explicitly meson production, it is reasonable to expect that the lowest excitation of
the nucleon, the A-isobar, plays a leading role (Green, 1976, Saver, 1986).

In such an approach, the wave function of a nucleus is written as

Ynsa=YNN- NN+ OONN .- NA)+ ENN..AB)+ -, (5.54)

where ¥ is that part of the total wave function consisting only of nucleons; the term $!1) js the comporent in which
a single nucleon has been transformed into a A-isobar, and 8o on. These A-isobar admixtures are generated by
transition interactions, the long-range part of which are obtained from a =/NA coupling Lagrangian of the form

Linalz) = L ;'n"’“\‘u“(:)'rw(z) .a,,n(z') +he {5.55)

where ¥#(z) is the isospin-spin 3/2 field of the A. The non-relativistic reduction of the Feynman amplitudes in Fig. 15
leads to NV — NA and NN — AA interactions given by (Sugawara and von Hippel, 1968)

unn-snalif) = [0 (rido- Sy + v Hryg)SHr - Ty (5.56)
vwnoaslid) = [ r,)S: - Sy + v M ) STITL - Ty (5.57)
with
v = % ?% , {5.58)
vy« LDae (1 +24 zi,) <, (5.59)
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exchange charge operators the pion and vector meson propagators are multiplied, respectively, by fr(k} and fv (&),
¥=p, w. However, in the w-exchange charge operator the propagator is multiplied by f2{k). The values used for
hn and Ay are 0.9 and 1.35 GeV /e, as discussed before. It should be relterated that the contributions due to two-
body charge operators from vector-meson {p-like and w) exchanges as well a3 transition couplings (pry and wm) are
typically an order of magnitude (or more) smaller than those due o w-like exchanges (Schiavilla, Pandharipande, and
Riska, 1990, Schiavilla and Viviani, 1996).

D. The axial two-body current operators

Among the axial two-body current operators, the leading terma of plonic range are those seseciated with exci
of A-isobar resonances. These arise from N + A and A -+ A axial couplings which are modeled as

Al » 8) = 8T, 5 e (5.80)
AlNaA - 8) = ~ 2220, B dn (5.81)

and the A —+ N current is obtalned by replacing the spin- and isospin-transition operators in Eq. (5.80) by their
hermitian conjugates. The coupling constants gana 8od gsaa are not known. In the static quark model, they
are related to the axial coupling of the nucleon by the relations ganwa = (6v2/5)g4 and goas = (9/5)ga. These
values have oftzn been used in the literature in the caleulation of A-induced axial current contributions to weak
tranaitions {Carlson et al., 1991, Saito, Ishikawa, and S2sakawa, 1990). However, given the uncertainties in the
naive quark model predictions, a more reliable estitnate for the gava coupling constant is obtained by determining
it phencmenofogically in the following way. It is well known that the one-body sodal current, Eq. (5.3), leads to a 4
% underpredictlon of the measured Gamow-Teller matrix element in tritium f-decay. Since the contribution of the
A -3 A axial current (as well as those due to other axial two-body operators to be discussed below} are found to be
numerically very atnall, this 4 % discrepancy can be used to determine gaya. This procedure produces, in the context
of a transition-correlation-operator calculation of the type discussed above, a value for gawa about 30 % larger than
the quark-model estimate (Schiavilla et al., 1992).

In a perturbative treatment, the N = A transition axial coupling leads to an effective two-body operator of the
form

Ag:-r sifld) = gﬂ%eiq"' [4 Toy [fA("u)G'; + galry; )iy loy - ii[)}
—{rix Tl [fA(ri,)(cr. x i) + galry o = fiy ey -i,—,-)]] +i=j, (5.82)

where the functions fa(r) and ga(r} have been defined in Eqs. (5.71)-(5.72}.

There are additional axial two-body current operators, although their contributions to weak transitions in the
few-nueleon systems have been found to be numerically far less important than those from A degrees of freedom.
These operators are associated with axial # NN and pNN contact interactions and axial pr couplings, and were first
described in a systematic way by Chemtob and Rho (Chemtob and Rho, 1971). Theit derivation has been giver in a

ber of articles, including the original reference mentioned above and the more recent review by Towner (Towner,
1987). Their expressions in mamentum apace follow.
Axial pion exchange seagull {pair) current:

% g fann o5k
AP (snS) = i 'mL,'N m?,_L-l-kj' THCAHCEE AN

= Tag [q + i x {ps +p£)]] +EFS {5.83)
axial p-meson exchange seagull (pair) current:
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axial gr current:
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l(i +xp)ery x k- i{p; + DEJ] +ieg. (5.85)

Here g is the total momentum transfer =lk; + ky, k;(;; is the momentum transfer to nucleon i (7}, pr and pj are
the initial and final momenta of nucleon i, and fy,;{k)=pion {p-meson)-nucleon monopole vertex form factor. The
expression for 75 represents the conventional pair curcent operator given in the literature. It iz obtained with
pseudoscalar pion-nucleon coupling. With pseudovector coupling the pion momentum k; in the first term in brackets
would be replaced by the external momentum q and an additional term (p; + p’) would appear with the isospin
structure {T; X 74)a. Furthermore, the pS operator includes only those terms which are proportional to (1 + &,).
Finally, configuration-space expressions may again be obtained by carrying out the Fourier transforms in Eq. (5.47).
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VI. ELASTIC AND INELASTIC ELECTROMAGNETIC FORM FACTORS

In this section we give an overview of the carrent status of elastic and inelastic electromagnetic form factor calcu-
lations in the A=2~6 nuclei. Our discussion will be in the context of a unified approach to nuclear dynamics based
on realistic two- and three-nucleon interactions and consistent two-bedy charge and current operators.

A variety of techniques, including Faddeev-Yakubovsky (FY), Correlated Hyperspherical Harmonics (CHH), Vari-
ational Monte Carlo {(VMC), and Green’s function Monte Carlo (GFMC) methods, have been used to calculate the
bound-state wave functions of *H, *He and “He with high accuracy (see Secs. III and IV and references therein).
For the same {realistic) input Hamiltonian the binding energies obtained with the FY, CHH, and GFMC methods
typically differ by less than 0.5 % for A=3 and 1% for A=4. Very recently, the YMC and GFMC calculations have
also been extended to the A=6 and 7 systems. Thus the electromagnetic form factors of these few-body nuclei, along
with the deuteron structure functions and threshold electro-disintegration at backward angles, are the observables
of choice for testing the quality of models for the nucleon-nucleon interaction and associated two-body charge and
current operators.

While the literature on the electromagnetic structure of the deuteron and trinucleons is very extensive-and no
attempt will be made here to systematically discuss it all-so is not the case for the a-particle and low-lying states
of ®Li, for which only relatively recently realistic wave functions have become available. Indeed, the ®Li form factors
have exclusively been studied before by using phenomenclogical shell-model (Donnelly and Walecka, 1973, Vergados,
1974, Bergstrom, 1975) or cluster (Bergstrom, 1979, Bergstrom, Kowalski, and Neuhausen, 1982, Kukulin et ol,
19490, Kukulin et al., 1995, Lehman and Parke, 1983a, Lehman and Parke, 1933b) wave functions. However, given our
premise, such calculations are not as directly tied to the NN interaction and currents.

Rather complete calculations of the 4=2 and 3 electromagnetic form factors have been carried out by a number
of groups {for A=2, sce, for example, Chemtab, Moniz, and Rho (1974), Gari and Hyuga (2976), Schiavilla and
Riska {1991}, Plessas, Christian, and Wagenbrunn (1995); for A=3, see Brandenburg, Kim, Tubis {1974), Kloet and
‘Fjon (1974), Hadjimichaet, Goulard, and Bornais (1983), Maize and Kim (1984), Strueve ¢t al. (1087), Schiavilla,
Pandharipande, and Riska (1989}, Schiavilla, Pandharipande, and Riska (1990}) using wave functions derived from a
Hamiltonian with two-nucleon interactions, such as the Paris (Cottingham et al., 1973), Bonn (Machleidt, Helinde,
and Elster, 1987), and Argonne v,4 (Wiringa, Smith, and Ainsworth, 1984) and vy (Wiringa, Stoks, and Schiavilla,
1995) models, and including {for A=3) three-nucleon interactions, such as the Tucson-Melbourne (Coon et al., 1979)
and Urbana-Argonne (Carlson, Pandharipande, and Wiringa, 1983, Pudliner et al., 1995) models. Some of these
calculations bave also taken explicitly into account A-isobar adinixtures in the A=2 {Dymarz et al., 1390, Dymarz
and Khanns, 1890, Leidemann and Arenhovel, 1987) and 3 (Hajduk, Saver, and Strueve, 1983, Strueve et ol., 1987,
Schiavilla and Viviani, 1996) wave functions. While GFMC wave functions, corresponding to the Argonne va and
Urbana model-IX Hamiltonian {AVI8/IX), are now available (Pudliner et al, 1995, Pieper and Wiringa, 1996),
the less accurate VMC wave functions have been used to date for the SLi form factor calculations (Wiringa and

Schiavilla, 1996). The AV18/IX and the older Argonne vy &nd Urbana model-VIII (AV14/VIII} models reproduce,

the experimental binding energies and charge radii of °H, *He, and *He. However, for the A= systems the {AV18/IX-
based) GFMC calculations indicate that the experimental binding energy of the *Li ground state is near agreement
with the calculated value, while those of the ®*He and ®Be ground states and low-lying excited states of SLi are
underestimated by theory at the 2 % and 3-5 % levels, respectively (Pieper and Wiringa, 1996).

Form factor calculations in few-body nuclel have nsed electromagnetic charge and current operators including one-
and two-body components. We here summarize their most important features. The dominant two-body current
operator ia the isovector one dug to w-meson exchange. While its general structure is dictated by the low-energy
thearems and is therefore on solid theoraticel grounds (Chemtob and Rho, 1971), there is nevertheless consider-
able uncertainty in regard to ils short-tange behavior due to the composite nature of nuclesns and pions. In most
calculations, the latier has been taken into account by including form factors at the xV vertices. However, the
resulting operator will not generally satisfy the continuity equation with the two-nucleon interaction ueed to generate
the wave functions. Riska (Riska, 1985b) and, independently, Arenhfvel and collaborators {Buchmann, Leidemann,
and Arenhdvel, 1985) have suggested prescriptions for constructing “r-like” and, in fact, “p-like” two-body currents
from the isospin-dependent spin-gpin and tensor components of the two.nucleon interaction (the most commonly
used "Riska™ prescription has been reviewed in Sec. V). These prescriptions, slthough not unique, lead to conserved
two-body currents, which have been characterized by Riska as “model independent” {Riska, 1989). Additionat, but
numerically far less impertant, “model-independent™ two-body currents are obtained {rom the momentum dependence
of the interaction (Riska, 1985a, Riska and Poppius, 1985, Buchmann, Leidemann, and Arenhdvel, 1985, Schiavilla,
Pandharipande, and Riska, 1989, Carlson et al.,, 1890). In contrast to the #-like cutrent, these are fairly short-ranged,
and have both iscscalar and isovector terms.

Some of the calculations reported in the literature have also included two-body current operatora due to the pry and
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wy mechanisms (which are, respectively, isoscalar and isovector), as well as {predominantly isovector) contributions
associated with the presence of A-isobar degrees of freedom. The former as well 23 the latter are purely transverse,
and therclore unconstrained by the interaction-that is, they are “model dependent” in the Riska classification scheme.
Again, the short range behavior of these currents and, in particular, the YNA and #NA transition couplingg, are
poorly known.

Isovector magnetic observables, such as the threshold electro-disintegration of the deuteron at backward an-
gles {Hockert et af, 1973) and the magnetic form factors of the trinucleons {Hadjimichael, Goulard, and Bernais,
1983), are dominated by the x-like two-body currents mentioned above in the momentum iransfer range 2.5-3.5
fm~". Contributions from the remaining two-body currents become significant only st higher momentum transfer Q@
{@ > 5 fm~1). Two-body contributions to isoscalar observables, such as the deuteron B(Q) structure function, only
ptovide a small correction to the impulse approximation (TA) predictions based on the single-nucleon convection and
spin-magnetization currents at low and moderate values of @ (below 5 fm="). At higher { isoscalar contributions due
to the momentum-dependent components of the two-nucleon interaction and the g~y coupling increase significantly.
However, it should be emphasized that the pry corrections become numerically very sensitive to the precise values
used for the cutoff parameters at the TNV and pV IV vertices.

While the main parts of the two-body currents are linked to the form of the nucleon-nucteon interaction through the
continuity equation, the most important two-body charge operators are model dependent, and should be considered
as relativistic corrections. Indeed, a consistent calculation of two-body charge effects in nuclei would require the
inclusion of relativistic effects in both the interaction models and nuclear wave funciions. Such a program is just at
its inception for systems with A>2. Of course, the fully relstivistic calculations of the deuteron form factors based on
quasipotential reductions of the Bethe-Salpeter equation of the type reported in Hummel and Tjon (1989}, Hummel
and Tjon (1990) and Van Orden, Devine, and Gross (1995} are immune from these inconsistencies.

There are nevertheless rather clear indications for the relevance of two-body charge operators from the fatlure of the
1A in predicting the charge form factors of the three- and four-nucleon systems (Hadjimichael, Goulard, and Bornais,
1983, Strueve et al., 1987, Schiavilla, Pandharipande, and Riska, 1990). The model commonly used includes the 7-,
p-, and w-meson exchange charge operators, as well as the pry and wry charge transition couplings, in addition to
the single-nucleon Darwin-Foldy and spin-orbit relativistic corrections. It should be emphasized, however, that for
Q<5 fm™! the contribution due to the m-exchange charge operator is typically at least an order of magnitude larger
than that of any of the remaining two-body mechanisms and one-body relativistic corrections,

The present section is divided into five subsections. The first one presents a a summary of the basic formalism
for discussing electro- (and photo-)induced transitions between discrete nuclear levels. No derivation of the refevant
formulas will be given, as these can be found in a number of authoritative review articles (deForest and Walecka,
1966, Donnelly and Sick, 1984}, The next three subsections deal, in turn, with the deuteron, the three- and four-
nucleon, and six-nueleon systems, while the last contains some concluding remarks, along with tables of the A=2-6
nuclet ground state moments.

A final note is in regard to the form-factor calculations presented below. The most comprehensive studies of
light nuclei form factors have been based on Argonne two-nucleon and Urbana three-nucleon interactions, and “model]
independent™ two-body charge and current operators constructed from the Argonne model (Schiavilla, Pandharipande,
and Riska, 1989, Schiavilla, Pandharipande, and Riska, 1990, Wiringa, 1991, Schiavilla and Viviani, 1996, Wiringa
and Schiavilla, 1996). We therefore take the results of these calculations as a “baseline” and discuss, in relation to
them, those obtained by other groups using different interaction and current models.

A. Elastic and Inelastic electron scattering from nuclei: a review

In the one-photon-exchange approximation the electron scattering cross section involving a transition from en initial
nuclear state |Ji) of spin J; and rest mass m; to a final nuclear state [Jy} of apin Jy, rest mass m, and recoiling
energy Ey can be expressed in the laboratory frame as (deForest and Walecka, 1966, Donnelly and Sick, 1984)

g% =dnoy fol lvFile) + "‘TFT(Q')] ) (61
where
_ f acosff2 2
ou = (2:.—;11129/2) : e
4
v = % , (63)
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a=11, 11, x = myr, a0d {ffla = fennNFxna, fenwafanwa for a=I1, 11, respectively. Here S and T are spin- and
isospin-transition operators, which convert the nucieon into a A-isobar. The matrix elements of their spherical
components Sy, Suas1 = F (S £15,) /v2 and 5 = S, are given by:

<3/234]8, 01285 =<1 1, 1/28[8/2 80> €5, {5 60)
H

where ex = F1(k +i§)/vZ. & = £, and similarly for T,. The S}} and SJ! ace tensor operators in which the Pauli
spin operators of particle i (or j), and particles i and j are replaced by cotresponding spin-transition operators.

The coupling constants fenas and fyaa are not well known. The static quark model predicts for them the values

2o f47=0.233 and f2, 5 /47=0.00324, while the Chew-Low theary gives f2,,, /4n=0.324 (Brown and Weise, 1975).
However, the observed A-decay width provides a value for 7B wafAm that is ahout 10 % larger than that obtained in
the Chew-Low theory {Sugawara and von Hippel, 1968},

There are, of course, additional contributions, arising from other processes, such as NA —+ AA and AA = AA
transitions, or due to exchanges of heavier mesons, such as the p-meson. In medels of interactions with explicit ¥
and A degrees of freedom, these contributions are constrained by fits to the NV elastic scattering data and deuteron
properties (Wiringa, Smith, and Ainsworth, 1984, Sauer, 1986}).

Once the NN, NA, and AA interactions have been determined, there still remains the problem of how to generate
isabar configurations in a many-nucleon system. Essentially, the methods fall into two categories: perturbation theory
and coupled channels.

In perturbation theory, one- and two-A components are generated via

1
M = — 2 2 7 INN= if - X
m—ma = [”('J)NN AN+ IJ(IJ)NN HA] ¥, (5 61)
1
P = Y ulijivnoan® :
2(m —ma) <3 vlijwn-nal . (662}

where the kinetic energy contributions in the denominatora of Eqs. (5.61)-(5.62) has been neglected (static A approx-
imation). This approximation has been often {in fact, almost exclusively) used in the literature to estimate the affect
of A degrees of freedom on electroweak observables {Riska, 1989). However, it produces NA and AA wave [unctions
which are oo large at short distance (Schiavilla ef ol, 1992).

The most reliable way of generating laobar admixtures in nuclei is through the coupled-channel method. Becanse
of its complexity, however, due to the large number of N-A channels involved, it has becn applied only to relatively
simple systems, 10 date the deuteron (van Faassen and Tjon, 1984, Leidemann and Arenhével, 1987, Dymarz et al.,
1990, Dymarz and Khanna, 1990, Dymarz and Khanna, 1990} and triton (Hajduk and Sauer, 1979, Hajduk, Saver,
and Stcueve, 1983, Picklesimer, Rice, and Brandenburg, 1991, Picklesimer, Rice and Brandenburg, 1992a, Pickles-
imer, Rice, and Brandenburg, 1992b, Picklesimer, Rice, and Brandenburg, 1992¢, Picklesimer, Rice, and Brandenburg,
1992d). It is reviewed in (Sauer, 1986) and in a series of articles by (Picklesimer, Rice, and Brandenburg, 1991, Pickles-
imer, Rice and Brandenbutg, 1092a, Picklesimer, Rice, and Brandenburg, 1992b, Picklesimer, Rice, and Brandenburg,
1992¢, Picklesimer, Rice, and Brandenburg, 1992d). A somewhat simpler approach, but one that has been used in
studies of A=3 and 4 nuclei electroweak transitions (Schiavilla et al., 1892, Viviani, Schiavilla, and Kievsky, 1996)
and magnetic form factors (Schiavilla and Viviani, 1996), consists of a generalization of the correlation operator tech-
nique (Kallio et ol., 1974, Schiavilla et al, 1992), which has proven very useful in the variational theory of light nuclei,
particularly in the context of VMC calculations. In such an approach, known as the transition-correlation-operator
{TCQ) method, the nuclear wave function is written as

Yrnia = [S [T+ UIE")] v, (5.63)

i<j

where § is the symmetrizer, and the transition operators U™ convert NIV pairs into NA and AA pairs.

In principle, the UZ® and € could be determined variationally by using a Hamiltonian containing an interaction,
such as the Argonne vay model, that includes both nucleon and A degrees of freedom. Variational calculations of
this type have not yet been attempted, however. Instead, in the studiea carried out so far, ¥ is taken from solutions
of a Hamiltonian with nucleons enty interactions, while the UI® is obtained from two-body bound and low-energy
scattering state solutions of the full N-A coupled-channel problem.

The W & A and A —+ A electromagnetic cutrents are given by:

WGV 4 A) = =5 Gonal@ea x i Tu (5.64)
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B8 A) =~ Gana (@) a x B (14020 . (5.65)

and the expression for j‘i”(q;A -+ N is obtained from that for jfl)('-'l;N — A) by replacing 5 and T with their
hermitian conjugates. Here & (@) is the Pauli operator for the A spin (isospin).
The electromagnetic form factors Gona({Q?) and G,a(@?) are parameterized as

GowalQ?) = Falia . (5.66)
1+ Q¥ ARa /1 + @/ ANa
GoaalQ?) = —— 21820 (5.67)

(1+Q*ALL)
In the static quark-model, the ¥ = A transition magnetic moment gy w4 s related to the nucleon isovector magnetic
moment by the relation pova = (3v/3/5)ply = 3.993 n.m.. This value is significantly larger than that obtained
in an analysis of N data in the A-resonance region pyna = 3 n.m. (Carlson, 1986). This analysis also gives
Ana =084 GeV/c and Axya 2=1.2 GeV/c, The A magnetic moment p,na i3 taken equal 1o 4.35 n.m., by averaging
the values obtained from a soft-photon analysls of pion-ptoton bremsstrahlung data near the A** resonance (Lin
and Lion, 1991}, and Axa=0.84 GeV. In principle, A-excitation can also occur via an electric quadrupole transition.
Its contribution, however, has been neglected, since the associated pion-photoproduction amplitude 15 found to be
experimentally small at resonance {Ericson and Weise, 1938). Also neglected is the A convection current.
Electromagnetic observables require the calculation of a matrix element, which can be schematically written as

(Praaglil¥yiad (5.68)
{Tnsa g ¥nea ) (Fnead¥head]’

where the initial and final state wave functions |Ex4a ) (2 =i or f) contain both N and A degrees of freedom. The
numerator in Eq. (5.68) can be expressed as

(Trvea lil¥nrad = (Fr1HN onlyibl) + A-termy | {5.69)

where J{ only) denotes all one- and two-body contributions ta j{q) which enly involve nucleon degrees of freedom,
ie. J(N only) = JAN = N)+ JU(NN = NN), while the A-terms include all possible N = A transitions and
A «+ A electromagnetic currents in the three nucleon system, as well as normalization corrections 1o the “pucleonic”
matrix elements. Of course, the latter also influence the nermalization of the full wave function ¥xpa.

The contributions involviog a single A have been included in a coupled-channel calculation of the A=3 magnetic form
factors {(Hajduk, Sauer, and Strueve, 1983, Strueve ei al., 1987}, Contributions with both one- and two-A admixtures
in the wave functions have alao heen studied with the T'CO method in the A=3 magnetic form factors (Schiavilla and
Viviani, 1996), and A=3 and 4 radiative and weak capture reactions at low energies (Schiavilla et o, 1992, Viviani,
Schiavilla, and Kievsky, 1996),

Perturbation theory estimates of the importance of A-isobar degrees of freedom in photonuclear observables typ-
ically include only the contributions from single & & A transitions, and also ignore the change in wave function
normalization. Thus, the two-body operator corresponding to this approximation is written as
A N}UNN-oAN.u + VAN NN

—ma m-ma

ini=

Japrsy =Jila; (@GN s A)+iaj

)2
= ic’%(a)e'“"' [4 Tig [!A(ﬂj Yo + galry)i, oy f‘-j)]

—(rxT; ) [fA(f'-'j)(U-' x o5) + galry)ei x )0y 'l"-j)]] xq+iaj, {5.70)
where
_ u""”(r) - “mr(r)
fabr) s — T — — . (5.71)
2
par) =320 (5.72)
m-—-ma

The preceding discussion shows that explicit inclusion of A-admixtures in the nuclear wave function influences the
predictions for electromagnetic observables in two ways: first, via direct electromagretic couplings, and second by
renormalization corrections, Typically, these effects lead to a substantial reduction of the predictions based on the
perturbative treatment. This aspect will be taken up sgain in Secs. VI and IX.
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C. Electromagnetic two-body charge operators

Several uncertainties arise when considering the two-body charge operator, in contrast to the two-body current
operator. While the main parts of the two-body current are linked to the form of the nucleon-nucteon interaction
through the continuity equation, the most important two-body charge operators are model dependent and may be
viewed aa relativistic correctlons. Until a systematic method for a simultaneocus non-relativistic reduction of both the
interaction and the electromagnetic cutrent operator is developed, the definite form of the two-body charge operators
remains uncertain, and one has to rely on perturbation theory.

Two-hody charge operators falt into two classes. The first includes those effective operators that represent non-
nucleonic degrees of freedom, such as nucleon-antinucleon pairs or nucleon-resonances, and which arise when those
degrees of freedom are eliminated from the state vector. To the second class belong those dynamical exchange charge
effects that would appear even in a description explicitly including non-nuclecnic excitations in the state vector. In a
description based ¢n meson exchange mechanisms these involve electromagnetic transition couplings between differcnt
mesons. The proper forms of the former operators depend on the method of eliminating the non-nucieonic degrees
of freedom, and therefore evaluating their matrix elements with the usual non-relativistic nuclear wave functions
represents only the first approximation to a systematic reduction (Friar, 1977). We shall firat consider the iwo-body
charge operators of this class, to which belongs the long range pion-exchange charge operator.

The two-body charge operator due to pion exchange is derived by considering the low energy limit of the relativistic
Born diagrams associated with the virtual pion photoproduction amplitude {Riska, 1984). When these are evaluated
with pseudovector pion-pucleon coupling, the following operator is obtained for diagram (a) of Fig. 16:

1

i
ZIFF@) + FLV(Q"')T,.(]E'" — tiser (k)
L | i 'k
+ 2’—;;’; FFE@) + B @, T T o S 4+ OB~ E) (5.73)

and a gimilar operator corresponding to the time ordering in dlagram (b) of Fig. 18. Here q is the momentum transfer
to the nucleus, ky the momentum transferred by the pion to nucleon j, and B, and E are the energies of the initial
and intermediate states, respectively. In Eq. {5.73) v »{k;) is the one-pion-exchange potential (OPEFP) in momentum
space

Vign(k} = 3o (B)r 0 ke -k (5.74)

The first termn in Eq. (5.73) contains the intermediate state Green’s functlon and OPEP. It Is therefore contained in the
bound state matrix elements of the single-nucleon charge operator {i.e., in the impulse approximation). The second
term represents, however, a part of the exchange charge operator. There is an additional contribution due to the
energy dependence of the pion propagator (Friar, 1977, Coon and Friar, 1986, Schiavilla, 1996). To these operators,
one must add that associated with the direct coupling of the photon to the exchanged pion (Friar, 1977, Coon and
Friar, 1986, Schiavilla, 1996). However, this latter operator as well as that due to retardation effects in the pion
propagator give rise to non-local isovector contributions which are expected to provide only small corrections to the
leading local term, and have typically been neglected in studies of charge exchange effecta in nuclel, For example, in
the few-nucleon systems these operatora would only contribute to the isovector combination of the ?He and ?H charge
form factors, which is anyway a factor of three smaller than the isoscalar. Thus the two-body charge operator due to
pion exchange is simply taken as

i (kisky) = o | [FE(@ 7y 4 FY (@) waths)orc- ary -y
+HFH @M1y + FY (@) valki)og koo af | (5.75)

where k; +k; = q.

The effect of the pion exchange charge operator is enhanced by the similar operator that is associated with p-
meson exchange. The p-meson exchange charge operator can be derived in the same way as the pion exchange charge
operator by considering the non-relativistic reduction of the virtual p-meson photoproduction amplitudes in two-bedy
diagrams of the form in Fig. 16, and eliminating the gingular term that represents an iteration of the wave function.
The form of the resulting operator is (Riska, 1984)

ar

i ofliskg) = %[{Ff @i 7y + Y (@reg] valksos x a) - (o x )
+{ES @iy + Y (Qm wathes x @) - (o x k) (5.76)

where again non-local terms and/or terms proportional to powers of 1/(1 + x,) have been neglected. Due to its short
range, the contribution associated with this operator is typically an order of magnitude smaller than that due to pion
exchange.

The x- and p-meson exchange charge operators contain coupling constants and bare meson propagators, which
are usually modified by od hoe vertex form factors in order to take into account the finite extent of the nucleons.
Heowever, this madel-dependence can be etiminated by replacing v, and v, with the vps and i defined in Eqs. (5.41)-
(5.42). These replacements are the ones required for the construction of a two-body current operator that satisfies
the continuity equation. It is reascnable to apply them to the two-body charge operators as the generalized meson
propagators conatructed in this way take into account the nucleon structure in a way consistent with the nucleon-
nucleon interaction. An additional reason for using the present construction is that it has been shown to lead
to predictions for the magnetic form factors of the trinucleons that are in good agreement with the experimental
data {Schiavilla, Pandharipande, and Riska, 1989, Schiavilla and Viviani, 1996).

The T'=1 PS- and V-exchanges provide the largest contribution to the charge operator, and contain no adjustable
parameters. The other contributions which have been considered, namely those associated with the w-exchange, and
pry and wwy mechanisms, are relatively smaller, and we use experimental coupling constants and vertex form factors
to calenlate them. The w-meson exchange charge eperator is taken as {(Gari and Hyuga, 1976)

_ g (o x q) - (o x Ky)
pli-”(ki' k!) = -Bif%:’& [FF(QQ) +F1V(Q’)‘r,_‘] k’ T mf;

+[FEQ) + FY (Q@Y)m 4] %—ﬁ] . {517

where small terma proportional to the tensor coupling k. (x,,=-0.12) have been neglected.

All the exchange charge operators above belang to the first class of exchange aperators, and appeat as nonsingular
seagull terms in the non-relativistic reduction of the virtual photoproduction amplitudes for the exchanged mesons.
The exchange charge operators that correspond to the pry and wny couplings shown in Fig. 14 belong to the (second)
class of genuine dynamical exchange operators, those with transverse four-vector currents. The gy and wry exchange
charge operators correaponding ta the diagrams in Fig. 14 have the form

x 1 -k ky) - (ks x k
Pﬂl‘r(khk:l) = _f NNQ’NN(_-F K’)Garr(qz) Ti* 71[0[ l(ﬂj x ’) (ks j)

2y mom (87 + m2){k] + m2)
_ oy kitei x ) - (ki % ky)
(FFrmd) +mi) |’ ©78)
1y o eNNOUNN 2[Ry X Ky) - (e x Ky
Punriki ky) = --w-—zm'mum G..,,»,(Q )[ (k? +m2)(k; +ma) i
_ oy -kylor x k) - {ky x ky)
5 + w20 ) 1‘,.1} , {5.79)

The derivation of the pry and wmy exchange charge operators ts straightforward, given the transition current
matrix elements < 7% (k)}j.{0}{V (p,€) >, with V = p,w. More recently it has been shown that the isoscalar pmy
exchange charge operator can also be derived from the anomalous baryon current. that carries the baryon charge in
the topological soliton {or Skyrme) model {Nyman and Riska, 1986, Nyman and Riska, 1987, Wakamatsu and Weise,
1988). This derivation is independent of the detailed form of the effective chiral Lagrangian in the sotiton model and
links the pmy exchange current operator to the chiral anomaly.

In the w, pry and wry exchange charge operators the meson-nucleon vertices have been taken to be point-like.
The finite extent of nucleons and mesons is taken into account by modifying the free meson propagators in the above
expressions by introducing high momentum cut-off factors of the conventional monopole form. In the pry and wmry
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g Q
= 3L
vr = tan 5+ I {6.4)
and the recoil factor frec is given by
—¢icosf i
f“c=1+ﬂ:]+2_€_gm’g_ (6.5)
E my 2

The electron kinematical variables are defined in Fig. 17. The last expression for f,.. in Eq. (6.5) Is obtained by
neglecting terms of order {wfm;)? and higher, where

W Q2 + I‘TI:! - m;"

m 2m? . &6)

The nuclear structure information is contained in the longitudinal and transverse form factors denoted, respectively,
by Fo{g) and Fr{g). By fixing g and w and varying 6 it is possible to separate Fy (g} from Fr{g) in a procedure known
as a Rosenbluth separation. Alternatively, by working at #=180° one ensures that only the transverse forn factor
contributes to the cross section and 80 may be isolated (in this case, we observe that the combination oa tan?8/2 =+
(0/2e.)® a8 § — 180°, and is therefore finite in this limit).

The longitudinal and transverse form factors are expressed in terms of reduced matrix elements of Coulomb, electric,
and magnetic multipole operators as (deForest and Walecka, 1966, Donnelly and Sick, 1984)

R0 = 3 gl(lﬂlﬁ"“'(q)llfa)l’ : 67
Frio) = 575 g [I(JfIlT.F'(q)IIJ.-)I’ + sufllT,”"(q)||J.)|=] : (6.8)

where we have defined
1530 =[x iatea) Yo 0ot 6.9)
Tiule) = ‘;- f dx {¥ x jafgr) Y35, (%)] - §(x) , (6.10)
1 = [ dxisten) Y (-0 1

with

i (%) = ME (LML, 1T MYYppe, (%) 8, 6.12)

G = 8., and &4y = F(E. ié,)/\fi. Here p{x) and j(x) are the nuclear charge and current density operators,
and j,(gz) are spherical Bessel functions. The reduced matrix elements in Eqs. {6.7)-(6.8) are related to the matrix
elements of the Fourier transforms p{q) and j(q}, introduced in Sec. V, via {deForest and Walecka, 1966):

o0 J 3 y
Gpretaia M) =4x S 3 ¥ BT sy (€13
Jed M=—J

oa J
I Mylesta) - SDUM) = VIR Y. 3 PVITTIDL, (00,0 Dt M)
J=1 M=-7 2Jr+1
[A (AT ST} + (AT @I {6.14)

where A = +1, é,(q) are the spherical components of the virtual photon tranaverse polarization vertor, and the
'D,{, , are standard rotation matrices. The expressions above correspond to the virtual photon being absorbed at an
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angle §, with respect to the quantization axis of the nuclear spins. The more familiar expressions for the multipole
expansion of the charge and current matrix elements are recovered by taking q along the spin quantization axis, so
that Y2 (&) —+ Saro v2F + 1]V and DY, (08,0 -+ dara-

1t is useful to consider the parity and time-reversal properties of the multipole operators (deForest and Walecka,
1066). Thus the scalar and polar vector character of, respectively, the charge and current density operators under
parity wansformations fmply that TFeH! and Z;,E,’lf have parity {—1}7, while 7535 hay parity (~1)"+%. The resulting
selection rules are mry = (-1 (miwy = (—1)#1) for Coulomb and electric {magnetic) transitions, where r; and =y
are the parities of the initial and final states.

The Hermitian character of the operatore p{x) and j(x) az well as their transformation properties under time-
reversal, p(x} = p(x) and j(x) -+ =j{x), can be shown to lead to the following relations:

AITS DI = (-0 ' ENTE @) | (6.15)

AITPMS @ = (1) /=2 QTP ()l - (6.16)

These relations along with the parity selection rules stated above reguire, in particular, that elastic transitions, for
which Jy=J;, can only be induced by even-J Coulomb and odd-J magnetic multipole aperators.

Finally, in the low-g or long-wavelength Limit, the multipole operators defined above can be shown to behave
as (deForest and Walecka, 1966, Donnelly and Sick, 1984)

gy o f2d 1 q’
TR = S 7 o 9 - {6.17)
4x .
Qru = 1/m[i‘kzj Yom(R) o(x) . (6.18)
a 1 far+1 fi+1 o
T;&M‘(G) =-r T'(Q.;;T)l' BIA ¢ {6.19)

w2 yf gy [ b5 9 Yat) (6.20)

and
1 f7+1 ¢! .
THhlg) = T TE}\‘_—D!!/der Yom (X} V - j(x)

_ s fTximp-m ¢
=V V7 4 (2J+1)!!Qm, (6.21)

where in the last equation use has been made of the continuity equation V - j(x} = —i[#, p(x}], and of the fact that
the initial and final states are eigenstates of the Hamiltonian. In particular, for elastic scattering {Jr=J,) the reduced

matrix elements of TS (qg) and Tﬂ:‘(q) are proportional to the ground-state cherge and magnetic moments, defined

ag

) Qi = (Jo Mi=J]Q sl i Mi =i} 4 (6.22}
s = 2m (i, Mi=Kilpsoldi, Mi= J0) (6.23)

where the magnetic momenta s are in terms of nuclear magnetons gy . It is then easily found that:

AETRY 3 S A
dx (Ld, SO 2T+ 10

M 1 fZJ +1 fr+1l LT o
LTSy &~ — = - 1 g LA
LHIT 2R i 4 J (L JOREY (27 + D 2m {6.25)

where J satisfies the condition 0 < J < 2J;, and is even in Eq. {6.24), while it is odd in Eq. {6.25). In particular, it
is found that

(6.24)

(JATFI =
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oAlr g A (IFARS z, {6.26)

and for Jy > 1

out o LR DEEHLRL D),
(AHTIZE QNI == 5"_\/51?\/ TBi=1) *Qres (621

where 2 Q ;=2 i8 the usual ground-state electric quadrupole moment, while for J, > 1/2

-~ _L (J{ + ])(2-’.‘ +1) pE
- \/ﬁ_ﬂ J‘ 2mFJ’=l ¥

where p -y i the usual ground-state magnetic dipole moment.

(AT (@I (6.28)

B. The deuteron
1. Devteron electromagnelie form factors
The deuteron elastic 1% — t* electromagnetic transition is induced by TEo4!, TFou! and TM™¥ form factors in the
25 Y io E3 1

notation introduced above. However, it is customary to discuss the electromagnetic structure of the deuteron ground
state in terms of charge, quadrupole and magnetic form factots related to TE™, TFo and T'"F via

JE25m(@) = (14 96e(@) (629
JEreu0) = 2201 4 mGo@) (6.30)

VEru@) = ZATOwa) (631)

where p = §?/{2m4)?, mq being the deuteron mass. These form factors are normalized as

Ge(0)=1, (6.32)
Gg(0) =miQa . (6.33)
G0 = Tle (6.34)

where 4 and pg are the quadrupole and magnetic moments of the deuteron. The elastic electron scattering cross
section, from an unpolarized deuteron is then expressed in terms of the A(Q) and B(Q) structure functions as

82 e ane £72]A(0) + BE@y o0 m] . (8.35)

with
A(Q) = GH@) + 2064 (@) + S163(Q) . (6:36)
BQ) = 5001+ mGH(Q) - (6.37)

A Rosenbluth separation of the elaatic e-d cross section wiil not allow a separation of the charge and quadrupole form
[actors. To achieve this goal, electror-scattering experiments from tensor polarized deateron targets have been carried
aut in recent years (Schulze ef al., 1984, Dmitriev et al.,, 1985, Gilman et al., 1990, The et al,, 1991}, thus leading to
an experimental determination of the tensor polarization observable Tan(Q), given by

_ﬁz(a: +2) + /2

Tn(Q) = 1+ 2 +y) (6.38)

45

where the variables £ and y are defined as

_2 Gol@
*=3"60(Q) 1639)
_2 [GM(Q)
¥= 3 Ge@

and the auxiliary function f{9) is 1/2 + (1 + #) tan® §/2.

In Figs. 18 and 19 the calculated charge and quadrupole form factors (Wiringa, Stoks, and Schiaville, 1995, Plessas,
Christian, and Wagenbrunn, 1995) are compared with data, after The e al. (1991}. The calculations are based on the
Argonne v;3 (Wiringa, Stoks, and Schiavilla, 1995), Nijmegen (Stoks et ol 1994), and Bonn-B (Machleidt, Holinde,
and Elster, 1987) interactions and the Hohler parameterization (Héhler et of., 1976) of the nucleon electromagnetic
form factors. The curves labeled TOT in the figures include the contributions due to the two-body charge cperators
as well as to the Darwin-Foldy and spin-orbit relativistic corrections to the single-nucleon charge operator. The effect
of these contributions on G (@) is significant, and bring the zerc predicted in LA towards lower values of momentum
transfers. However, in Gg(Q) their effect is relatively unimportant at moderate values of momentum transfers
(below 5 fm~'}. The main two-body correction is that due to the x-like exchange charge operator. Including the
cortections due to vector meson exchanges, the pry mechanism, and the Darwin-Foldy and spin-orbit terms amounts
to only a very small additional contribution. The results for the charge and quadrupole form factors are qualitatively
similar to those obtained with simple meson-exchange charge operators and deuteron wave functions corresponding
to alternative potential models, for example {Gari and Hyuga, 1976). The important role of the two-body charge
operators in bringing the zero in the charge form factor to a lower value of momentum transfer is similar to that in
the case of the bound three- and four-nucleon systems, where this effect is required for agreement with the measured
charge form factors (see below).

The results for the structure function B{Q)} (Wiringa, Stoks, and Schiavilla, 1995, Plessas, Christian, and Wagen-
brunn, 1995), which is related to G (Q) via Bq. (6.37), are compared In Fig. 20 with data (S8imon, Schmitt, and
Walther, 1981, Cramer et al., 1985, Auffret et al., 19852, Arnold et ol., 1987}, Since the deuteron is a T=D0 state,
the long-range n-like two-body current, being isovector, does not contribute. Thus B(Q) is sensitive to the isoscalar
model-independent two-body currents associated with the momentum dependence of the interaction as well as the
moadel-dependent pxy term. The B(Q) calculated with the Argonne vy interaction (Wiringa, Stoks, and Schiavilla,
1995) is found to be in reasonable agreement with data in the Q?-range 0-45 fm~%, and has a zero at around 60 fm—?
{in IA the zero is shifted to % about 43 fm>?). However, the Bonn-B and Nijmegen-based calculations substantially
overestimate the data (Plessas, Christian, and Wagenbrunn, 1995).

In Wiringa, Stoks, and Schiavilla {1995), the leading two-body contributions are from the spin-orbit and quadratic
spin-orbit currents, and interfere destructively. The present slight overestimate of the data in the Q?-range 0-40
fm~? indicates that the degree of cancellation between these contributions is not quite enough. OF course, this is an
interaction-dependent statement. Tt depends, in particular, on the detailed behavior of the (short-range) spin-orbit
and quadratic-spin-orbit components of the interaction. In the case of the older Argonne vy, model, the associated
currents led 1o an excellent fit of the B(Q) structure function in the same momentum transfer cange (Schiavilla and
Riska, 1991). Note that the contributions from these currents are ignored in the Plessas, Christian, and Wagenbrunn
{1995) calculation.

The contribution from the pry current is very sensitive to the values used for the cutoff masses A, and A, in the
monopole form factors at the x NN and pN N vertices. Indeed, the large values used for these cutoffs (A, > 1.2 GeV/c
and A, > 2 GeV/c) lead to the substantial over-prediction of the data in the Bonn-B and Nijmegen-based calculations,
a3 can be seen from Fig. 20. However, in the Argonne-based calculation these values are taken as A, = 0.75 GeV/e
and A, = 1.25 GeV/e, making the pay contribution rather small over the momentum transfer range considered
here. It is also important to point out that there are corrections to the leading cperator proportional to x,—the
large p-meson tensor coupling to the nucleon (x,=6.6)-neglected in the calculations discussed above. The associated
contributions interfere destructively with those from the leading operator, reducing the latter significantly (Hummel
and Tjon, 1989, Schiavilla and Riska, 1891). Thus the choice of softer cutoff masses may be justified as simulating
these higher order cotrections,

The calculated A{(Q) structure function and T5e()) tensor polarization {Wiringa, Stoks, and Schiavilla, 1995,
Plessas, Christian, and Wagenbrunn, 1995) are compared in Figs. 21 and 22 with data (for 4(Q) experimental data
are from Arnold et ol. (1975}, Simon, Schimitt, and Walther (1981), Cramer et al. {1985), Platchkov et al. (1990); for
Ta0{@) they are from Schulze et af. {1984), Dmitriev et al. (1985), Gilman et ol. (1990), The et al. (1991)). These
ohservables are mostly sensitive o the charge and quadrupole form factors. In both of them the mlike two-body
charge operator plays & major role (Wiringa, Stoks, and Schiavilla, 1995, Plessas, Christian, and Wagenbrunn, 1993).
However, while the associated contribution leads to a prediction for A(Q) in excellent agreement with data over the

2
] 1. (6.40)
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whole range of momentum transfer, it produces a significant discrepancy between theory and experiment in the case
of the tensor polarization. Neglecting she magnetic contribution to Tae(Q) gives

iz + 2)
1+ 212

To(Q) = -v2 . (6.41)

and at Qg, where G¢(Q) vanishes, Tag{Qq) = —1/v/Z. Thus the relative shift between the calculated and experimentat
Tho(t2a) inplies a corresponding shift between the charge form factor zeros, as is evident from Fig. 18.

In Figs. 20-22 we also show the results obtained in a covariant, gauge-Invariant calculation of the A(Q), B{Q),
and T2(Q) cbservables {Van Orden, Devine, and Gross, 1995), based on the Gross equation (Gross, 1969, Gross,
1974, Gross, 1982) snd a one-boson-exchange (OBE) interaction model {Gross, van QOrden and Holinde, 1992). The
Gross equation is a quasipotential equation in which the relative energy is constrained by restricting one of the
rucleons to its poaitive energy mass-shell. The OBE kernel contains x, n, p, and w mesons, as well as the fictitious
scalar mesons o and oy of isoscalar and isovector character, respectively. It is determined by fitting the Nijmegen np
phase-shifts and the deuteron binding energy, and gives for the SAID database (Arndt et al., 1992) a x* per datum
of = 2.5 in the energy range 0-350 MeV, which is somewhat higher than that obtained for recent interaction models
(x*/datum == 1). The electromagnetic current consists of nucleon one-body and pmy two-body terms. Off-shell form
factors are included in the one-body currents, while the form [actor for the (transverse] pm-y transition current is
taken from a quark-model calculation.

Significant differences exist between the relativistic and non-relativistic calculations of B{Q) and T30(@). To clarify
the situation, a number of comments are in order. First, the two-body charge operators associated with -, p- and
w-megon exchange, which arise only in the non-relativistic reduction of the photo-production amplitudes for these
virtual mesons, are included in the relativiatic IA calculation (not shown in the figures) to all orders. Second, boost
effects, such ns those assaciated with the Lorentz contraction of the wave function and Wigner rotation of the nucleons’
aping (Friar, 1975, Friar, 1977), are typically not included in the non-relativistic calculations. It has been shown that
the tensor polatization can be expressed in LA and neglecting small magnetic contributions as (Forest et al, 1995)

FE a1c0(@) — F& mer(Q)
Tul@ = -V2pr o IR @

where Fg,pr{Q) Is the Fourier transform of the density for a deuteron in state M(=0,+1). Thus the minimun in
Tan(Q) is related to the vanishing of the M =1 form factor. The deuteron in a M=1 state has the ghape of a dumbhell
oriented along the z-axis, while in a M =0 state it has the shape of a torus lying in the zy-plane (Forest et al., 1996).
Naively, one therefore expects that the Lorentz contraction would affect more the M =1 than the M =0 density, and
this fact would produce a shift in the minimum position for Tee{Q). However, a rough estimate indicates that such a
shift is of the order of a couple per cent for a deuteron traveling along the r-axis with a velocity @ /4m (in the Breit
frame) with Q = 2 fm™'. A more realistic estimate of these boost corrections in a relativistic framework also found
them to be rather small in the momentum transfer range covered by experiment {Hummel and Tjon, 1990).

Therefore, the substantial differences between the non-relativistic and relativistic predictions are more likely due
o dynamical differences. For example, Van Orden, Devine, and Gross (1995) have shown that the B{Q) structure
function, in particular its zero position, is very sensitive to the (very) amall P-wave components due to NV admix-
tures in the deuteron wave function, which are clearly of relativistic origin. However, it i3 alac important to point
out that different quasipotential schemes, using similar OBE interaction models, nevertheless produce significantly
different predictions for the deuteron observables (Hummel and Tjon, 1959, Van Orden, Devine, and Gross, 1993). A
satisfactory resolution of these issues is still lacking.

(642)

2. The backward electro-diss ion of the d at threshold

The inclusive electron scattering cross section is written, in the one-photon-exchange approximation, as {deForest
and Walecka, 1966):

d'a
T = om [vLBula) +vrRelaw)] | , (6.42)
where the longitudinal and transverse response functions are given by
. 1 .
Raldw) = 57— 3 U0t AM P + Es - Ey) (6.44)
i+ 1 w7
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where O, (q) is either the charge operator (o = L), or the transverse components of the current operator (@ =T).
For a transition to a discrete final state |f) of angular momentum Jy the multipole expansion of Oa(q) leads to
FEqs. {6.7)-(6.8).

In the *H{e, &')pn reaction the final state is in the continuum, and its wave function i3 written as

la;p SMs TMz) = e5™ 4L dyy ruy, ) (6.45)
where r=ry—3 and R= (r;+r3)/2 are the relative and center of mass coordinates. The incoming-wave scattering-state

wave function of the two nucleons having relative momentum p and spin-isospin states SMg, TMr I3 approximated
as {Renard, Tran Thanh Van, and Le Bellac, 1965, Fabian and Arenhdvel, 1979, Schiavilla and Riska, 1991)

(-) 1 Lipr SaT -ipr] 5 T , 4% L
Vg amsTarr 1) = ePT — (11 e Xy Xper + 5 itésrizi s, )]
,, L Do+ 45 5 T arlett,

JMy LL*
1 (. .
[;u(p},(rw. JST) - bp.p JL(pr)]J?ﬂ;’g,xI;,. , (6.46)
where
Sesr =1 - (~1)t*+5tT | (6.47)
Z{, B = E(LML SM\Mum, (B) - (6.48)

The 6rs7 factor ensures the antisymmetry of the wave function, while the Clebach-Gordan coeflicients restrict the
sum over L and L'. The radial functions uiTl are obtained by solving the Schrddinger equation in the JST channel,
and behave asymptotically as

MG ISTY 3 3 [k o) + SED W Gm) (6.49)

where §{5T is the S-matrix {n the JST channet and the Hankel functions are defined as hg'z’(x)=j1,(z) ting{x),
7 and ng being the spherical Besse! and Neumann functions, respectively. In the absence of interactions,
wlil{rip, JSTYfr — 8pp jiipr), and ¥()(r} teduces to an antisymmetric plane wave. Interactions effects are
retained in all partial waves with J < Jna.. For the threshold electro-disintegration it is found that these interaction
eflects are negligible for Juax >2 (Fabian and Arenhbvel, 1979, Schiavilla and Riska, 1991}

The responde functions are expressed as

Ralgwd= 3 AT(qu), (6.50)
5.T=0.1

where the contributions from the individual spin-isospin states are

dp 1
AST(g) = 5 py [ s M@ P M M)k ma = \f ) (6.51)

with AST defined as
AST{q,pi My, Ms) = {q; p, SMsT, My = 0}0a(Q)ld: S =1, M)} (6.52)

Here m,, is the internal energy of the recoiling pair of nucleons, and the factor 1/2 in Eq. (6.51) is included to avoid
double counting.

‘The main component of the cross section for backward electro-disintegration of the deuteron near threshold is the
magnetic dipole transition between the bound deuteron and the T=1 18, scattering state (Hockert et al,, 1973). At
large values of momentum transfer this transition rate is dominated by the isovector (model-independent) #-like and
p-like two-body currents (Buchenann, Leidemann, and Arenhével, 1985, Schiavilla and Riska, 199t).

The calculated cross sections for backward electro-disintegration are compared in Fig. 23 with the experimentat
values given in Cox, Wynchank, and Collie (1965), Bernheim et of. (1981}, Auffret e af. (1985b), Arnold et af. (1990).
The data have been averaged over the intervals (-3 MeV and 0-10 MeV of the recoiling pn pair center of mass energy
for the Saclay {@ < 1 GeV/c, Bernheim et ol (1981), Auffret et ol. (1985b)) and SLAC (& > 1 GeV/c, Amold et
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ol. {1990)} kinematical regions, respectively. The theoretical results have instead been calculated at center of mass
energies of 1.5 MeV and 5 MeV for the Saclay and SLAC kinematics, respectively. However, it has been shown
that the effect of the width of the energy interval above threshold (of the final state} over which the cross section
values are averaged is small (Schiavilia and Riska, 1991}, In the figure the results obtained in TA and, in addition,
with inclusion of the two-body current contributions (Leid Schmitt, and Arenbvel, 1990, Schiavitla, 1996) are
shown separately for the Paris (Cottingham et al., 1973), Bonn QC (Machleidt, 1989), and Argonne 1,3 (Wiringa,
Stoks, and Schiavilla, 1995} interactions. The dipole parameterlzation is used for the electromagnetic form factors of
the nucleon (including the Galster factor for the electric form factor of the neutron, Galster et al {1971)}).

While the low momentum transfer data are in reasonable agreement with theory, those at high @ (> 1 GeV/c} are
substantlally overestimated by the calculations based on the Paris (Leidemann, Schmitt, and Arenhivel, 1990) and
Argonne vis (Schiavilla, 1996) models. A number of remarks are in order, however. Firat, in the calculations shown
in Fig-23, the isovector Sachs form factor G%(Q?) is used in the expressions for the leading x-like and p-like two-body
currents. In fact, if FV{Q?) were to be used, the data would be substantially overestimated by theory in the Q*-range
525 fm~%, as shown for the case of the Paris interaction.

Second, the better overall fit to the data provided by the Bonn QC interaction is a consequence of the fact that in
IA the cancellation between the §- and D-state contributions to the pn 'Sy transition occurs at a somewhat higher
Q-value than for the Paris and Argonne v;s models {Leidemann, Schmitt, and Arenhével, 1990). This is presumably
due to the weaker Bonn QC tensor force.

Third, the predicted cross section values are sensitive lo the parameterization used for the nucleon electromagnetic
form factors, in particular Gg(Q"). This sensitivity can be traced back to the unknown behavior of the neutron
electrie form factor at large Q. Indeed, as shown in Fig. 24, the difference between the results cbtained with the
dipole and Gari and Kriimpelmann {1986) parameterizations is as large as that between the present predictions and
the data, slthough use of the GK form factors would increase the observed discrepancy by more than a factor of two.
In any case, the unceriainty in the bebavior of the nucleon electromagnetic form factors (far larger than that in the
experimental data) prevents definitive quantitative predictions being made at > 5 fm™1.

C. The A=3 and 4 systems
1. The magnetic form factors of > M and SHe

Because of a destructive interference in the matrix elements for the magnetic dipole transition between the S-
and D-state components of the wave functions, the impulse approximation predictions for the *He and *H magnetic
form factors (MFF) have distinct minima at around 2.5 fm~! and 3.5 fm~?, respectively, in disagreement with the
experimental data {Collard et ol, 1965, McCarthy, Sick, and Whitney, 1977, Arnold et al., 1978, Szalata et al,
1977, Cavedon et al., 1982, Dunn et of,, 1983, Ottermann et al., 1983, Juster et al, 1985, Beck et aZ, 1987, Amroun
et al., 1994). The situation is closely related to that of the backward cross section for electro-disintegration of the
deut]eran, which is in fact dominated by two-body current contributions for values of momentum transfer above 2.5
fm='.

The calculated MFF of *H and *He (Strueve et al, 1987, Schiavilla and Viviani, 1996} are compared with the
experimental data in Figs. 25 and 26. The ground.state wave functions have been calculated either with the correlated
hyperspherical harmonics {CHH) method using the AV18/1X model and including one- and two-A admixtures with the
transition-correlation-operator technique (Schiavilla et al, 1992), or with the coupled-channel Faddeev method vsing
a Paris intevaction modified to Include explicit A-isobaz excitations via #- and p-meson exchange (phase-equivalent to
the original Paris model) (Hajduk, Sauver, and Strueve, 1983). The AV18/IX >He and *H wave functions give binding
energies and charge radit, which reproduce the experimental values {Viviani, Schiavilla, and Kievsky, 1996). However,
the Paris-based calculations underbind the trinucleons by about 800 keV (Hajduk, Sauer, and Strueve, 1983). This
underbinding is a consequence of the pariial cancellation between the the attractive contribution from the three-hody
interaction mediated by intermediate A-isobars, and the repulsive one due to dispersive effects.

There are also differences in the =-like {and p-like} two-body currents which give the dominant contribution to the
A=3 MFF. While these are constructed from the two-nucleon interaction in the case of the AV18/TX calculation,
they have the form derived from simple meson exchange models in the Paris-based caltulation, and are not therefore
strictly consistent with the interaction, In particular, the usual ad hoc treatment of the short-range part implies that
the continuity equation is satisfied only approximately. Even more importantly, though, the Paris-based calculations
use, in the leading isovector currents, the form factor £} (Q7) rather than G%(Q?), which substantially increases their
contribution.

In the figures, the curves labeled Apy are obtained by including the A components perturbatively in the ground
states, as is commonly done In the literature.

While the measured *H MFF i3 in excellent agreement with theory over a wide range of momentum transfers,
there is a significant discrepancy between the measured and calculated values of the *He MFF in the region of the
diffraction miniroum, particularly for the case of the AV18/IX caiculation. This discrepancy persisis even when
different parameterizations of the nutleon electromagnetic form factors are used for the single nucleon current and
the model-independent two-body currents.

It is useful to define the quantities:

FE¥1Q) = § [u(*He) Fu(QHe) + wCH) Fu(@7W)] (6.53)

If the 3H and ?He ground states were pure T=1/2 states, then the £ and F); linesr combinations of the three-
nucleon MFF would only be influenced by, respectively, the isoscalar {5) and isovector (V) parts of the current
operator. However, small isospin admixtures with T > 1/2, induced by the electromagnetic interaction as well as
charge symmetry {C5B) and charge-independence breaking (CIB) terms present in the Argonne vis interaction, are
included in the present wave functions. As a consequence, isoscalar (isovector) current aperators give small (otherwise
vanishing) contributions to the Fiy {F}y} MFF (Schiavilla and Viviani, 1996).

It is instructive to consider the contributions of individual components of the twe-nucleon currents to the form
factors. In the region of the difiraction minimum the w-like current gives the dominant isovector contribution to
FY{Q), while the p-like contributions are significantly smaller {nearly an order of magnitude). The remaining terms
are smaller still, the next most important isovector contributions are those associated with A and SO currents {the
latter constructed from the spin-orbit components of the two-nucleon interaction). It is significant that calculations
of perturbative and non-perturbative treatment of the A-isobar components in the wave function give significantly
different results. In general, perturbation theory leads to a significant overprediction of the importance of A degrees
of freedom in nuclei. This is particularly so in reactions as delicate as the radiative captures on *H and *He at very
low energy to be discussed belaw.

Among the two-body contributions to F§ () the most important is that due to the currents from the spin-orbit
intetactions, and the next most important is that from the quadratic spin-orbit interactions. These two contributions
have opposite sign, as has been found for the deuteron B{(Q) structure function (Witinga, Smith, and Ainsworth,
1984). Although they have isovector character (as do the two-body currents associated with A-excitation obtained in
perturbation theory and the wxv mechanism), their contribution does not vanish since, as already pointed out, the
present “He and *H CHH wave functions are not pure T' = 1/2 states.

2. The charge form factors of YH, *He, and *He

In Figs. 27-29 the calculated *H, *He, *He charge form factors (CFF) (Strueve et ol., 1987, Musolf, Schiavilla, and
Donuelly, 1994, Schiavilla and Viviani, 1996} are compared with the experimental data (Coltard e? ol 1965, Fresch
et al., 1968, McCarthy, Sick, and Whitney, 1977, Arnold et al., 1978, Szalata et al., 1977, Cavedon et al,, 1982, Dunn
et al, 1983, Ottermann et al, 1985, Juster et ol., 1985, Beck et of., 1987, Amroun et al., 1994). The three-body wave
functions used in the matrix elerments of the charge operators are those discussed in the previous subsection. However,
the four-mrleon wave function is that obtained in a YMC calculation corresponding to the older AVE4/VIII model,
which wiclerestimates the *He binding encrgy by 3 % (Wiringa, 1991).

The calculated CFF for the 4=3 and 4 nuclei are in excellent agrecment with the experimental data. The im-
portant role of the two-body charge operator contributions above ~ 3 fm™" i3 evident, consistently with what was
found in earlier studies. The structure of these operators is the same in the AV18/IX and Paris-based calculations.
However, in the former case their short-range behavior is determined from the Argonne w1y according to the Riska
prescription {Schiavilla, Pandharipande, and Riska, 1990, Schiavilla and Viviani, 1996), while in the latter case this
behavior is taken into account by phenomenclogical form factors (Strueve et ol., 1987},

The theoretical uncertainty cansed by the lack of precise knowledge of the nucleon electromagnetic form factors
i3 significant for *H, only at the highest values of momentum transfer, as Fig. 30 makes clear. The effect of this
uncertainty is even smaller in $He.

Again, we can consider contributions of the different components of the nuclear charge operator to the ¢combinations

FEV(Q) = § [2Fe(@ He) £ Fo(@ W) - (654

A3 already mentioned in the previous subsection, the F§ (F¥) CFF will also include small contributions from isovector
(isoscalar) operators, propottional to admixtures in the wave functions with T > 1/2. The results reveal that at low
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and moderate values of momentum transfer the «-like charge operator is by far the most important two-body term.
This term is more than a factor of 10 larger than the next largest contribution, the plike term, in F3, while it i
roughly a factor of five larger in F¥.

Finally, the question of how the three-body interaction influences the CFF has been studied by Friar, Gibson,
and Payne {1987), by calculating the trinucleon CFT from Faddeev wave functions obtained for several different
combinations of two- and three-body interactions. These studies have conclusively shown that the effect of the
three-nucleon interaction on the CFF is small.

D. The A=8 systems

In this section we discuss the 5Li ground-state longitudinal and transverse form factors as well as transition form
factors to the excited states with spin, parity and isospin assignments (J*:T) given by (3*;0) and (0%+;1). The
calculations are based on VMC wave functions obtained from the AV18/IX Hamiltonian model {Wiringa, Stoks,
and Schiavilla, 1995, Pudliner et al, 1995). The calculated binding energics for the ground state, and {3*:0} and
{0%;1) low-lying excited states are given in Table VII. The ground state is underbound by nearly 4 McV comnpared
1o experiment, and is only 0.4 MeV more bound than the corresponding ‘He calculation (27.8 MeV). This is above
the threshold for breakup of °Li into & o and deuteren. In principle, it should be possible to lower the variational
energy at least to that threshold, but the wave function would be too spread cut. In the variational calcylations
reported by Wiringa and Schiavilla (1996) the parameter scarch was constrained to keep the rms radius close to the
experimental value of 2.43 fm~!. The {exact) GFMC results for this Hamiltonian, also listed in Tables VII and VIII,
indicate the ground-state binding energy and radius are in agreement with the experimental value, while the {(3%;0)
and (0¥;1) experimental binding energies are underestimated by about 3%.

It should be emphasized that previous calculations of the elastic and inelastic six-body form factors have relied
on relatively sitnple shell-model {Donnelly and Walecka, 1973, Vergados, 1974, Bergstrom, 1975) or n-d (Bergstrom,
1979} cluster wave functions. These calculations have typically failed to provide a satisfactory, quantitative description
of all measured form factors. More phenomenologically successful models have been based on aN N (Kukulin et al,
1890, Kukulin et of., 1925, Lehman and Parke, 1983a, [.ehman and Parke, 1983b) clusterization, or on extensions
of the basic a-d model with apherical clusters, in which the deuteron is allowed to deform, or stretch, along a line
connecting the clusters centers of mass {Bergstrom, Kowalski, and Neuhausen, 1982). However, while these models
do provide useful insights into the structure of the A=6 nuctei, their connection with the underlying two- {and three-)
nucleon dynamics is rather tenuous.

The calculated elastic form factors Fi{Q) and Fr(Q) {Wiringa and Schiavilla, 1996) are compared with the ex-
perimental values (Li ¢t al., 1971, Lapikas, 1978, Bergatrom, Kowalski, and Neuhausen, 1982} in Figs. 31 and 32.
Since the ®Li ground state is {1%;0), both J=0 and J=2 Coulomb multipoles contribute to Fy, while only the J=1
magnetic multipole operator contributes to Fr. In these figures the results obtained in both IA (empty aquares} and
with inclusion of two-body corrections in the charge and current operators (filled squares) are displayed, along with
the statistical errors associated with the Monte Carlo integrations. The F form factor is in excellenl agreement with
experiment. In particular, the two-body contributions {predominantly due to the n-like charge operator) shift the
minimum to lower values of momentum transfer @, consistently with what has been found for the charge form factors
of the hydrogen and helium isotopes. The T5°" multipole contribution is much smalter than the TGC"“‘ one, and at
law ) is proportional to the ground state quadrupcle moment. The theoretical prediction for the latter is significantly
larger (though with a 50% statistical error) in absolute value than the measured value, but it does have the correct
{negative) sign. It is interesting to point out that cluster models of the ®Li ground state give large, positive values
for the quadrupole moment, presumably due to the lack of D-waves in the a-particle, and the consequent absence of
destructive interference between these and tle D-wave in the a-d relative motion,

The experimental transverse form factor is not well reproduced by theory for Q-values larger than 1 fm~"'. Since
the 91§ ground state has T=0, only isoscatar two-body currents contribute to Fr()}. The associated contributions
are small at low €, but increase with Q, becoming significant for @ > 3 fm=!. However, the data cover the Q-range
0-2.8 fm~". The observed discrepancy between theory and experiment might be due to deficiencies in the VMC wave
function. Indeed, it will be interesting to see whether this discrepancy is resolved by using the more accurate GFMC
wave functions. We also note that the calculated magnetic moment is about 4 % larger than the experimental value,
which is close to that of a free deuteron, see Table XI.

The measured loagitudinal inelastic form factor to the (3%,0) state (Eigenbrod, 1969 Bergstrom and Tomusiak,
1976, Bergstrom, Deutschmann, and Neuhausen, 1979) is found to be in excellent agreement with the VMC predic-
tions (Wiringa and Schiavilla, 1996), as can be seen in Fig. 33 . We note that this transition is induced by J=2
and J=4 Coulomb multipole operators, and thus the associated form factor F7{Q) behaves as Q' at low Q. Also
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good agreement between the experimental (Bergstrom, 1975, Bergstrom, Deutschmann, and Neuhausen, 1979) and
VMC calculated (Wiringa and Schiavilla, 1996) values is found for the transverse inelastic form factor to the state
(0%;1), Fig. 34 . The latter is an isovector magnetic dipole transition and, as expected, is significantly influenced,
even at low values of @, by two-body contributions, predeminantly by those due to the n-like current operator. This
is particularly evident when considering the radiative widths of the (0*;1) and (3*;0) states. This latter quantity is
generally given by (Ring and Schuck, 1950)

BT +1) are

Cnlddy= J[(2J+1)l!]2 £

BOMJ = 4) . (6.55)

12741

i 1!(-’!”01“-’ I (6.56)

B(EJJ, = Jp) =

BMJ Ji—+ Jp) = I(-f.rll.#ull-.")l2 (6.57)

4 'ZJ' +1
where E, is the energy of the emitted photon, Qsar and pypye are the operators defined in Eqs. (6.18)-(6.20}, respec-
tively. Note that the B{(EJ) and B(}J) are, respectively, in units of e*-fm?*? and p%-fm®/~2, and that for electric
multipole transitions use of the identity in Eq. (6.21) (Siegert’s theorem) has been made, which is valid only if the
initial and final states are truly eigenstates of the Hamiltonian. Such is not the case for the VMC wave functions
uged here. The predicted radiative widths of the (310} and (0%;1) states are, respectively, 5.8 eV and 6.7 10~* eV
in IA, and 7.5 eV and 6.7 107" eV including two-bedy contributions (Wiringa and Schiavilla, 1996). These results
should be compared with the corresponding experimental values (8.19+0.17) eV and (4.40£0.34) 109 eV. Thus the
isovector Lwo-body current contributlons jncrease the y-width of the (0*;1) state by 30 %, bringing it in much better
agreement with experiment. The large overprediction of the y-width of the (3+;0) state can presumably be traced
back to the underbinding of the ground 1+ and excited 3* states, which makes the corresponding wave functions too
sptead out.

E. Some concluding remarks

In this section the electromagnetic structure of the A=2-6 nyclei has been discussed within a realistic approach
to nuclear dynamics, based on nucleons interacting via two- and three-body potentials and consistent two-body
cutrents. The only phenomenclogical input, beyond that provided by the underlying interactions, conzists of the
electromagnetie form factors of the nucleon, which are taken from experiment. Within this framework, a variety of
electronuclear observables, including ground-siate moments (listed in Table XI) as well as elastic and inelastic form
factors, are reasonably well described by theory at a quantitative level. The only remaining discrepancies are those
between the measured and calculated deuteron tensur polarizations at intermediate values of momentum transfers
(@ = 3.5-4.5 fm 1), and between the experimental and calculated positions of the first zero in the He magnetic form
factor. Mowever, additional data are needed to confirm these discrepancies with theory. It should alse be pointed
out that reproducing simultaneously the observed deuteron A(Q), B(Q} and T3{@Q) has proven, to date, difficult
not only in the essentially non-relativistic approach discussed above (Schiavilla and Riska, 1991, Plessas, Ghristian,
and Wagenbrunn, 1995), but also in fully relativistic approaches based on quasipotential reductions of the Bethe-
Salpeter equation (Humme! and Tjon, 1989, Van Orden, Devine, and Gross, 1995), and an light-front Hamiltonian
dynamics (Chung ef ol., 1988). B

The special role played by the two-body charge and current operators associated with m-exchange should be empha-
sized. Their contributions dominate both iscscalar and isovector charge form factors of the A=2-4 nuclei, as well as
their isovector magnetic structure at intermediate values of momentum transfers @ ~3.5-4.5 fm™*. In fact, a descrip-
tion in which the degrees of freedom associated with virtual pion production were to be ignored, would dramatically
fail 2o reprodice the experimental date. That only the m-exchange currents required by gauge invariance (and chiral
symmetry) should have (so far) clear experimental evidence is perhaps not surprising. This fact has been referred to
in the past as the “chiral filter” paradigm (Rho and Brown, 1981).

Finally, the remarkable success of the present picture based on (essentially) non-relativistic dynamics, even at large
values of momentum tranafer, should be stressed. It suggests, in particular, that the present madel for the two-body
charge operators is better than one & priori should expect. These operators, such as the m.exchange charge operator,
fall into the class of relativistic corrections. Thus evaluating their matrix elements with the usual non-relativistic
wave functions represents only the first approximation to a systematic reduction. A consistent treatment of these
relativistic eflects would require, for example, inclugion of the boost corrections on the nuclear wave functions (Friar,
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1977), Yet, the excetlent agreement between the calculated and measured charge form factors of the A=3-6 nuctei
suggests that these corrections may be negligible in the Q-range explored so far.
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VII. CORRELATIONS IN NUCLEI

The two outstanding features of the nucleon-nucleon (W N) interaction vy; are its short-range repulsion and long-
range tensor character. These induce, among the nucleons in a nucteus, strong spatial-spin-isospin correlations, which
influence the structure of the ground- and excited-state wave functions. Several nuclear properties reflect these features
of the underlying v;;. For example, the two-nucleon density distributions in states with pair spin 5=1 and isospin
T=0 are very small at small internucleon separations, and exhibit strong anisotropies depending on the spin projection
S, (Forest et al., 1996). Nucleon momentum distributions N(p) {Zabolitzky and Ey, 1978, Ciofi degli Atti, Pace,
and Salmé, 1984, Fantoni and Pandharipande, 1984, Schiavilla, Pandharipande, and Wiringa, 1986, Pieper, Wiringa
and Pandharipande, 1992) and, more generally, apectral functions S(p, E) (Meier-Hajduk et of., 1983, Maorita and
Suzuki, 1991, Ramos, Polls, and Dickhoff, 1989, Benhar, Fabracini, and Fantoni, 1991} have high momentum- and, for
S(p, E), energy-components extending over a wide range of p and £ values, which are produced by short-range and
tensor correlations. Finally, these correlations also affect the distribution of strength in response functions R{q,w),
which characterize the response of the nuclens to a spin-isospln disturbance injecting momentum q and energy w in
the system (Czyz and Goutfried, 1953, Fabrocini and Fantoni, 1439).

The present section is organized as follows. We first review, in subsections A and B, how the short-range repulsive
and tensor components of the NN interaction produce strong spatial anisotropies in the two-nucleon distribution
functions, and their dependence on the palr spin-isospin states. The experimental evidence for these short-range
structures is discussed for the deuteron and for nuclei with A > 2 in the next two subsections, C and D respectively.
The longitudinal data from (e,¢') inclusive scatiering off nuclei have provided, at least in light nuclel, a rather clear
indication for the presence of proton-proton cotrelations from Coulomb sum studies, as summarized in subsection E.
Finally, the last two subsections, F and G, present the current status of momentum distribution and spectral function
calculations in nuclei. These quantities, by their very definition, are eminently sensitive to correlation effects, and are
in principle experimentally accessible via {e.e'p) scatiering from nuclei.

A. T,5=0,1 two-nucleon density distributions in nuclei

The two-nucleon density distributions in T', §Mg two-nucleon siates are defined as (Forest ¢t al., 1996)

J
My = grs 3 UM Y Py(n TS Ma)IM)) 7.1
My=—J i<y
where |J M) denates the ground state of the nucleus with total angular momentum J and projection My, and
Py(r, T, 5, Ms) = §(r — ryy) PT IS Ms:1 5> < SMs;ifl (1.2)
Pl =(1~7 -1/, (1.3)
PIl=(3+7-75)/4, (7.4)

projects out the spetific two-nucleon state with r;y = v, ~ ry =r. The p,‘{ % is normalized such that

T [t = gA- (7.5

T.5.Ms

i.e., the number of pairs in the nucleus. It is a function of r, 8, independent of the azimuthal angle $. In fact, because
of the avernge over the total angular momentum projections of the nucleus, these two-nucleon densities can simply
be expanded as:

oMEr = 3 A¥S (rPLlcosd) | (7.6)
L£=02

where the functions A.J‘!g (7}, which are explicitly given by
1 IL+1

M,
A5l = 550 o

Ede‘I‘LJ(R) Z F]%fﬁ(' = rii) Py £y - 2) PydT. 5, Ms) ¥pr, (R) {7.7)
My wi W

)4
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vanish for L > 2, and

Mg=0 My=x1

ArStt=o = ArSiie=0 + (7.8)
= M=kl

AMEEl = -2ATE ., (7.9

Note that in Eq. (7.7) R represents the coordinates ry,...,r4, and P;({T, 5, M) is the spin-isospin part of the
prajection operator introduced in Eq. (7.2}.

The two-nucleon densities defined above obviously will reflect features of the underlying NV interaction. Of
particular relevance are those in the T',.5=0,1 channel. The momentum-independent part of the NN interaction in
this channel, which Is dominated by pion-exchange, is given by

ot = 0§, {r) + 051 (1S . {7.10)

The tensor operator 5;; leads to a strong dependence of the vf'* expectation values upon the relative spatial-spin
configurations of the two nucleons:

(Ms=0lt83{(r)iMs=0) = v§ ,(r) = 4vf 1 {r)P3(cos d) , (7.1
{Ms= & 1|ubtt(r)|Ms= & 1} = v {r) + 20}, (r)Pa(cosd) , (7.12)

where the angle 9 is relative to the spin quantization axis-ie., the z-axis. These expectation values are shown in
Fig. 35 for the combinations Ms=0 and #=0 (particles along the z-axis)} or /2 (particles in the xy-plane), and
Ms = +1 and #=mn/2 (Forest et ol., 1996). Note that by symmetry the expectation value in the state Ms=21 and
8=0 is the same as that in the state Ms=0 and @==/2. From Fig. 35 it is seen that the interaction is very repulsive
for r « 0.5 [m regardless of the M5 value. However, for distances =~ 1 fm, it is very attractive when the two nucleans,
in state Mg=0), are confined in the zy-plane, and very repulsive when they are along the z-axis; in contrast, when the
two nucleons are in state Ms=1, the interaction is repulsive (but not as repulsive as for Ms=0) when the two nucleons
are in the zy-plane, and very attractive when they are located elong the z-axds. The energy difference between the
two configurations Mg=>0 and #=0 and n/2 is found to be very large, a few hundreds of MeV, in all realistic NNV
interactions. As a result, two-nucleon densities in nuclei are strongly anisotropic.

The deuteron is a particularly simple case, since for it the two-nucleon density o3 (r;d} is simply related to the
one-nucleon density

1 1
phrd) =3 x ol (F =5/2) (7.13)

with the normalization
[d’r' =2 . (7.14)

This is because the relative distance between the two nucleons is twice the distance between each nucleon and the
center of mass. Obvicualy, this property is only valid for & two-body system. Note that the spin-dependent two-body
density on the Jeft (Ms = M) is an average over projections M in the deuteron, while the polarized one-body density
on the right {M4 = M) has been summed over spins.

The deuteron densities p:"‘ (r"} are displayed in Fig. 36 for a varlety of NNV interactions (and corresponding deuteron
wave functions) and the spin-spatia) configutations discussed above (Forest et al., 1996). They are essentially model
independent, and show that the ratio pS(r',8=0)/0%(r*,8=n/2) is very small, indicating that the deuteron has near
maximal tensor correlations for distances less than 2 [m.,

The deuteron density distributions in My=0 and My=1 are plotted in Figs. 37 and 38 along with their contour
projections on the ry-plane {Forest ¢t al., 1996). The maximum value of py is Jarge (0.35 fm~?}. The maxima of pJ
form a ring with a diameter of about 1 fm, denoted by 4, in the zy-plane, while the p3' has two equal maxima on the
z-axis separated by a distance d. Equidensity surfaces pj:"‘ {t'} = pa arc obtained by rotating the distributions shown
in Figs. 37 and 38 about the z-axis, and are shown in Fig. 39 for p3=0.24 and 0.08 fm~? (Forest ¢t al., 1996); all four
sections are drawn to the same scale. The peculiar toroidal and dumbbell-like shapes result from the combined action
of the repulsive core and tensor eomponents of vy (r). In face, the toroidal shape is more compact, in Lhe sense that
it persists down to smaller values of ps or, equivalently, to larger values of r. Note that at very small densities (less
than 005 fim~2) the p3(r') and pF!(r'}) surfaces collapse into disconnected inner and outer parts which, particularly
for My=0, are not close to being spherical in shape. Of course, in the abasence of the tensor interaction the deuteron
D-state would vanish, and the equidensity surfaces would consist of concentric spheres [or any value of the density.
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The pg’.,‘ in #9He, %7Li, and "0 have been tecently caleulated (Forest et af., 1996) using variational Monte Carlo
{VMC} wave functions, obtained from a realistic Hamiltonian with the Argonne vy two-nucleon (Wiringa, Stoks, and
Schiavilla, 1995) and Urbana model IX three-nucleon {Pudliner et al., 1995) interactions. The more accurate Faddeev
or correlated-hyperspherical-harmonics wave functions for A=3 and Green's function Monte Carlo wave functions for
A > 3 are not expected to produce po“'_'l’ significantly different from VMC. The calculated pﬂf,‘ {A} have been found

to have essentially the same shape as the Pt';? (d} for internucleon separations Jess than 2 fm_ This is seen in Fig. 40,
where the p}$(r; A) densities, divided by the factor Rag,

_ Max [p51{r; 4)]
Max [pf (i d)]

are compared with the pi'F(rid). Again, the smallness of the ratio p§,(r.# = 0)/p,{r.8 = 7/2) indicates that
tensor correlations have near maximal strength in all the nuclei considered. In 0 the pf,'.‘l‘ become approximately
independent of Ms only for r 2 3 fm.

That the neutron-proton relative wave function in a nucleus is similar, at small separations, to that in the deuteron
had been conjectured by Levinger and Bethe (1950). Thus Fig. 40 provides a microscopic justification for that
conjecture, which has become known since then as the quasi-deutercn model. As a consequence of this proportionality
hetween the p{f{ (r; A) and p;,"l’ (r; d), the expectation value of any short-ranged T, 5=0,1 operator i3 expected to scale,
in & A-nucleon system, with R 4q4. This is illustrated in Table XII, where the values for R4 are listed along with the
ratios of the calculated expectation values of the one-pion eéxchange part of the Argonne vy potential, the observed
low-energy (118 MeV for “He (Altcholz et of, 1994) and *He (Mateos, 1995), and 115 MeV for 80 (Mack et al.,
1092)) plon absorption cross sections, and the average value of the observed photon absorption cross sections in the
range E,=80 to 120 MeV (data for *He from Fetisov, Gorbunov, and Varfolomeev (1965) and O’Fallon, Koester, and
Smith {1972); for *He from Arkatov et af. (1980); for "Li and '5Q from Ahrens et ol. {1985) and Jenkins, Debevec,
Harty {1994}). All these processes ave dominated by the T, 5=0,1 paira. However, while these ratios do suggeat the
validity of the quasi-deuteron approximation, their semi-quantitative character should not be ignored. For example,
the (v,) In nuciel has a relatively small contribution from T, 5 # 0,1 states, absent in the deuteron, which makes
{ve}af{ua)a slightly larger than Raq. The pion and photon absorption processes in a nucleus are significantly more
complicated than the quasi-deuteron model would suggest, despite the overall agreement between the measured cross
section ratios and the predicted Raz. In particular, initial- and final-state interaction effects as well three-body and,
more generalty, many-body mechanisms, which are neglected in the quasi-deuteron approximation, are known to
influence the measured absorption cross sections in a A-nucleon system at a quantitative level {Weyer, 1950).

Raq (7.15)

B. T, 8 #0,1 two-nucleon dennity distributions in nuclei

It is interesting to study the two-nucleon density distributions in states with pair spin-isospin TS=11, 00, and
10 (Forest et al., 1996). They are shown for ‘He, ®Li, and "0 in Figs. 41-43, where all curves have been normalized
to have the same peak height as for '*0.

The T.5=1,1 interaction has a tensor component of opposite sign with respect to that of the T, $§=0,1 interaction.
As a consequence, the Mg=x+1 (=0} density distributions are largest when the two nuclecns are in the zy-plane {along
the z.axis), namely the situation is the reverse of that illustrated In Fig. 40 for T, §=0,1. However, Fig. 41 shows that
the T, 5=1,1 densities are strongly A-dependent, in particular their anisotropy decreases as the number of nucleons
increases. -

This strong A-dependence is also a feature of the T, 5=20,0 two-nucleon dengitics, as scen in Fig. 42. In contrast,
the T, 5=1,0 density distributions, shown in Fig. 43, do diaplay, for separation distances less than 2 fm, very similar
shapes. This is not surprising, since the T, 5=1.0 interaction is attractive enough to produce a virtual bound state,
which manifests itself as a pole on the second energy sheet of the *Sg- channel T-matrix.

It is also interesting to compare the total number of paira in T, 5 states predicted by the present fully correlated
wave functions with those obtained from simple independent-particle (IP) wave functions {Forest et al., 1996). The
total number of T, 5 pairs, defined as

Nis=3 2r f PHe(r 8: A)ridrdcosd | {7.16)
Ms

are listed in Table XIII. Note that since both the correlated and IP wave functions are eigenstates of total isospin Ty
the loflowing relations have to be satisfied:
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Nfp+ N = % [ A2 +24-4T4(Ta+1)] . (7.17)
N+ N = % {347 — 6A+4Ta(Ta +1)] . (7.18)
However, if the total spin
. .
Sa= E 50'-' ' {719}

were to commute with the Hamiltonian, there would be similar relations,
1
Nio+ Nfo= o[ A7 +24-454(54 +1)], (7.20)
N+ Ny = % [347 — 64+ 454(52 + 1)), {7.21)

for the total numbet of pairs with spin 0 and 1. This is the casc for the IP wave functions which are indeed eigenstates
of 84 (the IP 2H, *He, *He, ®Li, 7Li and *0 wave functions have, respectively, S4=1,4.0,1,}, and 0). However,
tensor corretations in the realistic wave functions produce admixtures of states with larger S4. These correlations
reduce the N{fo and increase the N,‘fl by the same amount since thelr sum must be conserved. In fact, this conversion
of T'=1 pairs from spin 0 to spin 1 leads to a reduction in the binding energy of nuclei (Forest et al., 1996), since
the T,S$=1,0 interaction is far more attractive than the T, 5=1,1 interaction. As an example, in *He the T, §=1,0
interaction gives ~14.2 MeV per pair, while the T, 5=1,1 interaction gives only 0.8 MeV per pair. Thus the conversion
of 0.47 T=1 pairs from 5=0 to 5=1 state raises the energy of *He by ~ 6.3 MeV. The mechanism discussed here-it
is important to realize-is an intrinsically many-body effect. Indeed, a tensor correlation between nucleons i and j
will not change the total spin § of this pair; however, by flipping the individual spins of i and j, can converl pairs ik
and/or jf from §=0 to §=1.

C., Experimental evidence for the short-range structure in the deuteron

The best experimental evidence, so far, for the presence of the torus- and dumbbell-like short-range structures in
the ground state of nuclei comes from deuteron elastic form factor measurements.

The measured charge and quadrupole form factors of the deuteron (Arnold ef al., 1975, Simon, Schmitt, and Walther,
1981, Cramer et al., 1985, Schulze et al, 1984, Dmitriev et ol., 1985, Gilman et ol., 1990, Platchkov ef al., 1990, The
et al., 1991) are related, in impulse approximation, to the Fourier transforms of the one-hody densities [Forest et al.,
1998)

Fom(g) = % f pat(r el d¥e (7.22)

In a naive model, in which the My = 1{~1) density is represented by the sum of two §-functions at z'=%d/2, the zeros
of Fe.am,=1(g} would occur at gd==,3n,---. The cancellation between the contributions from the two peaks persists
even when these have a finite width. Thus, experiment.ﬂlAI; locating the position of the zeros provides an approximate
determination of the distance between the maxima of p}'#=*!, This distance coincides with the diameter of the ring
of maximum density of pi“=®. Similarly, the zeros of Fo,m,«o{g) provide an estimate for the thickness ¢ of torus
(at half maximum density, ¢ is predicted to be about 0.9 fm by realistic NNV interactions). This is most easily seen
by considering the Fourier transform of a disk of thickness ¢ located in a plane perpendicular to the momentum
transfer q.

If a small magnetic contribution to the deutercn tensor polarization is neglected, then this chaervable can be simply
expressed as (Forest et of,, 1996)

~_ F?:.o('?) - Fé.:(?) '
Tool) = —v2 L IR, {(7.23)

The minima (maxima) of Tag{g) occur when Fo ar,=1(g) (Fo,m,=0(g)) vanishes. These minima and maxima correspond
to those g values for which the recoiling deuteron is in state M4=0 and Ms=21, respectively. The first minimum has
been measured to be at ¢ ~3.5 fm~! (Dmitriev et al., 1985, Gilman ef al., 1996, The et of, 1991) in agreement with
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the value d = 1 fm predicted by realistic potentials. The first maximum of Tag 18 yet to be observed: it will provide a
measure of the torus thickness. OF course, relativistic corrections and contributions from two-body charge operators
will modify, at the 10 % level for moderate ¢ values {less than 5 fm~!), the analysis outlined here. Nevertheless, the
short-range structures present in the deuteron dominate the g-behavior of Tzo.

The analysis described above can be extended to the deuteron magnetic form factor, This observable is the Fourier
transform of a transition density, since the photon changes the spin projection of the deuteron along g by £1. This
transition density is in fact dominated by the toroidal structure. In particular, as shown in Forest et ol (1996},
the zero of the B-structure function, which experimentally occurs at about g=7 fm ', provides an estimate for the
thickness of the torus, ¢ = 0.85 fm.

Because of these short-range structures, the pucieon momentum distribution in the deutéron depends strongly on
the My-state. It may be experimentally accessible from cross-section asymmetry measurements in double coincidence
experiments of the type die, e'pn (Forest et al., 1996) and d{e, &'F) (Schiavilla, 1997), However, experiments of this
type have not yet been performed. It is important to stress the complementarity of these exclusive experiments to
the elastic fortn factor measurements. The former ones should allow us to ascertsin to what extent these peculiar
short-range structures are really due to nueleonic degrees of freedom, as it has been implicitly assumed in the analysis
presented here,

D. Short-range structure in 4 > 2 nuclel

Besides two-nucleon densities, short-range and tensor correlations strongly influence two-cluster distribution func-
tions, such dff in *fle, dd'in *He, and od in 5Li. The two-cluster overlap functions are simply defined as {Forest et al,
1996)

Agy(Ma, My, My Tas) = (ATy ps, ¥b, My, ras|[¥0s,} {7.24)
= 3 {LMp, SMglIM){JaMa, Js Mi|SMs) Re (7o) Yot (Fap)
LML SMs

where rap is the relative coordinate between the centers of mass of the two clusters, and A is an anti-symmetrization
operator for the two cluster state. The Ry (rqs) radial functions are obtained from

Rilra) = Z (JaMa, J:My|SMs) (LM, SMs|TM )

MMM My
[ RUAT e, B RN Y, o) T, R0 (725)

where R, represents the coordinates of particles in cluster a(k).

The 45, dd and dor averlap functions in, respectively, JHe, *He and 9Li have recently been calculated with Monte
Carle methoda using realistic wave functions (Schiavilla, Pandharipande, and Wiringa, 1986, Foreat et al., 1996).
Angular momentum and parity selection rules restrict the sum over L in Eq. (7.24) to L=0 and 2. Incidentally,
the radial functions Ry{r.s} provide information on the asymptotic properties of the ovetlap functions. These can
be experimentally determined, although indirectly, from distorted-wave-Born-approximation (DWBA) analyses of
transfer reactions (Eiré and Santos, 1990). Two such properties are the Dy parameter,

ab _f Rz(r..a)r:bdrag
D8 = T Fatrairhdra (7:26)

and the asymptotic D/S ratio n. = C2*/C3*, where Cy and C; are the asymptotic normalization constants of Ra(r)
and Rz(r} respectively:

Rufras) = lim =iCPRoliae ran)- {727}

Here hy is the spherical Hankel function of first kind and ogp i the wave number associated with the separation
energy of the nucleus into clusters a and b. Theoretical estimates for D$* and 7, are compared with the values
extracted from experiment (Sen and Knutson, 1982, Karp et al., 1984) in Table XIV. 1t should be emphasized that
the theoretical estimates obtained from variational wave functions may not be very accurate, as these wave functions
minimize the energy, to which long-range configurations contribute very Little.
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Going back to the shorl-range structure, it is interesting to study the two-cluster densities defined as
oo MM (20} = | Aoy (Mo, My, May Tl . (7.28)

They exhibit spin-dependent spatial anisotropies which are easily understood in terms of the toroidal or dumbbell
structure of the polarized deuteron. To illustrate these features, the dd densities in "He are shown in Fig. 44 for
two different spatia) configurations of the deuterons-along the spin quantization axis (the "z-axis”} and in the plane
perpendicular to it (the “zy-plane™} (Forest et al, 1996). Then, the dd cluster density ia largest when the two My=0
deuterons are positioned one on top of the other-namely, the two tori share a common axis-and is smallest when the
twa My=0 deuterons lie cne next to the other—that is, the iwo tori are both in the xy-plane. A similar analysis can
be made when the two deuterons are, respectively, in the states My=1 and M¢=-1-namely, the dumbbell-like shapes.

Similar features are shared by the di (da) cluster densities in 3He (*Li): the density is enhanced in the direction
corresponding to the most efficient or compact placement of the deuteron relative to the remaining cluster, and
reduced in those directions that would lead to very extended structures {Forest et al., 1996).

These structures are expected to produce cross section asymmetries in experiments such as {e.e'@)b. In PWIA
the cross section for this Iatter process is in fact proportional to the momentum distribution | Aas (Ma, My, My, PIF
obtained from the Fourier transform of the overlap function Agp{M,., My, M, ra) (Jacob and Maris, 1966, Jacob and
Maris, 1973, Frullani and Mougey, 1984). These momentum distributions have been calculated in Forest et al. (1996)
for the djF, dd and ad overlaps, and depend strongly on the relative orientation between the cluster-spin projections and
the moementum p {the missing momentum). Of course, final-state-interaction effects and two-body corrections to the
charge and cutrent operators will complicate the analysis of these experimenta (Schiavilla, 1990, Glockle et ol,, 1994),
in particular the extraction, from the measured asymmetries, of the |A.(Ma, My, M, p}* momentum distributions.
However, the experimental confirmation, as of yet lacking, of the short-range structures discussed above would be
most interesting-

E. Evidence for short-ranga correlations from inclusive (e,¢') longitudinal data

Perhaps, the clearest experimental evidence for the presence of short-range cotrelations in the ground-state wave
function, at least in light nuclei, is from inclusive (e, &’} Jongitudinal data. It has long been known that the total
integrated strength of the longitudinal response function Ry (g.w) messured in inclusive electron scattering (the so-
called Coulomb sum rule 5:{g))

Sulpr=s [ do Sp(qw) , Selew) = RlgoMIGElad? | (7.29)
¥4 2

Is related to the Fourier transform of the proton-proton distribution function {Drell and Schwartz, 1958, McVoy and
Van Hove, 1962). In Eq. (7.29), Gg, is the proton electric form factor, and w,; is the energy of the recoiling A-nucleon
system with Z protons (the lower integration limit excludes the elastic electron-nuclens contribution). The S1{¢) can
be expressed as
1 1
5144) = 7 <0} (Qpe{@I0> - Z] <Olpc (0> [*
=1+ ppelq) - ZIFelg)l . (7.30)

where [0> is the ground state of the nucleus, pz,(q) is the nuclear charge operator, Fi(g) is the longiludinal form
factor (divided by G p(q.wa)) normalized as £1(g = 0) = 1, and a longitudinal-longitudinal distribution function
(LLDF} has been defined as

pusle) = 5 [ G <Ot eltabnuta) o> -1 . (1)

If relativistic corrections and two-hody contributions to the nuclear charge operator are.neglected, then pg(q) (divided
by the electric proton form factor} is simply given by

pr{a)= Y €1(l+na)f2 (7.32)
i=1,4
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and the resulting LLDF can be written as

peeig) =fdl'1dl'z Jolgley —ral) prefry, ) (1.33)
with
1
prelrm) = = Y <0l8(rs — r){r: — £} {1+ 7)1+ 750> (7.34)
i)
jdrl drepeo{n,n)=2-1 . {7.35)

Note that, within this approximation and in the limit ¢ — 0, S1(¢) =+ 1-namely, in the large momentum transfer
limit, the longitudinal cross section is due to the incoherent contributions from the Z protons. In this case, the
LLDF gives the probabiiity of finding two protons at positions r, and rz (regardless of their spin-projection states),
Such a quantity is, therefore, sensitive to the short-range correlations induced by the repulsive core of the NNV
interaction {Schiavilla et al., 1987), Naively, one would expect that for non-interacting nucleons

pLLane = (Z — 1} polri) peirs) | (7.36)

1
pulr) = — <06(e —pg)( + 1 0> (7.31)
2Z
fal A
Hlowever, the expression above ignores the statistical correlations due to the Pauli exclusion principle obeyed by the
nucleons as well as the “minimal” correlations induced by the conservation of the center of maxs position. In light
tntclel, the first are negligible, while the second are important only as ow momentarn transfer (Schiavilla ef al, 1987).
The corresponding “uncorrelated” Coulomb sum rule is given by

Spuncle) =1 - |Folg)® , {1.38)

and therefore only the difference between Sy, (¢} and Si unc(g} {or between pp (@) and prr, uac(g)) provides a measure
of the strength of the correlations.

Drirect comparison between the calculated Coulomb sum rule and the experimental data i3 not possible, since 5¢(g)
includes contributions from both space-like (w < g) and time-like (w > ¢) regions. In practice, Sz (g} can be measured
up L0 SOME Wex < by inclusive electron scattering. The residual integral from wmax to 0o is then obtained from

estimates of Br(q,w > wiay) that satisfy energy-weighted sum rules W}'",(q).
n 1 =
Wit = 3 [ oo Sete) . (7.39)

calculated theoretically {Schiavilla, Fabrocini, and Pandharipande, 1987, Schiavilla, Pandharipande, and Fabrocini,
1989). These can simply be expressed as expectation values of commutators of the charge operator with the Hamil-
tonian. For example, the n = 1 sum rule is givea by

Wil = 2 < ol[phta). [t ou(@]]l0 > ~ ZwalFrlo)" (7.40)
2
= L4 o <olfebia) for + petal]lo > - Guaifilal (r41)

where v; and Vj are the two- and three-body potentials. The charge exchange part of the & N inzeraction, particularly
OPEP, leads 10 a strong enhancement of the energy-weighted sum rule with respect to that obtained in the limit of
non-interacting nucleons {the Fermi gas limit}-that is, g /2m.

In light nuclei reasonable agreement between theory and experiment is obtained for the Coulomb sum rule (Schi-
avilta, Pandharipande, and Fabrocini, 1989), as iltustrated in Fig. 45 (°H data from Dytman et ol {1938); *H data
from Dow et al. {1988); *He data from Marchand et al. (1985) and Dow et al. {1988); *He data from von Reden et al.
{1990}}. The open dots in this figure labeled S ., show the integral of the experimental data up to wmax, the filled
dots show the complete integral with the theoretically extrapotated Re(f. o > wmex). The dashed lines show values
for the S unc{g) in *He and *He obtained from Eq. {7.38) neglecting the correlations between the protons. Their

6



effect i3 rather small. Note that in ?H and ?H the S (g) is, in the approximation given by Eq. (7.32), exactly given
by the St unc(g), since there is only a single proton.

Of course, the nuclear charge operator, in addition to the dominant proton contribution, also includes relativistic
corrections and two-body components. Their effect on the 5.(g) is very small in the g-range covered by the present
experiments, but it does reduce the amall systematic discrepancies between the theoretical and measured Coulomb
gum rules (Schiavilla, Wiringa, and Carlson, 1993). However, the importance of these contributions is enhanced when
considering the LLDF. This quantity is shown in Fig. 46 for ‘He (the Saclay data are from Zghiche ef al. (1993); the
Bates data from von Reden et al. (1990) give similar values for the LLDF). The large error bars on the experimental
prrig) reflect predominantly systematic uncertainties assoeiated with the tail contribution (Beck, 1990, Schiavilla,
Wiringa, and Carlson, 1993). The agreement between the experimental analysis and the results of calculations in
which hoth one- and two-bady terme are included in pg{q) is rather good. This situation is reminiscent of that
encountered in the charge form factors of *H, “He, and *He, where specifically the two-body charge aperators play
a crucial role in reproducing the data in the diffraction minimum. Figure 46 shows an interesting interplay between
correlation effects in the ground-state wave function and relativistic and two-body corrections to the longitudinal
transition operator. Note that the prr w.c(g) ia at varlance with data: the zevo is shifted to much higher momentum
transfer, and the strength of the secondary maximum is greatly underestimated.

As a final remark, we note that the present experimental situation in regard to the Coulomb sum rule in heavier
nuclel is controversial. The original analyais of the Sactay data indicated substantial lack of strength, as muach as
40 %, in the longitudinal response of nuclei like “*Ca and *Fe (Meziani et of., 1984). More recently, however,
an independent re-analysis of the **Fe world data shows that the resulting integrated longitudinal strength is not
guenched with respect to the model-independent prediction S;(g) = 1 at large 4 (Jourdan, 1995}, This re-analysis has
combined Saclay, Bates, and SLAC data covering a wide range of values in the virtual photon longitudinal polarization
parameter ¢ (the longitudinal response is extracted from the slope of the {e.e’) cross section as function of ¢). The
analysis of inclusive electron scattering from heavy nuclei and, in particular, the separation of the cross section into
its longitudinal and transverse contributions, is further complicated by distortion effects of the electron waves in the
nuclear Coulomb field (Orlandini and Traini, 1991). The latter have been found to be negligible in light nuclei.

The current state of affairs in regard to Coulomb sum measurements in heavy nuclei is clearly unsatisfactory. The
experimental controversy needs to be resolved.

F. Momentum distributions

The nucleon momentum distribution is given by
Nor(p) =<0la} (pYa-{p}[O> , (7.42)

where [0 > iz the ground state of the nucleus, and a,.{p) and a},{p} are annihilation and creation operators for a
nucleon in spin-isospin state or with momentum p. In the coordinate representation the N,-{p) can be written as

Nor(p) = ]dfidrldrz co-deaWh(r], o Ta) €PELTI B (B - ral, (7.43)
Por{l}) = %(i +ooaMl+Try) , or=%l . (7.44)
It has the normalization
dp -
z / o) =4 . (7.45)

Short-range and tensor correlations induce high momentum compoenents in the nuclear ground states. This is clearly
seen in Fig. 47 where the momentvm distributions of ¢ = =1 neutrons in a >He nucleus with polarization +1/2 are
shown (Carlson and Schiavilla, 1997). In the absence of tensor correlations (and, therefore, D-state admixtures in the
3He ground state) the momentum distribution Ny—_) r=—) would vanish. Indeed, these correlations are responsible
for most of the high momentum components in the nuclear ground states {Pieper, Wiringa and Pandharipande, 1992).

It is interesting to compare the nucleon momentum distributions (normalized to one rather than to A) of 2H, 7H,
1He, '*C and nuclear matter {NM). The A=3 and 4 nuclei ¥(p) (summed over & and r) have been calculated by
several groups from a variety of interaction models (Zabolitzky and Ey, 1978, Ciofi degli Atti, Pace, and Salm?,
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1984, Akaishi, 1984, Schiavilla, Pandharipande, and Wiringa, 1986, Ciofi degli Atti, Pace, and Salmé, 1991). Those
shown in Fig. 48 are obtained from variaticnal wave Functions corresponding to a Hamiltonian including the Argonne
vy4 two-nucleon and Urbana model VIII three-nucleon interactions (Pieper, Wiringa and Pandharipande, 1992). The
NM N(p), instead, has been calculated with chain-summation techniques from a correlated wave function, using
the older Urbana vy two-nucleon interaction, supplemented by density-dependent terms that simulate the effect of
three-nucleon interactions (Fantoni and Pandharipande, 1984),

The momentum distributions of 4 > 2 nuclei are found to be approximately proportional, in the limit of large
momenta p, to that of deuteron, as shown in Fig. 48. In particular, the high-momentum tails of the 4 > 3 nuclei
N(p) display a rather weak dependence on A.

G. Spectral functions

The probability for removing a nucleon of momentum p in spin-isospin state o from an A-nucleon system, and
leaving the residual A — 1 system with an internal excitation energy £, is given by the spectral function S,.(p, E),

Sertp,E) = 3| <A~ 1 flasr o 4:0> [{S(E + B - A1) (7.46)
!

where the sum is extended over all states of the A — 1 system having energies E,‘“. and Ef is the energy of the
A-nucleon ground state |A; 0>, The spectral function obeys the sum rule

[” dE Sya(p,E) = Novlp) . (7.47)
Ef-1-E4

where EJ' " is the ground-state energy of the residual system. In fact, the contribution sssociated with the high-energy
tail of the spectral function is crucial in saturating the sum rule at large p.

The spectral functions can in principle be measured in knock-out reactions, such as {e.¢'p) reactions. In PWIA
the cross section for these processes can be shown to be proportionat to S,{pm, £} (summed over ¢ for unpolarized
scattering), where py, = p—qand Exn = w—T —Ta_; are, respectively, the so-called missing momentum and energy,
T, and Ta_, are the kinetic energies of the knocked-out nucleon and recoiling A-1 system, and w and q the energy
and momentum teansferred by the lepton probe. OFf course, PWIA ignores the final state interactions (F5T) hetween
the outgoing and spectator nucleons. Furthermore, it requires for its validity that the probe-nutleus coupling be given
by the sum of A one-body operators. Thus FSI as well as many-body components in the transition operators, such
as meson-exchange currents in the case of (e.e'p) reactions, complicate the interpretation of knock-out processes, and
make the extraction of the spectral function from data more difficult (Schiavilla, 1990, Glickle et al., 1994).

In the deuteron, the spectral function is simply given by S,(p, ) = N;(p) 5(E + Ef), where E§ = ~2.225 MeV is
the deuteron bound-state energy. The Sp(p, E) of *He {Meier-Hajduk et ol, 1883) and *He (Morita and Suzuki, 1991)
have been calculated, respectively, with Faddeev and variational methods from realistic interactions {the e S(p, E) is
displayed in Fig. 49, after Meier-Hajduk ef al. (1983)). Reliable approximations of these spestral functions {Ciofi deght
Atti el al., 1991, Benhar and Pandharipande, 1993) have alsc been obtained by using the momentumn distributions of
nucleons and nucleon clusters in the A=3 and 4 ground states, such as, for example, dd and fp in *He. The only other
system for which realistic caleulations of the spectral function have Been carried out is nuclear matter (NM). These
latter caleulations have used either correlated basis theory {Benhar, Fabrocini, and Fantoni, 1991) or the Green's
function method (Ramos, Polls, and Dickhoff, 1989}, but both give quite similar predictions for the NM S{p, E).

The effect of correlations on the spectral function is ensily understood by comparing realistic calculations of it with
the Fermi gas model prediction. The latter is given by

Srote.B) =00 -1)3 (B4 £ (7.48)

where pg is the Fermi momentum. As can be seen from Figs. 50-51 {Benhar, Fabrocini, and Fantoni, 1991), the
NM S(p, E) {at equilibrium density, i.e. pp=1.33 fm~!} is characterized by a large background extending over a
wide energy range both above and below the Fermi level. This background is produced by dynamical (short-range
and tensar) correlations. When » < pr the §-function of the Fermi gas model is replaced by a peak, the width of
which gives the lifetime of the quasi-hole state. As p approaches pp from below, this peak becomes sharper and
sharper; its strength, which is denoted by Z(p), has been shown by Migdal (1957) to be equal, in normal Fermi
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liquids and In the limit p - pe, lo the magnitude of the discontinuity of the NM momentum distribution, that Is
Z(p = pr) = N{pf) - N{p{). Realistic calculations predict a value for Z(p = pg) of 0.71 in NM.(Benhar, Fabrocini,
and Fantoni, 1991). In the Fermi gas, Z(pr)=1, and so 1 ~ Z(pr) is a measure of the strength of the correlations.

The notion of quasi-hole states is also useful in discussing the low-lying levels of finite systems (Pandharipande,
1990); for example, H and 7T} can be viewed as (1s1/2)~! and (351/2)~! hole states in the doubly closed shell
nuclei *He and 393Pb, respectively. These states have zero width, since they cannot decay by strong interactions. In
finite nuclei, quasi-hole wave functions are simply related to the 1+{4-1) cluster amplitudes, defined above. In the
shell model, in which nuclear wave functions are approximated by Slater determinants of single-nucleon wave functions
@nij, the quasi-hole orbital s coincides with ¢nyy. In particular, the normalization of a5, which is also known as
the spectroscopic factor Zni;, would be one in this case. However, correlation effects reduce the spectroscopic facter
and make the quasi-hole wave function more surface-pesked than the mean-field one (Lewart, Pandharipande and
Pieper, 1988, Pandharipande, 1990). Of course, quasi-hole orbitals of nuclei with A > 4 have not yet been calculated
from realistic interactions. ln the a-particle the Zy,y,; is about 0.81. In heavy nuclel the spectroscopic factors are
expected to be even smaller than the NM Z(pr)=0.7, because of surface effects (Pandharipande, Papanicolas, and
Wambach, 1984). For example, the 2%Pb Zs,; /9 is estimated to be = 0.6 £ 1.
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VIII. SCATTERING METHODS

Twao distinct energy regimes are of interest in few-nucleon scattering problems below pion production threshold.
The frst is low-encrgy scattering, where “low-energy” is defined to be the regime in which only breakup into 1wo-body
clusters is possible. In the nuclear three-body problem this regime lies between zero and the deuteron binding energy
By = 2.225 MeV in the center of mass (CM) frame, while for A=4 iz lies between zero and B;-By, where B;= 8.48
MeV is the triton binding energy. Many intriguing physical processes have been measured in this regime, including
scattering lengths, total cross-sections, polarization observables, and radiative capture reactions. Of course, this is
also the regime in which weak capture reactions of astrophysical interest occur.

Scattering caleulations naturally divide into low- and high-energy regimes because the dominant physical processes
can be guite distinct. In low-energy reactions, the clustering properties of the nuclear wave function are extremely
important, precisely because the relevant energies are near to nuclear thresholds. For the same reason, a complete
treatment of the long-ranged Coulomb interaction is crucial in many cases. In higher-energy {quasielastic) regimes,
howevet, it is one- and two-body processes that typically dominate. Even so, it is often important and practical {at
least for three-body problems) to treat multipie-scattering effects completely.

These distinctions also manifest themselves in the algorithms. In momentum space calculations, the treatment of
the poles of the Green's functions is quire important. In configuration space, one must specify the boundary conditions
on the wave function for all possible breakup channels. Of course, the physical boundary conditions are the same
in either the Faddeev or correlated-hyperspherical-harmonics (CHH) algorithma, here we discuss them within the
Faddeev description.

In both momentum and coordinate space, one must take care to obtain the solution corresponding to the physical
process of interest, often incoming plane-waves in one channel only. There are also important experiments where
different boundary conditions are approptiate, of course, including electromagnetic scattering experiments We shall
postpone discussions of methods for inclusive response calculations to a later section.

A. Conflguration-space Faddeev equations

One of the original motivations for using the Faddeev equations was to treat the scattering problem for three parti-
cles. Typically, a solution is to be constructed with an incoming plane-wave in one channel only, and various possible
final states. The Faddeev equations are well-suited to studying thia type of prablem, because it is comparatively easy
to obtain these physical scattering solutions. Alse, the partial-wave decompaosition employed in Faddeev calculations
is still quite valuable because the angular momentum barrier and the small size of nuclear ground states implies, at
least at Jow energies, that one can atill deal with a modest number of partial waves.

The boundary conditions for scattering, even below the three mucleon breakup threshold, are sumewhat more
involved than for bound states. In general, more than cone final state may be available. For three distinguishable
particles, there are varicus possibilities, including elstic scattering, where asymptotically 1{23) —+ 1{23) (the brackets
indicating bound sub-clusters}, as well as rearrangement scattering corresponding to 1{23) -+ 2(13) or 1{23) — 3(12).
Of course, in the scattering regime the solution of the Schridinger equation for a given energy E is in general not
upique. It has been shown that simply converting the Schridinger equation to a Lippman-Schwinger equation whose
form guarantees outgoing waves in all channels does not provide a unique solution (Foldy and Tobocman, 1957). The
difficulty is that the amount of incoming wave in each channel is not controlled. Various methods have been used to
ovorcome thia problem, including the triad (Glockle, 1970) equations and the Faddeev equations (Faddeev, 1960). In
this section we follow the discussion in Friar and Payne (1995}, interested readers should consult that article for a
much more complete treatment. "

In configuration space the Faddcev equations, Eq. (3.4), are the most common technique for dealing with the
rearrangement problem; since each equation deals with only one interacting pair the boundary conditions are fairly
straighttorward. The frst equation contains enly via, 80 only particles 1 and 2 can be bound asymptotically in ¢;.
The rearrangement channels are contained in ¥ and ¥, which for identlcal particles are the same function as 4 but
for different arguments. Hence this decomposition of the Schrédinger equation into three equations has solved the
rearrangement problem.

For low-energy scattering the Coulomb interaction is important, leading to dramatically different physics, hence
the Faddeev equations tieed Lo be modified. A straightforward inclusion of the Coulomb interaction in the Faddeev
equatlens via vix — v + ve(z;) is far from optimum because there is no obvious Coulomb interaction in the y-
coordinate which would describe the repulsion between an outgoing proton and a deuteron in pd scattering. Far
better (Kuperin, Merkuriev, and Kvitsinsky, 1983, Friar, Gibson, and Payne, 1983} is to include the full Coulomb
potential 3, v.(x:) on the left-hand side of the equation for each Faddeev amplitude:
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[E = Ho = va3 = 3 velz)]¥n (a1, 1) = vaa [ (2, ¥2) + ¥slxa, ¥3)] - {8.1)
[}

Summing the three cyclic permutations again reproduces the Schridinger equation, but now the amplitudes ¥ obey
physically meaningful boundary conditions. This form is called the Faddeev-Noble equation (Noble, 1867}, and has
been used by Merkuriev and collaborators (Merkuriev, 1976, Kuperin, Merkuriev, and Kvitsinsky, 1983).

Returning now to the boundary conditions, we require that the wave function be finite and consist of an initial
plane-wave plus outgoing scattered waves. The latter conditions are imposed for large x and y, or equivalently, large
p = (2% +¢*)!/2 ae a function of #, where cosf =% - §.

Below deuteron breakup, the boundary conditions are determined in a rather straightforward way ag in standard
two-body calculations. The amplitude at large vaiues of y must be proportionai to:

¥(x,¥) v dalx}onaly). 8.2)
where t is the internal deuteron wave function and @ny is the relative nucleon-deuteron wave function. In the
absence of Coulomb forces, the asymptotic nd wave function ¢ng in each partial wave is proportlonal to:

Yem(¥), (8.3}

Fna(y) = €¥e [J'L(kv) cosdy, — ny{ky)sindy

whera y is the distance between the n and d clusters, and the CM energy is given by E = k3124, For cases of coupled
chanbels or energies above breakup, the phase shift may be complex. For the Coulomb case, the asymptotic wave
function is:

Bpuly) = ellirrec) I:FL (n, ky) cosdy, + Gr{n ky) sinJ_L] Yeu(3)/ky) (8.4}

where o1 is the Coulomb phase shift, o1, = argil['{L+ 1+in)], 17 is the Coulomb parameter related to the product of the
two charges (1 = uZ, Zoa/k}, Fi, and Gy are the regular and irregular solutions of the Coulomb potential, respectively,
and 8, is the additionat phase shift produced by the nuclear interaction. Note that J'j‘u Grlm k) f{ky) = —nr(ky).

This form is not directly suitable to zero-energy or very near zero-energy calculations. At very small energies
Coulomb calculations can be quite difficult due to the suppression of the wave function near the crigin, and hence
one converis to asymptotic conditions normalized by an additionat factor of 1/ (kyCreo+}, where Cy, is the Coulomb
barrier penetration [actor, which for L = 0 is:

Ca = f2enfte™ - )L, 8.5)

The regular part of the solution Fp{q, ky)/{(kyCre'™) « ((y)"/{2L + 1)}, where { = Znk. Dividing out the Coulomb
penetration factors in this way yields well-behaved functions.

Above breakup the smplitude ¥{x,¥} = ¥{z,p.8) is non-zero everywhere for large p, not just in the regions
corresponding to a bound deuteron sub-cluster. In the region of small x and large y, the amplitude corresponding to
three-bady breakup Y, decreases as 1/y*/?; this rapid decrease compared to the elastic 1, enables one to separate
the two contributions asymptotically:

¥ix,¥) = tu(x, ¥) + dulx,¥), {8.6)

where ), corresponds to elastic scattering.
In the asymptotic region, the interaction vga can be dropped from the Faddeev equation to obtain an equation

[Ho+ zuc(:.) - E] $n=0. @1

Converting to hyperspherical coordinates, the solution of this equation can be shown to have the asymptotic form:

explikp)
7

where A is a function of the angles in the CM frame and 7 is given by:

Yue x A exp [i 71 In(2k0)] [1+ O(1/2)), (8.8}
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A= wp [Z ﬂctz.-)] - (8.9)

which is the three-body equivalent of the two-body Coulomb parameter 5. Taking the limit § -+ 0 gives the normal
(non-Coulomb) solution.
To obtain the asymptotic solutlon for z within the range of the nuclear interaction, consider the Faddeev equaticn:

[B - Te = Ty — vza] 9lx;.71) = vas [0z, ¥2) + $(x3,y3}] - (B-10)

For the non-Coulomb case, we can replace the right hand side by vaa8exp(iky)/u*/?, where 3 is again a function
depending upon angles that is determined by the breakup amplitude (to lowest order). The amplitude 1 in this
regime is then: .

¥{x, ¥} or fglx) expliky)/y*/* + Oly™™/?) (8.1}
where g(z} satisfies:
[T +v]} glx) = ~v . (8.12)

The homogeneous part of the solution for g is proportional Lo the zero-energy scattering solution y°{z), with a
constant of proportionality denoted by 4. The lnhomogeneous part is formally given by
-1
g(x) = re v = galX)+ galx) - (8.13)
The inhomogeneous solution has been divided into the part proportional to the deuteron wave function {ga} and the
remainder (gin). Thus, we have for smatl 2 and large y:

$06,¥) o Yaalx,¥) + [Blga(x) + qntx]] + 0ulz)] expliky}/y™™. (8.14)

The terms in this expression correspond to direct elastic scattering, elastic rearrangement, inelastic recombination,
and direct inelastic scattering, respectively. This expression matches the previous expression for z larger than the
range of the nuclear interaction, and completes the asymptotic expressions for the Faddeev amplitudes. Of course, for
a practical calculation one must determine where these asymptotic forms can be applied, some results on this subject
have been published by Payne and Glockle (1992).

In addition to these leading terms at very amall energies one may wish to consider polarization effecta, esgentially
evaluating the deuteron's dipole, quadrupole, ¢te., moments and adding these to the long distance behavior of the
wave function. A discussion of this specialized point can be found in Friar and Payne (1996).

Once the boundary conditions have been specified and a scattering solution obtained, it is extremely valuable to
employ a variational principte both to check the calculations and to improve the estimate of the scattering matrix,
For bound states, it is well known that an approximate wave function ¥ accurate to order 8% in ¥ ~ ¥ produces &
varistional estimate of the energy {¥|H|¥) accurate to order (§%)?. For scattering calculations, one can do something
similar, although care must be taken with the boundary conditions.

Coordinate space scattering calculations are necessarily performed within a finite volume, and then matched at the
boundary to the asymptotic wave functions. Within this boundary, one can construct a functional J[¥]:

1[%) = (2|7 - E|¥), {8.15)
and vary the wave function ¥ — ¥, + &%, yielding:

81 = (Yo + 09| — E|¥q + 8¥) — (Yol - E10,)
= (U|H — Bj¥) + kol & - EI5T) + (§9(H — E§®) , (8.16)

where the arrow on the Hamiltonian is to remind one that H is not a Hermitian operator when acting within the
finite volume. The frst term on the right hand side is zero since (& — E)|¥) = 0. The second term is given by a
surface integral:

55 = (WolH - %)
= ~(1/21) [ dSh- [(VEo)!5T ~ WiVEE] 817)
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which results from integrating by parts the kinetic energy operator and again usmg {(f — E)|¥o} = b. Evidenily,
then, the variational principle for scattering states is given by:

1 — 85 = (§¥%|H - EI§%), {8.18)

as originally formulated by Kohn (1948). Note that this is a stationary principle rather than an extremum, since
81— 48 is not necessarily positive. However, Lhis variational principle is very important because, for any wave function
accurate to order %, it can be used to obtain the elements of the scattering matrix accurate to order (§%)2.

A variety of coordinate-space scattering calculations have been carried out with Faddeev and CHH techniques.
Below breakup, many interesting reactions have been studied, some of which will be presented in the next sections.
Above breakup, comparisons between momentum- and coordinate-space representations indicate that both methods
can be made to work reliably {Friar e ol, 1990, Friar et al, 1995). Many new results with full inclusion of the
Coulomb interaction can be expected within the next several years.

B. Momentum-space Faddeev equations

In momentum space, additional issues are also present when addressing the scattering regime. Again, the problem
has to be formulated in a way guaranteed to correspond to the physical process of interest. Numerically, the primary
concern is the treatment of the singularities in the propagatots. Let us first consider the case of distinguishable
particles, where an outgoing scattering atate ¥{+} gbtained from an initial asymptotic arrangement of particles
described by ¢ is given by:

¥t = lim ie

S Erie-"* @19)

In the standard Faddeev decomposition, the following dentity is useful:

1 1 1

1
= { y
Frie-H E+ii-Hoovpn " Evie—Ho—upy Y ™WET—H (8:20)

where H = Hgy + vjn + vy + vi5. A state ¢ which describes the initial scattering state and is an eigenstate of
H1 = Hy + vz3 will obey the Lippman identity (Lippman, 1956),

LDET di = biadr . (8.21)
and hence
) _ 1 {+
U =84 + hmn Y. H‘W . (8.22)

‘This expression provides one inhomogenecus and two homogeneous equations which define lIlE"') uniquely (Glackle,
1970). Cbviously this state is an eigenstate of the Schrdinger equation, and similar equations with inhomogeneous
terms in i = 2,3 define ¥§" and W'\ Requiring the three equations to be fulflled simultaneously rules out
admixtures of ¥4 and ¥y in ¥y. Also, it i3 easy to see that this solution contains no admixtures of three free particles

in the Initial state.
From a solution of this iriad of equations, the amplitude of the oulgoing radial wave in the channel where particles

jand k are bound together can be obtained from:
Aiq = {tilvy + U.'ul‘l’ﬁ”) v {8.23)
which can be used to define a transition operator from initial state 1 to final state 1:
Unldr) = (v +oa) (41 - {8.24)
The operators {J;; are the elastic (£1;) or rearrangement (Uz and U ) operators, respectively, the breakup operator
will be described below.

Writing out the equations for the s and inserting the various expressions for 'lf[ ’, one obtains coupled equations
for the Uy acting on ¢; in terms of the interactions vi; and G,, where G, = |lm‘.4a 1HE +ie — Hi):
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1. ..

Ui = viaGalinndy + viaGslUndy
Undy = vy + vaGiludy +v2Gilmér
Undy = vy + vaaGilUndy +viaGalinggy - {8.25)

After some manipulations, one can use the identities vy = Gy Ly and v Ge = TiGo, where the scattering operators
T; are again the three particle propagators with only two particles interacting (see Eq. (3.10)), to derive a coupled
set of equations for the U in terms of the T} and Gy:

Undy=(1-81)G5 ¢ + 3 TGelnds - (8.26)
J#EL

These equations are the Alt, Grasaherger and Sandhas (1967) or AGS equations for the transition operators Ujy.
For identical particles, one anti-symmetrizes these equations, yielding an equation for the transition operator into

final state { from an anti-symmetrized initial state. The outgoing wave function is ¥(+) = 'IFH') + \I'('H + W(” and
the transition operator is given by:

Uity = ZU.tdu: =3.G'te+ Y TiGoUydy. {8.27)

ki I
Of course, there is only one independent operator U for three identical particles, so that the equation can be written:
U¢ = Gy 'E¢ + ETGol/d, (.28}

which generates the operator U/ appropriate for elastic scattering. The operator E is again the sum of the two eyclic
permutations. For calculations with realistic forces, it is more conventent to define T’ = T'Gol/, which leads to an
equation:

Té =TEé + TGeETs . (8.29)
This Is the central equation for scattering calculations. The elastic acatrering transition is given by:
Up=EG;'¢+ETe . {8.30)
The transition operator Uy to states in the continuum is obtained from an amplitude
Ag = {Bol(viy +vix + )| {7 + B 4 @lDy {8.31}
The transition operator Up to three-body continuum states is Ugé = (3 u.-,){‘I‘f'" + \I';H + \Ilgﬂ), which yields
hd = (1 + PYTGolU§, {8.32)
where U/ is the elastic scattering operator. In terms of T, this is
Ugd = (1 + E)Tp. {8.33)
Three-nucleon interactions can be treated in several ways, complete treatments are presented in several arti-
cles {(Kowalski, 1976, Glickle, 1983, Glsckle and Brandenburg, 1983). One possibility is to add another equation
to the triad, invoking a Green's function for the Hamiltonian consisting of three free particle plus the three nucleon
Interaction {Giiickle et of., 1996). It is also possible to use incorporate the TNI directly into the standard Faddeev
equations, as is done in canﬁg;uratiun space. Hecently, Hilher ¢t of. (2097) have developed & new partial-wave expan-
sion scheme for three-nucleon interactions. This scheme is numerically more stable for high partial waves, and hence
will prove particularly useful for applications at higher energies.

Ignoring this complication, the basic equation to be solved is Eq. (8.29), which when decomposed into momentum
magnitudes p,g and angular momentum, spin-isospin channels a is:

GralT) = GraltE18) + 5 far f 9> fatw? [ (8:34)
(ol )/ El 40N 2" GoTio)
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Again the T-matrix is diagonal in the spectator momenta, and involves the standard two-body ¢3)-matrix elements at
an energy £ - 3g7/4m. The number of coupled equations is of the order of 60, as in coordinate space calculations. If
one chooses 3040 grid points in p and g, the resulting matrix representation of the kernel is of dimension roughly 72000
x 72000. This is not inverted directly, but solved through an iterative procedure (Witala, Cornelius, and Glackle,
1988, Cornelius, 1990, Hiiber, 1993) which invelves Padé approximants to the kernel of the scattering equation.
Eq. (8.29).

In order 1o solve these equations, one must confront the singularities in the propagators. The two-bedy #12)-matrix
has a pole at the deuteron binding energy, of course, and hence In the three-bedy equation one hits this pole for a
specific value of g for any energy E above deuteron threshold. The deuteron term in the 2 matrix can be evaluated
explicitly and the pole handled by a standard subtraction technigue,

There are also free propagator poles in this equation for suitable values of p and ¢. These are more difficult to treat,
but can also be handled by subtraction techniques; a detailed discussion of their treatment is beyond the scope of
this article. Detailed discussions can be found in Witala, Cornelius, and Glickle (1938}, Cornelius {1990), and Hiiber
(1993}

A large number of nd scattering reactions have been carried out with the momentum-space Faddeev scheme. Some
of the impressive seties of results are presented in this section, a more complete treatment is found in the review
article by Glackle of al. (1996).

C. Monte Carlo methods

Due to the statistical error inherent in Monte Carlo methods, it has proven useful to approach the low-energy
scattering problem in a alightly different manner than used in Faddeev or CHH methods. The primary reason is
that the Kohn variational principle &s described above is a stationary principle, rather than an extremum. Although
Variational Monte Carlo Methods could, in principle, be adopted to use this method, for the larger systems (A 2 4},
where the Monte Carlo methods have proven to be most valuable, such calculations could be quite difficult due to the
statistical errors in the integration.

An alternative method has been formulated, however, which is quite useful in certain cases (Carison, Pandharipande
and Wiringa, 1984}. The essence of this method is to fix the boundary condition at the start of the calenlation, and
again solve the eigenvalue problem. This is not very different from the Kohn principle above, but instead of allowing
arbitrary variations in ¥ as before we allow only variations that do not change the boundary conditions on the
wave function. With this restriction, the term 45 in Eq. (8.17) is trivially zero; and hence one is simply solving the
eigenvalue equation.

Returning to the one-channel case, specifying the logarithmic derivative of the wave function and solving for the
energy E can be used to determine the phase shift at that energy. Assuming that the boundary condition on the
logarithmic derivative I}y of the wave function is specified at a distance R, we have:

VIl Dy = k[ji[kr) cosdy, — n (k) sin&;_]
¥ |, L= Tipke) cosby — ng(kr) sindg]

(8.35)

which provides a simple relation between the logarithmic derivative, k& (determined by the energy), and the phase
shift &

Since there iz a variational upper bound, this method can easily be incorporated within standard VMC or GFMC
algorithms. For a given boundary condition, the error is proportional to {§%)%. For zero-energy scattering, one
simply takes the asymptotic form of the wave function (oc r-a for S-waves), and adjusts the trial scattering length till
a zerc-energy eigenvalue is produced.

This procedure is more difficult for multi-channel problems, however. In general, an arbitrary choice for the
boundary conditions will not regulate the incoming flux in the various channels, and hence the solution will not
correspond to a physical scattering process with an incoming plane-wave in one channel only. One way to clrcumvent
this difficulty would be to find different boundary conditions which reproduce the same energy, or equivalently to
calculate the derivatives of energy with respect io changes in the boundary conditions. The latter may be feasible,
and could also prove vseful in calculating widths of resonances, ste.
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IX. THE A=2-4 RADIATIVE AND WEAK CAPTURE REACTIONS AT LOW ENERGIES

Very low-energy radistive and weak capture reactions involving few-nucleon systems have considerable astrophysical
televance for studies of stellar structure and evolution (Clayton, 1983), and big-bang nucleosynthesis {Kolb and Turner,
1990), for example, in relation to the mechanism for energy and neutrino production in main sequence stars, the process
of protostellar evolution towards the main sequence, or the predictions for the primordial abundarces of light elements,

These same reactions are also very interesting from the standpeint of the theory of strongly interacting systems,
since their cross sections are very sensitive to the model used to describe both the ground-state and continuum wave
functions, and the two-body electroweak curfent operators. Indeed, the 'H(n,v)*H radiative capture provided the
first convincing case of a significant (10 %) and calculable two-body current effect in photonuclear reactions (Riska
and Brown, 1572). Even more interesting are the ?H(n,~)*H and *He{n, v}*He captures at thermal neutron ener-
gies. Calculations of their cross sectiofis based on realistic bound- and continuum-state wave functions and one-body
currents—the impulse approximation (IA)-predict only about 50% and 10% of the corresponding experimental val-
ues (Friar, Gibson and Payne, 1980, Schiavilla et al., 1992). This is because the IA transition operator cannot connect
the main S-state components of the deuteron and triton, or *He and *He, wave functions. Hence, the calculated
cross section in LA is small, since the reaction must proceed through the small components ol the wave functions,
in particular the mixed symmetry S'-state admixture (Schiff, 1937, Austern, 1951). Two-body currents, however, do
connect the dominant S-state components, and the associated matrix elements are exceptionally large in comparison
to thase obtained in IA {Friar, Gibson and Payne, 1990, Schiavilla et ol., 1992).

The present section Is organized into four subsections A-D. Subsection A summarizes the relevant formulas for the
calculation of eress section and polarization cbservables. Formulas for the latter do not merely represent an academic
exercise: in fact, vector and tensor analyzing powers have, in the last year, been measured in the energy range 0-150
eV at TUNL for the ZH{#7)’He and 'H(d, ) He reactions using beams of polarized protons and deuterons (Schmid
et al., 1995, Schmid et of., 1996, Ma e ol, 1996). Subsections B-D deal, in turn, with the 4=2 'H(n,7)?H and
"H(p.e*v,)?H, A=3 2H{7,7)°H, 2H(Z)*He, 'H(d,7)*He, and A=4 *He(nv}*He, *H(dv)*He and 4e(p.etv.}He
capture reactions at thermal neutron and keV proton and deuteron incident energies.

A. Cross section and polarization ohservables

In the center of mass (CM) frame, the radiative transition amplitude between an initial two-cluster continuum state
with clusters A; and 4, having spins Jy M, and Ja M, respectively, and relative momentum p, and a final A-nucleon
bound state of spin JayMa (A1 + Az=A) I8 given by {Viviani, Schiavilla, and Kievsky, 1996):

Parrarn (00@) = (F5M 185000 - P (@I ) (9.1)

where q and w=g are the photon momentum and energy, and éx(q), A = =1, are the spherical compenents of its
polarization vector. The two-cluster wave function ¥+ satisfying cutgoing wave boundary conditions, is normalized
to unit flux and has the following partial-wave expansion:

W, = 4 S CIM BMGISS) Y B (S8 LLYEL (9% Ay 1 ks 5 ©.2)
58, LL.JJ,
—LSHL, o a1 'S0,
Fars =ty [1-iRlc,.0 L A (9.3)
s

where 5 is the channel spin, L is the relative orbital angular momentum between clusters A; and As, TR is the
R-matrix In the subspace with totsl angular momentum J and oy is the Coulomb phase shift, given by

or =argIT(L + 1 +in)] , (9.4)
n= Z) 2y ] {9.5)
Urel

Here o is the fine structure constant, and v« is the relative velocity between clusters 4; and Az with charges Z; and
Z,, respectively. If no Coulomb interaction is present between the clusters, then the factor €t in Eq. {9.3) should be
omitted. The wave function ‘I‘f;fi:‘, in Eq. (9.3) describes the two interacting clusters, and behaves asymptotically
as
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where ¢a,.,m, and da;.0m, are the {antisymmetric and normalized) bound-state wave functions of clusters A,
and A, and Fr and Gp are the regular and irregular Coulomb functions, respectively. Again, in the absence of
Coulomb interactions hetween the clusters, the Fi{n,z)/x and G (7, z}/z should be replaced by the regular and
icregular sphericat Bessel functions. The sum over L'S" is over all velues compatible with a given J and parity, while
that over p s over all permutations {parity {=1)®) of the nucleons between the two clusters, thus ensuring that the
wave function Tﬁsii‘, is antisymmetric. The factor 1 + #a,, 4, is included to correct for the normalization of the
wave function lll'fij'z when the two clusters are identical, for example two nucleons or two deuterons. To date,
wave functions \Ilf’lfii" have been obtained from realistic two- and three-nucleon interactions for the trinucleons with
Faddeev (F) and correlated hyperspherical harmonics (CHH)} methods (Kievsky, Viviani and Rosati, 1094}, and for
the A=4 nucleon systems with the variational Monte Carlo (VMC) method (Carlson, Pandharipande and Wiringa,
1984, Carlson et aol., 1990, Arriaga et al., 1991, Carlson et al, 1991).

Cross section and polarization observables are easily obtained from the transition matrix elements i NTNTALN |8
The unpolarized differential cross section is written as (Viviani, Schiavilla, and Kievsky, 1996)

1

0 mranEnn

¥ Vioasmieal, ©°n

AM 4 MM,

where the first factor comes from the average over the initial state polarizations, & is the angle between p and q (the
vectors p and q define the rz-plane), and

a q
= 0.8
70 = Bnd Vol 1+ g/ma 8

Here m, s the rest mass of the final A-nucleon bound state. The CM energy of the emitted ~y-ray is given by

2 P
= -1 1+ — 2= 9.9
q rru[ + +ma (Am-l-zﬂ)]. {9.9)
where p is 4;-Az reduced mass, and Am = m; +ma — ma. ™, and my being, respectively, the rest masses of chusters
A, and As. The differential cross section o;(8) for a process in which an initial state with polarization defined by
the density matrix p; leads to a final polarization state with density matrix py, can be expressed as

op(@) =220+ Vo0 3 [ it M,M,(P“[)] () gy bt M by
AMA MMy MM MM,

x [J.J':;;M;M;(pvq)].(PJ)A'M;‘JM‘ - (9-10)

The initial (final) density matrix is given by the product of the A, and A; (y and A) density matrices The density
matrices of clusters with spins 1/2 and 1 (the only ones of interest here) are given by, respectively:

pl‘:;!M. = %[1 +a- P]M.M' , (9.11)
L = %[§ pe] ©.12)

with the matrices ¢* defined as
g = V(=1 MM 1 - M|ap) . 913

Here P and P are the polarizations of the spin 1/2 and 1 clusters, respectively. For example, unpolarized proton
and deuteron beams have P = { and P = §x08,0. Finally, the density matrix for the photon is written as
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P[:;'-nl = E[JA.A' + Pedy—w+AF: JA..\'] , (9.14)

where P; (F.) is the linear (circular) -polarization. Note that Pr=F,—F;, namely F; i3 defined as the difference
between the vy-polarizations out of and in the scattering plane (the xz-plane).

The initial and final state polarizations are defined by assigning the quantities P, P**, Pr and P,. With the density
matrices given in Eqgs. (9.11), (9.12) and (9.14), polarization observables are then obtained from differences of cross
sections

asilf) = o(8i P, P, P, F) (9.15)

For example, the proton and deuteron vector and tensor analyzing powers A, (8) and T2o(#) in the reactions 2H(5,7) He
and H{d7)’He are given by, respectively:

=

1 . 3
ou(0)4,10) = 5 [016;P = 3, 8108,0,0,0) ~ (6 P = ~F,8308,0,0,0] . (9:16)

Ou(OTin(6) = 3 [016:0, +6026,0,0,0) ~ 01650, ~6028,0,0,0)] . @1

Expressions for more complicated double polarization chservables are obtained in similar fashion. Another case of
interest is the detection of the photon linear polarization coefficient P (P), defined as

0.0, 0) = 3 foui®) - 010)] . (919

where
o11{8) = a{8,0,x08,0, Pr = -1,0) , (9.19)
0.(0) = a(8:0,br0by0, Pt = 1,0) (9.20)

Here oy({8) (o1 (9)) corresponds to a capture cross section in which an unpolarized initial state leads to emission of a
photon with linear polarization paralle] (perpendicular} to the reaction plane. The observation of circular polarization
Pr(8),

au(8)Pr{d) = % {8 P, frp0,0.0, P = 1) — o(8: P, 8306,0,0, P = —1}] \ 9.21)

requires the polarization of the initial proton (or neutron) beam. If the process is dominated by S-wave capture, as
is the case for the 2H{7i,¥)*H reaction at thermal neutron energies, then Pr(8) is sitnply given by:

Ppiy=R.P.q, (S-wavecaptureonly} , (9.22)

where fi, is the so-colled polarization paramcler.
The expansion of the transition natrix element 73 . a, (P, 6} in terms of electric and magnetic multipoles is casily
obtained [rom that given in Eq. (6.14):

in {pg)=- 7-—-—8”2 3 VEL DR - (ML RIS
Iata Mare AP Riat D) FRLAREY 2L ) NIV

LSIT, 1L,
X (5o, LOWLIY I T, 0 [ Jadd2) DL, _,(080) [.\ TM® (g LS + TE g LSJ]] . {9.23)

where D;.,-a are standard rotation matrices (Messiah, 1961). The angle 8 is defined as that between the p-direction
[which is also taken as the quantization axis of the initial and Fnal nyclear spins} and the g-direction.

By evaluating the sums in Eqs. (9.7) and {9.10)} and using the product property of the D-matrices, the angular
dependence of the unpolarized cross section as well as that of polarization observables can be made explicit. For
example, the vector and tensor analyzing powers and photon lineat coefficient can be expressed as (Seyler and Weller,
1979)
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7u(f) = ¥ amPalcosd) , (9.24)
a.(8)4,(8) = mzzo bm P (c088) , (9.25)
ou{f)T2(8) = Elcum(cmﬂ) . (9.26)
O (8)F,(8) = Eod",?,":,(cos 8, (9.27)

where P, (P}) are Legendre polynomials (associated Legendre functions), and the coefficients am, bm, ¢m, and dp
denote appropriate combinations of electric and magnetic multipoles.

The weak capture total cross section can simply be written, in the notation intreduced above, as {Carlson, Pand-
haripande, and Schiavilla, 1891)

4 Gimd 1
or(Ecm) = W_!:-I EHIOEARTY l)f(ECM}

30 KT AL (a=0) et a1 {9.28)
MMM,y

J(Ecu) = $ [ $(Ecm + Am — E, ~ E;) peE. EXdE,dE, .

{Ecu+Am)/m, ]
f I (E‘”“m—“}’“ - z) . (9.29)

1

Here Gy is the vector coupling constant (Gy = 1.151 x 107% GeV~2), A, (a is an isospin index) is the nuclear axial
current operator, and Eowy = p* /2 ia the CM Incident energy. The energy of the recoiling A-nucleon bound state
has been neglected, since incident energies are of the order of a few keV, namely the energy range of relevance for
the solar-burning reactions *H{p.e*,)’H and *He(p,e* . }'He we will discuss below. These processes are induced
by the axial-vectof (or Gamow-Teller} part of the weak interaction Hamiltonian. Note that the dependence of A,
upon the momentum transfer q = —p, — p,, where p, and p, are the outgoing lepton momenta, is ignored, again
becaunse of the very low energies involved. A more refined treatment of the phase space factor f(Ecm) {the “Fermi
function") includes the effect of the nuclear Coulomb potential due to the final A-cluster as well as its screening by
atomic electrons, by multiplying the integrand in Eq. (9.29) by the ratio of the (relativistic}) electron density at the
nucleus to the density at infinity {Bahcall, 1966}, These correctiona are in fact very small for the reactions which: will
be considered below.
Finally, for those reactions in which both clusters A; and Az carry charge, it is convenient to define the so-called
astrephysical factor via
or(Ecu) = {9.30)

S(Ecm) —2nn

Ecm '
where or(EcuM) i the total cross section for the process under consideration. The term exp{—2ry) is the Gamow
penetration factor, proportional to the probability that two particles with charges Z; and Z; moving with relative
velocity v will penctrate their electrostatic repulsion. The factor 1/Ecu is essentially the geometrical factor A%,
X being the de Broglie wavelength ox 1/pre o 1//Equ. In this way, the strongly energy-dependent terms are
explicitly factored out of o7(Fcpm), and the residual function S{Fpp) is expected to be, at least for reactions which
do not proceed through low-energy resonant states, weakly dependent on Ecy (Clayton, 1983). In this sitvation, the
measured astrophysical factor tan be safely extrapolated to energies typical of the stetlar interior, tens of keV or less,
in which range direct measurements are often not possible.

In fact, it is interesting to investigate the energy dependence of the total cross section for radiative capture in a
little more detail, In the naive direct capture model (Christy and Duck, 1961, Bailey et al., 1967, Rolfs, 1973, Lafferty
and Cotanch, 1982}, the total cross section for L-wave capture can be simply written as

\/El'a (Am + Ecp)®

2
o) (Bem) = att R (9.31)

File)
P
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where alf} is an energy-independent constant, the factors 1/y/Ecy and (Am + ECM)H“ are, respectively, from 1/

and from the energy and multipolarity £ of the emitted photon, and }Fy.(p)/p}® is approximately the probability that
clusters A; and Aa approach to within some interaction radius R (p = pa R = vZuEcmR). Al very low energies,
n 3 p, and the Coulomb wave function Fy evaluated at p can be approximated as

File} ., g Celm) (9.32)
I L
2 ¥)
Cotn) = Yoo 0y ylmy o Caln) = yf (9.33)

LEL+ 1) &1’

where d i a constant independent of energy. If np Coulomb repulsion is present in the initial channel, then the
factor | Fr{p}/ol? should be replaced by |jp.(p)}*, which shows that in this case the low-energy capture in I-waves >
1 is inhibited by the centrifugal barrier. However, such suppression mechanism is not as effective when the Coulomb
repulsion is present. In particular, since 7 o 1//Ecm, the direct capture model would predict, on the basis of
Eqs. (9.31) and (9.32), a linear behavior for S{Ecm), when 5- and P-wave capture are both important.

B. The A=2 capture reactions
I, The ' H{n ) H vadiative capture

Historically, the radiative capture of thermal neutrons on protons has played a crucial role in establishing the
quantitative impottance of two-body cutrent effects in photonuclear observables (Riska and Brown, 1972). Their
inclusion resolves the long-standing 10 % discrepancy between the calculated IA cross section and its measured value.
We will discuss it here for completeness.

At thermal energies, the 'H(n,y)?H capture proceeds entirely through the 1.5p scattering state_ Its cross section is
related to that for threshold electrodisintegration of the denteron, since the required matrix elements are connected
to each other by time reversal. It has been most recently calculated with wave functions and currents corresponding
to the Argonne vi4 interaction (Schiavilla and Riska, 1991). The values for the (successive) contributions to the cross
section from the different tomponents of the ¢urrent operator are listed in Table XV, The calculated 1A and total
rross section values are 304.1 mb and 331.4 mb, respectively. The latter is less than 1 % below the empirical value
(334.240.5) mb (Cox, Wynchank, and Collie, 1965), and should thus be viewed as satisfactory. Note that the Argonne
wvy4 predicts singlet np scattering length and effective range of -23.67 fm and 2.77 fm, respectively, in good agreement
with the corresponding experimental values (-23.749+0.008) fm and (2.81£0.05) fm (Koester and Nistler, 1975).

The two-body currents associated with A components are included perturbatively (see Sec. V}. Their contribution
is considerably smalter than that found in the original evaluation of them, which was also based on perturbation
theory {Riska and Brown, 1972). Thia smaller contribution occurs for two reasons. First, the measured transition
moment, in place of its static quark model prediclion, is used here at the YN A vertex (the former is about 30 %
smaller than the latter). Second, short-range cutoff parameters are included at the =N and mNA vertices in the
present treatment: these were neglected in the original work (Riska and Brown, 1972).

2. The 'H{p,e*v. '/ weak capture

The praton weak capture on protons is the most fundamental process in stellar nucleosyuthesia: it is the first
reaction in the p-p chain, which converts hydrogen into helium, and the principal source for the production of energy
and neutrinos in stars like the Sun {Clayton, 1983, Bahcall and Ulrich, 1988). The theoretical description of this
hydrogen-burning reaction, whose cross section—it is important to realize-cannot be measured in the laboratory, was
firat given by Bethe and Chritchfield (1938), who showed that the sssociated rate was large enough to account for
the energy released by the Sun. Since then, a series of calculations have refined their original estimate by using
more precise values for the nucleon axial coupling and by computing the required nuclear matrix elements more
accurately (Bahcall and May, 1968, Gari and Huffman, 1972, Dautry, Rho, and Risks, 1976, Gould and Guessoum,
1990, Carlson, Pandharipande, and Schiavitla, 1991).

Although the neutrinos from the p-p reaction are not energetic enough to be detected in either the Davis (Davis,
1988} or Kamiokande (Hirata et al., 1949) experiments, the precise value lor ita cross section affects the flux due to
higher energy neutrinos, in particular those from the decay 'B(e’ v }'Be, to which both the above experiments are
sensitive. The reason for this lies n the following fact. Since the solar total lumlnosity and mass are known quantities,
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changing the p-p cross section requires a modification in the solar-core density, radius, and temperature which, in
turn, influence the computed rate for the production of 3B in the p-p chain and associated neutrino flux. In particular,
it has been shown by Bahcall, Baheall, and Ulrich {1969) that the neutrino counting rate in the Davis experiment is
proportional to (o7)~%%, where o7 is the p-p weak capture cross section.

The total cross section for the proton weak capture on 'H is easily obtained from Eq. (9.28) by consider-
ing the charge lowering component of the axial current operator. The (dimensionless) Fermi funection, includ-
ing the correction for Coulomb focusing in the wave function of the emitted e*, is parameterized as f{Ecm) =
0.142 [1 4 9.04 Ecm(MeV)] {Bahcall and May, 1968).

Because of parity selection rules, only even L in the partial wave expansion of the pp scattering state have a non-
vanishing matrix element. Moreover, in the keV energy range, the contribution associated with L > 2 is found to be
completely negligible. The expression for the transition matrix element is particularly simple in IA; it is given by

/ ” dr o)t e Bow  Sa) | (9.34)
0

where u(r) and u{*}(r; Ecu,' 50) are, respectively, the S-wave component of the deuteron and 'S, scattering state
radial wave functions. Its value is therefore sensitive to the pp scattering length.

The most recent and complete calculations have been based on the Argonne vy interaction (Carlson, Pandharipande,
and Schiavilla, 1991), in which, however, the central T, S=1,0 component has been slightly madified so as to reproduce
the experimental pp scattering length (-7.82340.01) fm (Bergervoet et of., 1988) when the Coulomb repulsion is taken
into account (the vy interaction wes originally fitted to np data only). The resulting value for the effective range
parameter 2.771 fm is also reasonably close to the experimental value (2.79440.015) fm (Bergervoet et al., 1988).

Ag is evident from Table XVI, the two-body axial current operators lead to an increase of only 1.5 % in the cross
section value predicted in IA. The relative unimportance of these corrections had already been pointed out by Gari
and Huffman (1972) and Dautry, Rho, and Rlska (1976} . The leading two-body contributions arising from A degrees
of freedom are included perturbatively. The value used for the transition axial coupling gawa Is taken from the
naive quark model; however, the short range cutoff in the transition #NA coupling ts determined by ftting the
Gamow-Teller matrix element of tritium B-decay (Carlson, Pandharipande, and Schiavilla, 1991}

Finatly, the values S{Ecm=0)=4.00 x10~%® MeV-b and dS(£cpm)/dEcm]ecy,=0=4.67 x10~* b are obtained from
the results listed in Table XVI, which are close to the “standard” values S{Ecu=0)=4.07 (1 £ 0.051) x10~?® MeV-b
and d5(Ecm)/dEcM|Ecu=0=4-52 x102% b quoted in (Bahcall and Ulrich, 1988).

C. The A::3 radistive capture reactions

The low-energy three-body reactions we consider in this subsection are particularly important, since recent advances
in mimerical methods make it now possible to calculate bound and continwum (both dn and dp) wave functions vary
accurately. Thus the comparison with experimental data, which by now are quite extensive and not limited to just
total cross sections but including also spin observables, is not hindered by uncertainties in the many-body theory.

1. The *H{n~] H radiotive capture

The cross section for the thermal neutron radiative capture on deuterium was most recently measured to be o =
0.508 £ 0.015 mb (Jurney, Bendt, and Browne, 1982), in agreement with the results of eatlier experiments {Kaplan,
Ringo, and Wilzbach, 1952, Merritt, Taylor, and Boyd, 1958). In the late eighties, measurements of both the photon
polarization following polerized neutron capture (Konijnenberg et al, 1988}, and y-emisston after polarized neutron
capture from polarized deuterons (Kenijnenberg, 1990) were also carried out.

The theory of the ?H{n,v)°H capture reaction has a long history. The “pseudo-orthogonality” between the 3H
ground state and nd doublet or quartet state inhibiting the T.M *% transition In IA for this process, and thus explaining
the smallness of its cross section when compared to that for the *H{n, ¥)*H reaction, o = 334.5 £ 0.5 mb, was first
pointed out by Schiff (1937} Later, Phillips (1972) emphasized the importance of initial state interactions and two-
body currents to the capture reaction in & three-body model calculation, by considering a central, separable interaction-
In rmore recent years, a series of calculations of increasing sophistication with regard to the description of both the initial
and final state wave functions and two-body current model were carried out (Hadjimichael, 1973, Torre and Goulard,
1683). These efforts culminated in the 1990 Friar et al. (Friar, Gibson and Payne, 1990) calculation of the 2H{n,7)*H
total cross section, quartet capture fraction, and photon polarization, based on converged bound and continuum
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state Faddeev wave functions, corresponding to a variety of realistic Hamiltonian models with two- and three-nucleon
interactions, and a nuclear electromagnetic current operator, including the lorg-range tvo-body components associated
with pion exchange and the virtnal excitation of intermediate A-resonances. Within this framework, Friar et al. clearly
showed the importance of initial state interactions and two-body current contributions. They also showed that both
the calculated cross section and photon polarization parameter could be in good quantitative agreement with the
experimental values, if the cutoff A, at the x VN vertices in the two-body currents was taken in the range 1050 MeV
< A, £ 1200 MeV, depending on the particutar combination of two- and three-body interactions considered (see
Figs. 52-53).

More recently, CHH wave functions obtained from either the Argonne t44 two-nucleon (Wiringa, Smith, and
Ainsworth, 1984) and Urbana VIII three-nucleon (Wiringa, 1991} interactions (AV14/VIII), or the Argonne w)g
two-nucieon (Wiringa, Stoks, and Schiavilla, 1995) and Urbana IX three-nucleon (Pudliner et al., 1995) interactions
(AV18/IX), and including A-admixtures, were also used to study this reaction (Viviani, Schiavilla, and Kievsky,
1996). The nuclear electromagnetic current in these calculations consists of one- and two-body components, the latter
constructed with the (current-conserving) Riska prescription. The low-energy scattering parameters obtained with
the CHH d+N wave Ffunctions corresponding to the AV14/VIII model are in excellent agreement with the Faddeev
results (Hiiber et al., 1995).

At thermal energies the reaction proceeds through S-wave capture predominantly via magnetic dipole transitions
THM*5(01£) and 77*€(043) from the initial doublet J=1/2 and quartet J=3/2 dn scattering states (the notation for
the muitipole operator reduced matrix elements (RME} is that introduced in subsection A}. In addition, there is a
small contribution due to an electric quadrupole transition ZF'(032) from the initial quarret state.

The results for the cross section and photon polarization parameter, obtained with the AV14/VIII and AV18/IX
Hamiltonian models, are listed in Table XVII, along with the experimental data {see table for notation). The cross
section in IA is calculated to be approximately a factor 2 smaller than the measured value, while the IA+ - 4+ A
caleulations based on the AV14/VIII and AV18/IX Hamiltonians overestimate the experimental value by 18 % and 14
%, respectively. It should be noted, however, that the common perturbative treatment of A-isobar degrees of freedom
{row labeled A+ - - -+ ApT) leads to a significant increase of the discrepancy between theory and experiment (Viviani,
Schiavilla, and Kievsky, 1896).

The photon polarization parameter is very sensitive to two-body currents, as can be seen from Table XVII and
Fig. 53. More interesting is its sensitivity to the smalt 2 RME, particularly for the AV14/VIiI Hamiltonian. In S-wave
capture this matrix element is predomlinantly due to transitions S(*H) —+ D{*H} and D(*H) — S(3H), where S and D
denote §- and D-wave components in the bound state wave functions. In the case of the AV18/IX Hamiltonian, the
contributions associated with these transitions interfere destructively, thus producing a small E; RME; in contrast,
for the AV14/VIII Hamiltonian the interference beiween these contributions is constructive. Thus, the E; RME
appears Lo be very sensitive upon the D.state content of the two- and three-nucleon bound-state wave functions
and, therefore, upon the strength of the tensor force, as reflected in the large diflerence between the AV14/VIII and
AV1B/IX predictions. It is unfortunate that, due to the large vwo-body current contributions affecting the photon
polarization parameter, the sensitivity displayed by this observable to the B3 RME cannot be exploited to gain
information on the tensor interaction (Viviani, Schiavilla, and Kievsky, 1996).

Finally, we nole that the AV14/VIII prediction for the eross section in the approximation [A+PS+Apr is 0.545
mb. This result is about 15 % smaller than that reported by Friar and collaborators {Friar, Gibson and Payne, 1390)
for the same FHlamiltonian. The difference is mostly due to the different value uged for the N = A transition magnetic
moment: Viviani, Schiavilla, and Kievaky {1996) take u,na = 3 pu, while Friar et al. used p,wa = 3v2/54"Y from
the quark model, 4¥'=4.706 being the nucleon jsovector magnetic moment. Indeed, if the latter value is used for
Jyna, the CHH result becomes 0.630 mb, in much better agreement with that reported by Friar et al.. As a jast
remark, we note that the R, parameter, obtained in the IA+PS+Apr approximation by only inciuding the M; RME,
is calculated to be -0.49, again in excellent agreement with the value obtained by Friar et al..

2. The ?H{p,1 ) He radiative copture

In an experiment performed in 1995 at TUNL (Schinid et af., 1995, Schmid ¢f ol.,, 1996), the total cross section and,
for the first time, vector and tensor analyzing powers of the TH{F, ¥)’He and *H(d, 7)*He reactions were measured at
center of mass energies below 55 keV. The astrophysical S-factor, extrapolated to zero energy from the cross section
data, was found to be S{Ecy = 0) = 0.165 & 0.014 eV b, where the error includes both systematic and statistical
uncertainties (Schmid et al., 1996). This value for 5(0) is about 35 % smaller than that obtained by Griffith et
al. (Griffiths, Lal, and Scarfe, 1963) more than thirty years ago, the only other experimental determination of 5(0).
More recently, in anather experiment performed at TUNL, a different group (Ma et el., 1996) has extended the study
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of the 2H(7,v)*He and 'H(d, ¥)%He reactions at center of mass energies between 75 and 300 keV.

The radiative capture of protons on deuterons is the second reaction occurring in the pp chain, but its effect on the
energy (and neutrino} production of stars is negligible, since its rate is controlled by the much slower pp weak capture
rate preceding it. However, the 2H(p,7)*He reaction plays a more prominent role in the evolution of protostars. As
a cloud of interstellar gas collapses on itself, it begins to heat up, igniting, as its temperature reaches about 10° °K,
the 2H{p;7}*He reaction. The deuterium burning via this reaction, which occurs first in the protostellar gas, plays
the role of a thermostat in low-mass protostars, by maintaining the temperature of the core at about 16° °K (Stahler,
1988). This puts tight constraints on the mass-radius relation of the protostar core, and affects calculations of the
ustellar birthline”—the sites on the H-R diagram where stars first become lumincus. It also impacts the depletion
of {primordial, in this case) deuterium. Of course, the precise velue for the S-factor of the TH{p,7)*He reaction is
essential to provide quantitative estimates for these phenomena.

The observed linear dependence upon the energy of the S-factor as well as the observed angular distributions of the
cross section and polarization cbservables indicate that *H{p, v)*He reaction proceeds predominantly through S- and
P-wave capture (Schmid et el., 1996, Ma et al., 1996}. Such - snd P-wave capture processes have been theoretically
studied, at very low-energies, onty in the past few years with converged Faddeev and CHH wave functions, obtained
from realistic interactions including Coulomb distortion effects in the initial channel (Friar et ol, 1991, Viviani,
Schiavilla, and Kievaky, 1996}

The predicted S-factor and angular distributions of the differential cross section &,{8}, vector and tensor analyzing
powers A, (#) and Txo(#) are compared with the experimental data (Schmid et al., 1996, Ma et o, 1996) in Figs. 54-57.
The results shown correspond to calculations based on the AV18/IX Hamiltonian and CHH wave functions (Viviani,
Schiavilla, and Kievsky, 1996). Faddeev wave functions have only been used to calculate the zero-energy S-wave
contribution to the S-factor (Friar et ol, 1991).

The dominant contributions are those due to electric and magnetic dipole transitions between the initial doublet or
quartet scattering states and the final *He bound state. The transitions induced by electric and magnetic quadrupole
operators have s much weaker strength. The calculated 5 and P-wave capture contributions to the zero energy
S-factor are compared with the most recent experimental determinations (Schmid et al., 1996} in Table XVIII {see
table for notation). The Ss(Ecm = 0) is found to be 0.106 ¢V b {Viviani, Schiavilla, and Kievsky, 1996), in good
agreement with experiment, 5o {Ecy = 0)=0.109+0.01 eV b (Schmid et ol., 1996), and with the value reported
by Friar et al. {1991), 0.108 eV b. However, the experimental P-wave S-factor, .5';,"’(ECM = 0)=0.073+0.007 eV b, is
15 {10) % smaller than calculated with the AV18/IX (AV14/VIII) Hamiltonian.

Results for the S-factor in the energy range E,=0-150 keV {Ecm=0-100 keV) are shown in Fig. 54, where they
are compared withi the recent TUNL data (Schmid et al,, 1996, Ma et al., 1996) and the much older data by Griffiths,
Lal, and Scarfe {1963) . Both the absolute values and energy dependence of the TUNL data are well reproduced by
the IA+--- 4 A calculation. The enhancement due to two-body current and A-isobar contributions is substantial:
the ratios [S(IA+ - - + A)-S(IA)]/S(IA) for the §- and P-wave S-factors are found to be, respectively, 0.62 and 0.18
at 0 keV, and increase to 0.75 and 0.22 at E,=150 keV. The Griffith et al. data have large errors, and appear to be
at variance with the TUNL data.

The measured angular distributions of the energy-integrated cross saction, vector and tensor analyzing powers, and
photon linear polarization (Schmid et al., 1996) are compared with theory (Viviani, Schiavitla, and Kievaky, 1996)
in Flgs. 55-57. Note that, since the energy binning of the data would substantially increase the statistical errors,
the theoretical calculations, weighted by the energy dependence of the croas section and the target thickness, have
been integrated for the purpose of comparing them with experiment (Rice, Schmid, and Weller, 1996}. The energy
dependence of these ohservables is anyway rather weak.

The overall agreement between theory and experiment is satisfactory for all observables with the exception of A,(8}.
The latter is particularly sensitive to two-body current contributions: their effect is to reduce the results obtained
in 1A by about a factor of 3, bringing them into better agreement with the data. However, a = 30% discrepancy
between the predicted and measured A, remains unresolved. It is important to recall here that these observables,
unlike thermal cross sections, are independent of normalization issues in both theory and experiment. The origin of
this discrepancy is, at present, unclear, but perhaps suggests an incomplete dynamical picture of the process.

D. The A=4 capture reactions

While the four-nucleon bound state problem can nowadays be solved very accurately with a variety of different
techniques and realistic interactions {see Secs. III and IV}, solutions for the four-nucleon continuum problem, even
at low excitation energies, have only been attempted with the variational Monte Carle {YMC) method (Carlson,
Pandharipande and Wiringa, 1984, Carlson et al., 1990, Carlson, Pandharipande, and Schiavilla, 1991, Arriaga et ol.,
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1991). It is expected that Faddeev-Yakubvosky, CHH, and GFMC A=4 scattering-state wave functions of quality
comparable to those for the .4=3 systems will become available in the next few years.

In this section the focus is on the weak capture *He(p,e* v, )*He and radiative captures *He(n,y)*He and 2H{d,7)*He.
The thermal nentron and keV protan captures on ?He involve a transition from a *5; scattering state to the J7=0"*
4He ground state. As already pointed out, the matrix element of the cne-body {electromagnetic or Gamow-Teller)
operator bet the dominant S-state comp ta of the *He and *He bound states vanishes (Austern, 1951). Thus,
these reactions in 1A proceed through the small components of the wave functions—the 5' mixed symmetry states. For
this reason, they are sensitive to models for the wave functions and two-body electroweak operators (for which the
S — S transition is not inhibited).

Even more interesting is the dd fusion. Below 100 keV, the experimental data on the S-factor suggest that the
relevant orbital angular momentum between the dd clusters s L=0 (S-wave) (Wilkinson and Cecil, 1985, Barnes
et ol., 1988). As a consequence, because of the bosonic character of the two d clusters, only even channel-spin 5§
values are allowed, $=0 or 2. Since 07 ~ 07 electromagnetic transitions with emission (or absorption) of a single
photon are prohibited, it follows that the only allowed entrance channel is 5$;, and the transition to the 4He ground
state has T character. In the long-wavelength approximation the TF operator does not involve the nucleons’ spin
variables (it Is proportional to the charge quadrupole operater), and therefore it can only connect the =2 component
of the *He ground state, namely its D-wave orbital part. Note that the dominant two-body currents have isovector
character, and will not contribute to this 7'=0 — T=0 transition. Furthermote, the less important isoscalar two-hody
currents associated, for example, with the momentum dependence of the two-nucleon interaction, are anyway taken
into account in the long-wavelength approximation via Siegert’s theorem. Thus the radiative fusion of two deuterons
can, at low energies, provide information on the ‘He {(and H) D-state components and, indirectly, on the tensor force,
which induces these compaonents.

The above discusslon should make clear that the A=4 reactions under consideration here put exceptional demands
on the quality of models for the bound and scattering state wave functions and two-body electroweak operators.

1. The radiative * Hefn, v/ He and weak dHefp.e*uw, ' He captures

Most of the calculations of the "He(n,v}*He and *He(p,e* v, )} He cross sections have been based on shell model
descriptions of the initial- and final state nuclear wave functions, and simple meson-exchange models for the two-
body components in the electroweak current operator (essentially the Chemtob and Rho (1971) prescription with
some short-range modification). These calculations have led to contradictory results. For example, in the radiative
capture reaction, Towner and Khanna (Towner and Khanna, 1981) have found that the cross section is dominated
by exchange current contributions, whereas Tegnér and Batgholtz (Tégner and Bargholiz, 1983), and more recently
Wervelman et ol. (Wervelman et al., 1991), have found that these contributions provide only a small correction to
the cross-section value obtained in IA. Furthermore, large differences exist even between the JA values: Towner and
Khanna quote results ranging from 2 to 14 yb depending on whether harmonic oscitlator or exponential wave functions
are used to describe the *He and ‘He ground states. However, Wervelman ef al. quote an [A cross section of 50
pb. These discrepancies are presumably due to the schematic wave function models used in these calculations, and
reiterate the need for a description of these reactions besed on realistic wave functions.

More recently, VMC calculations based on the the AV14/VIIl Hamiltonlan model have been carried out (Carlson et
al., 1990, Schiavilla et al., 1992). The Monte Cario approach to the low-energy continuum has been reviewed briefly
in subsection VIII-C. In essence, it converts the scattering problem, in which the asymptotic behavior of the wave
function {phase-shift) is to be determined for a given energy, into a bound-state problem within a finite volume, in
which the energy corresponding to a prescribed boundary condition (and, therefore, phase-shift) of the wave function
on the surface of this volume is determined. The energy is determined variationally in VMC, but the method becomes
exact, if Faddeev or GFMC techniques are used to solve the bound state problem in the finite volume. However,
except for the GFMC studies of P-wave resonances in the n+*He system (Carlson and Schiavilla, 1994), to date only
VMC calculations have been attempted. These have been used to study the low-energy resonances in *He (Carlson,
Pandharipande and Wiringa, 1984) as well as the low-energy N+3He *S, (Carlson et ol, 1990} and d+d 5S; (Atriaga
et al., 1991) {to be described below) scattering state wave functions. The p+3He and n+*He scattering lengths are
found to be (10.1£0.5) fm (Carlson, Pandharipande, and Schiavilla, 1991) and (3.50£0.25) fm (Carlson et al., 1990),
respectively. These are quite close to the values of (10.2+1.4) fm {Tombrello, 1965, Berg et o, 1980, Tégner and
Bargholtz, 1983) and (3.5240.25) fm (Kaiser et al., 1977) obtained from effective range parameterizations of p+3He
and n+*He scattering data at low energies. The uncertainties in the calculated values are due to the statistical errors
associated with the Monte Carlo integration technique.

In principle, the n+*He *S; channe! is coupled to the p+ H channel as well as n+’He and p+ H 3D channels.
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This coupling has been ignored in the calcvlations performed so far, although the method above can be generalized
to treat multi-channel problems. In the specific case of the n+*He state, it is not known how these couplings, which
are anyway found to be small in a R-matrix analysis of the n+7He reaction (Hale, 1990}, would influence predictions
for ?He(n,7)*He cross section.

The cross sections for the p+*lle and n+7He captures have also been shown to be quite sensitive to the treatment
of A degrees of freedom (Schiavilta et al., 1952). Indeed, perturbative estimates of the two-body current contributions
assoclated with A excitation lead to a substantial overprediction of the measured n+2ile cross section. To date,
N+4 coupled channel calculations to describe the A=4 nuclei bound and continuum siates have not been attempted.
However, the correlation operator method used in VMC has been generalized to include one- and two-A admixtures
in the ouclear wave functions-the so-called transition-correlation operator (TCO} method, briefly discussed in Sec. V.
The TCO is constructed from interactions, such as the Argonne s (Wiringa, Smith, and Ainsworth, 1984), which
Inctude explicit A degrees of freedom.

The cross section for radiative capture of thermal neutrons on He has most recently been measured by two
groups {Wervclman et al., 1991, Wolfs et al., 1989); they quote values of {55£3) and (54+6) pb, respectively, in good
agreement with each other and with two earlier measurements (Boilinger, Specht, and Thomas, 1973, Suffert and
Berthollet, 1979), although not with the smaller value reported in (Alfimenkov et al.,, 1980). The proton weak capture
on *He cannot be measured in the energy range relevant for solar fusion. The neutrines produced by this reaction
possess the distinction, within the pp cycle, of having the larger energy. The associated small flux might be detectable
in the next genecration of solar neutrino experiments (Behcall and Ulrich, 1988).

The VMC calculated values for the He{n,v}'He cross section at thermal neutron energies and *He(p,e*v. ) He 5-
factor at zero energy are listed in Tablea XIX and XX, while those for the matrix elements of the one- and two-body
curtent contributions defined, respectively, as {{He|j Jn'He; J=1,J,=1} and {{He[A; _|p*He; J=1,J,=1}/Cy (Cp is
defined in Eq. {9.33)), are given in Tables XXI and XXIT (from Schiavilla ef al. (1992)).

Several comments are in order.

(1) The IA value for the radiative capture cross section is one order of magnitude smaller than the experimental
value,

(2) The matrix elements of the one- and (leading) two-body operators have opposite signs. Because of the resulting
canceilation, the predicted value for the cross sections of the n+?He and, particularly, p+*He captures is exceptionally
sensitive {0 the model for the two-body eleclroweak current operators.

{2) If the A contribution is estimated using perturbation theory, the radiative capture cross section is calculated
to be 112 ub, which is to be compared with an experimental value of 55 pb. Explicit inclusion of A-isobar degrees of
freedom in the nuclear wave functions, however, leads to a significant reduction of this discrepancy.

(4) In Tables XXI and XXII, the row labeled [A}4 denctes contributions due to the direct coupling of the photon
or axial current to & A, while that labeled [A], denotes renormalization corrections, namely the modification of the
purely nucleonic matrix elements due to the presence of A-isobar components in the wave functions. The latter, as
expected, has the same sign s the IA matrix element. What may be surprising is its magnitude; the ratie [A]/IA is
= (.75 {0.48) for the radiative (weak) capture. However, this result is easily understood, when one considers that the
transition operators associated with this correction, in contrast to the one-body nucleon current, have a nonvanishing
matrix clement between the dominant S-wave components of the *He and *He ground states.

{5) The two-body model dependent (MD} electromagnetic contributions due to the pmy and wwy mechanisms have
been calculated using the rather “hard”cutoff values A,=1.2 GeV and A,=A,=2 GeV ai the meson-NN vertices.
Use of “softer”values for them (as indicated for the px<y current by a study of the B(Q) deuteron structure function)
would significantly reduce their contribution.

(6) The caplure cross sections shaw a strong dependence on the scattering length. By varying the n+*He (p+°He}
scattering wave function so that the scattering length ranges from 3.25 fm (9.0 fm) to 3.75 fm (11.0 fm), which is the
range glven by the data analysis, the radiative (weak) capture cross section varies from & 1.3 {1.2) to = 0.7 (0.8) times
the present prediction. Obviously, a more accurate experimental determination of the effective range parameters for
Jow-energy n+?He and p+3He elastic scattering would be useful in ascertaining the quality of the interactions and/or
the reliability of the variational deseription of the continuum states.

(7) Finally, the NA and AA interactions and the axial N —+ A coupling are not well known. Uncertainties on the
precise value of the latter produce cross section results which, in the case of the weak capture, may differ by as much
aa a factor of 2 (Schiavilla et of, 1992).

Clearly, the substantial overprediction of the n+*He cross section s unsatisfactory. At this point, it is unclear
whether this discrepancy is due deficiencies in the VMC wave functions, or two-body current operators, or more
subtle dynamical effects (coupling to other channels or three-body currents, for example). Future calculations based
on more accurate CHH, FY, or GFMC wave functions should resolve some of these jssues.
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2. The *H{d,y)* He radiatsve capture

The 2H{d,y)*He capture, at very low energies, occurs because of the presence of D-state components in the func-
tions. Both are generated by the tensor part of the two-nucleon interaction, and this reaction can therefore provide
information, albeit indirect, on the tensor force in nuclei.

The radiative fusion of two deuterons has also important implications in nuclear astrophysics-it influences the pre-
dictions for the abundances of the primordial elements in the universe (Fowler, 1984)-as well as in fusien research (Cecil
and Newman, 1984),

Experimental and theoretical studies of the H{d,v}*He reaction have been carried out since the early fifties (Flowers
and Mandl, 1930, Meyerhof et ol., 1969, Skopik and Dodge, 1972, Poutissou and Del Bianco, 1973). In the eighties,
advances in experimental techniques and, In particular, the avallability of polarized ion beams have made it possible
to measure crosa sections and polarization observables at energies ranging from 25 keV to about 50 MeV (Welier &l al.,
1984, Weller et ol., 1986, Mellema, Wang, and Heaberli, 1986, Barnes et al., 1983, Langenbrunner et al., 1988). It is
fair to say, however, that progress in the theoretical description of this reaction has proceeded at a slower pace. Most
of the calculations have been based on the Resonating-Group-Methed (RGM) (Watcher, Mertelmeier, and Hofmann,
1988) or more phenomenological approaches (Weller ¢ al., 1984, Weller et al., 1986, Mellema, Wang, and Heaberli,
1986, Langenbrunner ¢t al., 1988, Santos et ol., 1985, Arriaga, Eiré, and Santos, 1986, Tastevin, 1986, Piekarewicz and
Koonin, 1987, Assenbaum and Langanke, 1987, Arringa et al., 1988), for which the connection with the underlying
two- and three-nucleon interactions governing nuclear dynamics becomes rather tenuous.

It the early nineties, a VMG calculation of this reaction was performed (Arriaga et ol, 1991). The experimental
data indicate that the S-factor is constant below CM energies of 500 keV, thus suggesting that the reaction proceeds
predominantly via S-wave capture. Thus the 35, state should be the only important entrance channel at these energies.
The corresponding VMC wave function ignores couplings to the Dz and *D» as well as to the n+>He and p+3H
channels. However, D-wave contributions should be suppressed because of the centrifugal barzier. Contributiong due to
couplings to the 3+1 channels are also expected to be sinall, since angular momentum and parity selection rules require
a relative orbital angular momentum of two units between these clusters, which should again be suppressed at low
energies. These conclusions are corroborated by RGM calculations (Chwieroth, Tang, and Thompsen, 1972, Hofmann,
Zahn, and Stowe, 1981, Kanada, Kaneko, and Tang, 1986).

The S-factor obtained in the VMG calculation for energies helow 500 keV was found to be about an order of
magnitude smaller than measured. To shed some light on this disastrous result, Arriaga el al. (1991) wrote the H
transition matrix element as (using a schematic notation}

{(HelByldd) = /0 ” dr(r® SV (r3 82}, (9.35)

where ¢(r;® §3) is the relative wave function between the two deuteron clusters, and the function Y{r:®5;) contains
all infermation about the bound-state wave functions and transition operator. The Y-function exhibits positive and
negative regions, which nearly cancel out. Its positive (negative) portion is essentially due to the D5 {S—+D)
transitions. Thus the value of the E; matrix element becomes very sensitive to the relative wave function ¥(r;% Sz).
Indeed, in Arriaga ef al. (1991} it was also shown that the S-factor obtained with a wave function ${r;® 8,) slightly
warse (variationally) than the optimal one was in reasonable agreement with data. This wave function had precisely
the same asymptotic behavior (phase shift) as the optimal, but had a node in the interior region. The possible
presence of inner oscillations in the relative wave function for chusters of nucleens is due to Pauli repulsion, as it has
been pointed out in the context of RGM calculations (Tamagaki and Tanaka, 1965, Okai and Park, 1966).

While the present VMC calculation is clearly unsatisfactory and needs to be improved, it is clear that this reaction
shows an interesting interplay between the D.states of the deuteron and a-particle, both of which are determined
by the tensor force, and the d+d continuum wave function. It s expected that in the next few years advances in
the deacription of the four-nucteon continuum will make it possible to study these subtle dynamical effects in a more
precise way.
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X. THREE-NUCLEON SCATTERING ABOVE BREAKUP

The pd and nd reactions provide a wealth of information about nuclear interactions. Many experiments have
been carried out, including measurements of total and differential cross sections, polarization observables, and rross-
sections in specific kinematics. These experiments provide a host of stringent tests of the nuclear interaction models,
in particular the three-nucleon interaction. An excellent review of this subject has recently been provided by Glackle
et al. (1996}, In this section we present a few of the highlights.

To date, calculations above breakup with realistic interactions have been performed only with the momentum-space
Faddeev method. However, comparisons for the breakup amplitude have been made using a simplified Malfliet-Tjon
{MT}) spin-dependent S-wave force (Frlar et ol., 1990), and hence it is reasonable to believe that other methods will
soon also be able to produce reliable results above breakup. Calculations which include the Coulomb interaction wilt
be particularly valuable.

In general, theoretical predictions are in impressive agr with experi | resulta. A first step in any
comparison with data is to examine the total cross section, which is presented in Fig. 58. The total nd cross section is
well reproduced by any of the modern realistic NN interaction models, many of which are shown in the figure. This
cross section depends only upon the low partial waves of the NN interaction, the J=4 channels give only a modest
two per cent contribution at 100 MeV. The experimental results are taken from many sources, including Fox et al.
(1950), de Juren (1950), Riddle et al. (1965), Measday and Palmieri (1966), Shirato and Koori (1968), Davis and
Barschafl (1971), Clement e al. {1972), Koori (1972}, Phillips, Yerman, and Seagrave (1980}, and Schwarz, et ol
{1983).

The total cross section is split into elastic and inelastic components, each of which has been measured. We first {urn
to elastic differential cross sections. As the momentum-space Faddeev calculations are performed without Coulemb
interaction, one would prefer to compare with nd data, The number of nd ts is unfortunately rather
small, though at a few energies both nd and pd data do exist. In Fig. 59 elasuic pd and nd data are compared with nd
Faddeev calculations. The calculations show little dependence on the NN interaction model, and are dominated by
quartet scattering {Aaron and Amado, 1966, Koike and Taniguchi, 1986). As is apparent in the figure, a substantial
discrepancy exists between theory and experiment in the low-energy regime at forward and backward angles, as one
would expect based upon the importance of the Coulomb interaction in these regions. The importance of these
Coulomb effects has been confirmed in recent calculations of Kievsky, Viviani, and Rosati {1995).

The agreement is quite good at higher energies, from 8 to 35 MeV. At yet larger energies small discrepancies again
appear, until at the largest energies (> 140 MeV) these become quite significant. Clealy, at latger energies one should
study results in & relativistic framework in order to develop a clearer understanding of the successes and failures of
NN interaction modela,

S$pin observables in elastic scattering present a very significant challenge for nuclear interaction models. Consider an
initial state with an incoming nucleon polarized along the direction P and an unpolatized dexteron, The cross section
can be defined as a sum of two terms, the unpolarized cross section plus a term proportional to the polarization:

Tely (1+ZP,A,,) , {10.1)
k

where the Ay are the nucleon analyzing powers. If My, me.m, m represents the scattering amplitude for a transition
Mg, tn —+ ty, m', then the differential cross section is simply given by:

do :
a0 = Mmmrimem (P R3] (10.2)
white the analyzing powers are obtained as a ratio
_ (Mo M)
Ap= MM {10.3)

Note that, because of parity conservation, the analyzing power components in the scattering plane (the zy-plane)
vanish-i.e., A;=A;=0-and anly A, is different from zero.

In contrast to the total cross section measurements, in the nucleon analyzing power the =2 NN forces can be
significant even at energies as low as 10 MeV. At energies abave 30 MeV, (Fig. 60) very good agreement is found
hetween theory and experiment, and also litile difference between nd and pd resolts (Glickle and Witala, 1990, Witala,
and Glackle, 1881, Tornow et ol., 1991).
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A significant discrepancy exists between theory and experiment at lower energies, however. The calculations
underestimate the data by approximately 30% at 10 MeV (Fig. 61). The *P; forces are dominant in determining
the vector analyzing power A,, indeed force models with different 3P, phases can yield significantly different results.
For example, the older AY14 interaction model deviates most strongly from other results as its 3P, phases are most
dilferent. More recent NN interaction models all produce similar results in sizable disagreement with the data.

Deuteron analyzing powers, describing experiments with an initial deuteron polarization, can be defined similarly.
The deuteron, being a spin-1 system, can be vector or tensor polarized. The initial polarizations of the deuteron are
described by a vector F; and a tensor P, for an unpolarized initial nucleon the cross section is

3 1
I=1 (1 +3 ;P,AE + EJZ.P,-;A,-,) . (10.4)

The observables are often written in spherical tensor notation, in which, for example, iTy = (V3/2)A;. The
experimental situation for the deuteron analyzing power is quite similar to that for the nucleon (Witala et ol.,
1993, Sagara et of., 1994), agreement is quite good above 30-40 MeV but serlous disagreements exist at lower energles.

Current three-nucleon interaction (TNI) modets do not eliminate the A, discrepancy. Indeed, Witala, Hiiber, and
Glickle (1994) have performed calculations with the Bonn-B NV interaction and various components of the Tucson-
Melbourne TNI model, including #-r, #~r+m-p, and r-m+%-p+p-p exchanges. The corresponding results, shown in
Fig. 62, do not improve agreement with the data. The present inability of theory to reproduce the A, data constitutes
one of the remaining open problems in the few-nucleon sector.

Other observables, including tensor analyzing powers and spin-transfer coefficients, have also been measured. The
former are generally well described by the calculations, except at low energies where one would expect Coulomb force
corrections to be important (Witala et al., 1993, Sagara et al., 1994). The spin transfer coefficients are obtained from
experiments in which polarization of some of the spins in the final state ate also measured, they indicate the transfer
of polarization from an initially polarized nucleon to the final polarization of the outgoing nucleoti. The spin-transfer
coefficients show some limited dependence on the NN interaction model, and can also be fairly well described in
calculations using modern NV interaction models {Sydow et ol., 1994).

We now turn to the 3V breakup process. Here the available phase space is much larger {the number of independent
momentum components is five after using energy and momentum conservation), so a much wider range of kinematics
can in principle be measured. Two particular sets of kinematics have been particularly well studied. The first case
occurs when in the final state one nucleon is nearly at rest in the kab system, the so-catled quasifree scattering (QFS})
process. The initial motivation for studying this case was the belief that the cross section would be dominated by the
scattering of two nucleons, with the third near-zero momentum nucleon acting essentially as a spectator.

In QFS ki tics the domi process should be single-nucleon scattering {Chew, 1950, Kottler, 1965), that is
T = t'9E, and thus

{doila|9} == {¢ol(1 + E}Elg} . (10.5)

This ylelds the product of an essentially on-shell N ¥ #/2l.matrix and the deuteron state at zero momentum. Such
calculations indeed see a peak near the quasi-free conditions, but higher order corrections can he important. The latter
can in principle be calculated in & multiple-scattering series, but convergence in such a scheme can be problematic,
particularly at energies significantly below 100 MeV (Glickle et al., 1996). Above 100 MeV, inclusion of the first-order
term in the rescaltering series leads to essentially converged results.

Complete calculations are also available, and demonstrate that rescattering effects can be quite important at lower
energies. Theoretical predictions for pd scattering at energies between 10 and 65 MeV are compared with experimental
data in Fig. 63. Again different NV interaction models produce similar results. Except at the highest energy, theory
always overestimates data in the region of the quasi elastic peak. Discrepanties at lower energies could be due to
Coulomb effects-it will be quite valuable to have full calculations including the Coulomb interaction.

The second set of kinematics often considered is when two nucleons leave the interaction region with nearly equal
momenta. In such a case the final state interactions between these two outgoing nucleons are necessarily strong.
Indeed, this configuration has been seen as providing information on the nn scattering length. In the past, the
Watson-Migdal approximation (Watson, 1952, Golberger and Watson, 1964) has often been used to extract the nn
scattering length from FSI peaks in the nd breakup process. In that approximation, the absolute square of the breakup
amplitude i3 factored into an energy-independent constant € and an enhancement factor:

P+ [1,fr0 Iy 2,,'(r¢.c.}]2
P+ (=1ja+rop?/2)"

&
Hhdi,d5

= k,Clro/2 {10.6)
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where r and a are the effective range and scattering length for the nna system and p is the relative momentum of the
two neutrons. Complete calculations indicate that such an analysis should be adequate to determine the scattering
length to approximately 0.5 fm. Investigation of charge-symmetry-breaking effects will require smaller uvacertaintics,
however.

A first test of the possibility of extracting the nn scattering length is to try to reproduce the experimentally well-
known ng scattering lengths from np FSI peaks messured in pd scattering. Comparisons of theory to experimental pd
and nd results in the region of the np F5I peak are presented in Fig. 64, the agreement between theory and experiment
is quite good. The experimental np scattering length is —23.74 fn, and one comes closest to reproducing this value at
E=13 MeV, where an extraction from pd scattering yields approximately (-23.3£0.2) fm for the CD-Bonn and Nijm
interactions and (~23.5+0.2) fm for the Nijm93. Extractions at other energies range from (-23.0%0.3} fm at 10.5 MeV
to (-24.240.3) fm at 19 MeV. Obviously TNI and the Coulomb interaction can affect the extracted scattering lengths.
Comparisons between experiment and theory also require a precise simulation of the experimental acceptance in the
detectors.
= Though quite a few nn FSI peak measurements have been published quite some time ago, the details are not specific
enough to reproduce in numerical simulations. A fairly recant nn FSI peak has been measured at 13 MeV (Gebhardt
et ai., 1993). The results of this experiment have been analyzed by Witala et al. (1995) and again with more modern
NN interaction models in Glickle et al. (1996). The extracted value of ap, i -14-40 Im, and is nearly independent of
which of the modern N IV interactions is chosen. However, the shape of the data i not well reproduced by theory. This
extracted value is far from the result of —18.6(3) fm obtained from analyses of m absorption on the deuteron (Gabloud
et al., 1979, Schori et al., 1987). Other measurements in this kinematical regime are underway (Tornow, Witala, and
Brown, 1995}

Two other “special” final-state configurations have drawn some interest, the collinear and star configurations. In
the former, one nuclecn is at reat in the center-of-mass system. In the star configuration the nucleons emerge each
with the same energy and their momentum directions are separated by 120 degrees_ If the plane of the momenta lies
perpendicular to the beam axis, this configuration is often called the space-star configuration. The earliest mativation
for studying these two configurations is that the spin aged two-pion exchange three-nucleon interaction is repulsive
in a collinear geometry and attractive in an equilateral triangle configuration.

The results obtained in the collinear configuration are generally in good agreement with experiment {Witala, Cor-
nelius, and Glsckle, 1988, Rauprich et al.,, 1991, Witala, Glockle, and Kamada, 1891, Allet ¢t al., 1994). Experiments
are sometimes contradictory, however. In one case a hump is seen in the nd data near the point of collinearity, al-
though no such hump is apparent in the pd data. Therefore, more accurate data are needed before definite conclusions
can be drawn,

Experimental results in the star configuration are at variance with theory, at least at low energles where the partial
waves with j < 2 are important. The results are fairly insensitive to the choice of NV interaction, however. Studies
of this configuration were originally motivated by the fact that TNI effects could be particulalry important. Again,
though, the Coulomb distorsion of the initial and final wave functions must be included before rigorous conclusions
can be drawn. At 10 MeV theory agrees with one set of nd data (Stephan et al., 1989) but is in disagreement
with another (Finckh, 1990}. At 13 MeV the nd and pd data differ strongly and theory lies in between. A recent
remeasurement by Tornow el al. (1995) supports the earlier nd data, and hence the discrepancies do seem significant.

Many othet experiments and calculations have been performed, including breakup results in different kinematics
and measu of spin-transfer observables. In general, the calculations now seem to be able to describe the
scattering data quite well. In the few exceptions that exist, notably the low-energy A, ohservables, current TNI
models do not seem to improve the situation. Significant advances in theoty can be expected, as it becomes possible
to perform scattering calculations above breakup with the Coulomb interaction. The combination of a huge amount
of experimental data and an accurate calculational ability will provide an important regime for testing and improving
TNI models.
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XI. NUCLEAR RESPONSE

The response to electromagnetic and hadrenic probes provides direct information on dynamics in the nucleus.
The rich structure of nuclear interactions and currents, combined with the availability of different probes, offer the
opportunity to study many intriguing aspects of nuclear dynammics. A comprehensive study of nuclear response requires
understanding of the nuclear ground-state wave function, couplings of the various probes to the nucleus, and final-
state interactions. In this section we first describe the theoretical framework for studying nuclear response, and then
discuss electromagnetic and hadronic response.

A. Theory and calculations

Response functions are obtained from Inclusive experiments, essentially sssuming that the cross section is dominated
by the exchange of a single {virtual} boson. In the electromagnetic case, a virtual photon is coupled to the nucleus
through the nuclear charge or current operators, Eqs. (5.1) and (5.2). For unpolarized electrons and nuclei the inclusive
cross-section in the one-photon-exchange approximation is given by:

dq

o dQ

where o4, vr, and vy have been defined in Eqs. (6.2)~{6.4). Thus the longitudinal (R (q,w)) and transverse {Rr{q,w))

response functions can be extracted from messutements at different angles and fixed q and w. For hadrons, a high-

energy mucleon passes near the nucleus, and interacts once by exchanging a virtual meson. In the approximation
where there is only time for a single scattering to take place, a nuclear response function can be extracted.

Here we consider response functions in a non-relativistic framework. Extengions of the definitions of the response to

the relativistic case are straightforward. However, relativistic schemes which include FSI and two-nucleon processes

while respecting Poincare- and gauge-invariance, are less well-developed Generically, a response function is given by:

Rlg.wy =3 (0" (a)lf) (fle(a}i0) §lw — (B - Eo)] . (11.2)
s

= om[veBe(qw) + err(q.W)] ' (1.1}

where the sum runs over all final states of the aystem |f). The coupling p is determined by the probe, initially we
diseuss a generic coupling. This coupling can depend upon one- and two-nucleon operators {and possibly more),
including dependence upon the orientation of the nucleen's spin and isospin.

In the simplest models of nuclear response, the plane-wave-impulse-approximation (PWIA), the response functions
are gbtained solely from the nuclear ground state mamentum distributions and the nucleon form factors. The response
is assumed to be given by an incoherent sum of scattering off single nucleona which prapagate freely in the final state.
This simple moedel provides a baseline with which to gauge more realistic calculations.

In the PWIA, the sum over final states is carried out by assuming that the struck nucleon is transferred from an
initial momentum p to a free particle state of inal momentum q + p, and that the residual A-~1 system is unaflected.
The PWIA is expected to be accurate at high momentum transfers, where coherent scattering effects and final-state
interactions are small. For a momentum-independent coupling, the PWIA response is obtained from a convolution of
the nucleon’s inktial momentum distribution with the energy-conserving é-function. For example, for the dominant
proton coupling in the longitudinal response, it is given by (after dividing out the square of the proton charge form
factor): 7 N

T

2
Rppwiala,w) = j dp No(p} é [u ~ B, - ("2+_m‘1} - mpT)m , (1.3

where Np(p) is the proton momentum distribution in the ground state. The PWIA ignores the effects of nuclear
binding it the initial state, replacing it with an average binding energy E,. The remaining terms in the brackets are
the final energies of the struck nucleon and the recoiling A-1 particle system, respectively.

To go beyond the PWIA, it is useful to write the response in terms of the real-time propagation of the final state:

o0
Rigw) = = Re [ dr 4500l (a) e *4pfa)0, (L)
1 ow
==Re / dt o rE A 0} (11.5)
r ]
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By introducing the spectral function, the effects of binding in the initial ground-state wave function and the residual
interactions of the “spectator” nucleons can also be included. The spectral function S{p, E) is defined as the proba-
bility of removing a nucleon of momentum p in the nuclear ground state and leaving the residuat A-1 system with an
excitation energy E = E#;! — Ef-see Eq. (7.46). Ignoring coherent acattering processes and the interaction of the
struck nucleon with the remaining nucleons, we obtain:

Alq.t) = f dp dE ${p, E)e~[FrEoripratiam]e {11.6)

where S(p, E) is the spectral function defined in Eq. (7.46). The integrat over time in Eq. (11.5) then yields a simpte
energy-conserving delta function. For example, the longitudinal response is given by:

3
Russtas) = [ap o Stp. 0y 8 fu-£ - D] (11.7)
where Sp(p, E) is the proton spectral function.

Ignoring the energy dependence in the spectral function reproduces the PWIA approximation, as integrating S(p, £)
over the energy loas recovers the momentum distribution. At Jarge values of the momentum transfer, the spectral
function approximation i accurate because the cross section is dominated by striking & single nucleon, and that
nucleon is ejected faster than the typical time scale of a nuclear interaction. Indeed, this approximation has been
used extensively to study y-scaling (Ciofi degli Atti, 1992), at least in part to obtain information about the nuclear
momentum distributions.

Often, though, we are interested in experiments at more modest values of momentum transfer, where final-state
interactions and two-nucleon couplings are important. In light nuclei, it is feasible to go beyond the simple approx-
imattons discussed above. Indeed, much of the interesting physics is obtained only when ground-state correlations,
two-body currents, and final-state interactions are included. We first address the methods used to address these
physics issues.

In the deuteron, it is relatively straightforward to explicitly calculate the final scattering states, and sum over them
to obtain the response. Experimentally, the deuteron can be used to study a variety of interesting physics, including,
for example, relativistic effects in electron ecattering and reaction mechanisms in hadronic experiments. Since the
deuteron is 30 weakly bound, the interesting interaction effects are comparatively small.

In three-nucleon aystems, it is still possible to calculate the final states explicitly, and hence compute the response
by summing over final states. To date, calculations have been performed for longitudinal- and transverse electron
scattering in A=3 (Golak et al., 1995). However, present calculations include only single-nucleon couplings, inclusion
of the two-bady currents is necessary for a realistic comparlson with data in the transverse channel. Proceeding much
along the lines of the 3V scattering equations described previously, we wish to calculate the nuclear matrix element

N = (¥ |o(a)|¥o) . (11.8)
The final atate W}_’ is decomposed in terms of Faddeev amplitudes as:
19 =+ Py (1.9
where E ia the permutation operator E = EjEay + E;3Egy. The Faddeev amplitude ¢ obeys the equation
v =y + Gn(:_)T‘V"(_) R {11.10)

where the driving term t is different for two- and three-bedy fragmentation. For nd breakup ¢y i3 just the product
of a deuteron state and a plane wave in the relative motion of the neutron and deuteron. Inserting Eq. (11.10) into

Eq. (11.8} yields
N = {up](1 + E}p(ad¥o) + (YolETGoll + E)o(q)l¥e) . (1.11)

The first term is the PWIA and the second recovers the Bnal state interaction. This re-scattering term can be
written {Glockle ef af., 1996):

NE = (l(1+ E)Y) (11.12)

where U is obtained as a solution of a Faddeev-type integral equation:
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U = TGo(1 + E)pla)| T} + TGoEIL) . (11.13)

The keenel in this equation is the same as for 3V scattering in Eq. {8.29), but the driving term is different, containing
the current operator acting upon the ground state.

Beyond A=3, calculations have so far been performed by considering transforms of the nuclear response functions.
Thia subject has quite a long history, both within nuclear physics and elsewhere (Baym and Mermin, 1961, Thirumalai
and Berne, 1983, Gubernatis ¢t ol., 1991, Boninsegni and Ceperley, 1996). The basic idea is to sum over a set of
final states in order to make as “complete” a calculation as possible. Complete here means full inclusion of final-
state interactions and realistic couplings. Summing over final states allows one to avoid having to implement specific
boundary conditions, one of the most difficult parts of dealing with quantum few- and many-body problems in the
scattering regime.

We first consider the Lorenz-kerne! transfortn. To date, this method has been applied with realistic interactions to
the longitudinal scattering of electrons in A=3 {Martinelli ¢ al, 1993), and with approximate treatment of tensor

interactions in A=4 {Efras, Leid and Orlandini, 1997). The Lorenz-kernel transformed response is given by:
S{q,w)
= - . 11.14
L{q,ar.9/) fdua-—r———! T —onF ( )

This transformation allows one to emphasize the response for the enecgies near w=og, with a width of ¢y, The
response L can be calculated directly from an amplitude $:

1
H-Ey—op+iar

where the transformed response is given by the norm of |&)-that is, L(k,on,01) = {#[$). The adva!'ltage in this
formulation is that for non-zero o the boundary conditions are simple because the state |®) is exponentially damped

at large distances. .
The state |[$} can be written in terms of Faddeev components [#) = ¥, ¢;. Using standard manipulations, one

obtaing

[#) = ea)le} (11.15)

o> = g (- Ho)9)

Ey+op —-iop —

1
—mﬂ(ﬂl‘po) ' (11.16)
where H is the full Hamiltonian and H, is the kinetic energy operator. This can again be recast into an inhomogeneous
Faddeev equation, here evaluated at complex energy Eg + og — ioy.

It is easier to compute L for larger o, because one i3 averaging over more final states. Consequently, larger oy
implies less oscillations in the function [1/(H ~ Eg — o4 = io;))p{q)}|0}, the norm of which yields L{q,or,or). For
the same reason, though, it is more difficult to obtain the desired response function $({q,w)} from the transformed
response with larger values of or. In the quasi-elastic regime, a value of oy of around 10 MeV is deemed sufficient.
Near threshold, it may prove advantageous to subtract the response of isolated states when calculating L{q, o8,91),
a3 the response to these states can be calculated explicitly.

Exact calculations beyond A=3 have so far relied upon another integral transform of the response, the Euclidean
response, or Laplace transform of 5{q,w). ‘The Euclidean response is defined as:

Bl = [ dvexpl-(H - EalrIS(a.u), R

its name derives from the fact that it can be obtained by the replacement of the real time ¢ in the nuclear propagator,
Eq. (11.5), by an fmaginary time 7. The Euclidean response integrates over even more final states than the.Lorenz
kernal, and hence it is more difficult to go back directly 10 5(q,w). However, it is easiet to calculate than L, particularly

for systems with many degrees of freedom. ]
Principally this is because £{q,7) can be cast in a path-integral form which can be naturally evaluated with Monte

Catlo techniques:
E{q,7) = (0lo"(a)} exp[-(H - Ep)r] ola}|0). (11.18)
Indeed, for condensed matter systems with spin-independent interactions, systems with hundreds of interacting parti-

cles can be treated (Boninsegni and Ceperley, 1996). The path-integral representation of E(q, r) is useful both from 2
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computational point of view as well as a way of understanding some of the important experimental features of nuclear
response in the quasi-elastic regime.

At r=0, the Euclidean response is equivalent to the associated sum rule (for example. Fq. (7.29)), while the
derivatives with respect to r are just the energy-weighted sum rules (Eq. (7.39)). For larger r, increasingly lower-
energy contributions to the response are weighted more strongly, until in the large  limit the elastic form factors are
recovered. The fact that the calculation is placed in a path-integral framework means that there are strong correlations
in the calculation between closely apaced values of T in the response. This [act has been exploited to attempt Lo
recover information on 5(q,«} from path-integral calculations using Bayesian probability theory ((Gubernatis ef al.,
1991, Boninsegni and Ceperley, 1996}, This has proven succeasful in the quasi-elastic regime in the condensed matter
problem of the response of Helium, but less so at lower energies where strong resonances occur (Boninsegni and
Ceperley, 1996).

To illustrate the basic concept of the path-integral calculation, the response of a probe which ts coupled to nucleons
only (p(q) = Y., exp(iq - r) would be given by the sum over paths:

Elgry= 3. dolgiri-vi) . (11.19)
patha i<}

where the paths run from initial points R = {ry,...,r;, ...} to R’ = [r',. . } and are weighted with a probability
proportional to {¥g|R"){R'|exp|—(H — Eo)r|[|R}{R|¥o). In the simplest model of longitudina! electron scattering,
where the coupling g is only to individual protons, the Euclidean response would also be given by the sum over paths:

’

E(qr) Y. =jldr-viD , (11.20)
paths,i<y

but the sum now extends only over the initial and final positions of the protens. Thus, the charge-dependence of the
muclear interaction means that the charge propagates muich faster than the nucteons. This distinction is an important
point in understanding the various nuclear response functions, which we discuss below.

B. Comparison with experiment

By now a rich set of experimental data is available on the nuclear response. In light nuclei, the electromagnetic
longitudinal and transverse responses have been measured in the deuteron, the trinucleons, and the alpha particle. In
addition, hadronic experiments have been used to extract the spin-isospin responses both in the deuteron and heavier
systems.

When compared with simple PWIA results, these experiments show several intriguing features, features which can
help in providing a more complete understanding of the nuclear response. Particularly striking is the suppression in
the ratio of longitudinal to transverse electromagnetic response near the quasi-elastic peak. This suppression occurs
in all nuclej with A > 4, but is absent for A=2 and 3. In addition, the longitudinal response shows significantly more
strength at energies significantly away from the quasi-elastic peak than occurs in PWIA estimates of the response.

Hadronic probes have provided additional important informatlon. In particular the peak of the (p,n) response
is shifted toward significantly higher energies than the standard peak w = g% /2m observed in (p,p) measurements
(Chrien et al., 1980, Taddeucci, 1991, Carlson and Schiavilla, 1994). Finally, there has been much discussion of recent
measurements of the spin-longitudinal and spin-teansverse response {Taddeucei et ol., 1994). Comparisons of all these
results with “complete® calculations are extremely valuable in understanding nuclear dynamics in the quasi-elastic
regime.

We first discuss the results obtained in electron scattering. For unpolarized electrons and targets, the inclusive cross
section is obtained as a sum of longitudinal and transverse response functions times the assaciated couplings of the
virtual photon. The loagitudinal and trangverse responses have been obtained al the Bates (Dow «t al,, 1088, Dytman
el ol., 1988, von Reden et al., 1990) and Saclay {Marchand e al., 1985, Zghiche ef ol., 1993) accelerator facilities for
different nuckei and a sizable range of kinematics.

In any experiment, the cross section is & sum of longitudinal and transverse terms, and hence one must extrapolate
the results at different kinematics to obtain the longitudinal and tranaverse response. Tn light nuclei this appears to
be well under control, as the experimental results from different laboratories are in agreement. In heavier systems,
congiderable discrepancies persist even at the same kinematics, and an unambiguous separation into longitudinal and
Lransverse reaponse is problematic {Jourdan, 1995, Jourdan, 1096).

The longitudinal response is given by:

&7

Relq.w) =Y (0le"(a)| /M flp(a)i0) 6 (w + En — By} . (11.21)
!

where g{q) is the nuclear charge operator in Eq. {5.1). In the non-relativistic lim, recall

1+
— lq r, L) 1
pla = e T (11.22)

Relativistic corrections and two-body contributions to the charge operator have also been considered, but numerically
they are found to be quite small.
The transverse response is given by:

Rr(a.w) = 3_ (NI HI@DI0) 6w + Eo - Ef} . {11.23)
s

Here the current operator j(q) contains both one- and two-body terms, the latter being required for current conser-
vation.

Experimentally, after scaling by the appropriate single-nucleon couplings, the ratio of the transverse to longitudinal
response is significantly enhanced in the regime of the quasi-elastic peak (v = wye = ¢7/2m) for *He and larger
nuclei, but for A=2 and 3 it is very near one. PWIA calculations yield too much strengih in the longitudinal response
near the peak, and too little at energies well below or above the peak. Various exotic mechanisms, including a static
nucleon “swelling”, have been introduced to explain one or more of these effects. However, as we shall see, this occurs
quite naturally in complete calculations of the nuclear response.

We first consider the longitudinal and transverse responses of the deuteron, which are presented in Figs. 65-66.
The figures present the calculation in the impulse approximation (with one-body charge and current operators) and
the full response. Note that for the speciol case of the deuteron, the full calculation is quite close to the impulse
approximation. The primary reason is that the struck nucleon can interact with only one cther nucleon, and that the
average separation between the two nucleons is twice the deuteron’s rma radius, or about 4 fm. Consequently, the
effects of two-body currents in the deuteron are quite small. In addition, the effects of final-state interactions are also
quite small, except in the very low-energy part of the response. As is apparent in the figures, the calculations agree
quite well with experimenta! results in the case of the deuteron. In the longitudinal case, the impulse and full charge
operators produce nearly identical results. In the traneverse channel, the two-body currents do have some effect.

We next present results for the trinucteons, the longitudinal response at 250 and 300 MeV /c are given in Figs. 67-68.
The momentum-space Faddeev calculations are reproduced from Golak et gl (1995). In general the responge is quite
well reproduced, except for a slight overprediction of the *He response at 300 MeV/c. Calculations of the transverse
response have also been presented, these significantly underpredict the available data at both momentum transfers.
However, only single-nucleon current operators have been included in these calculations.

Complete Faddeev calculations which include two-nucleon currents are not yet available Consequently, we also
show the Euclidean longitudinal and transverse responses for 3He at 400 MeV /e in Figs. 68-70. In the figures, a
scaled response E{g, 1) = explg®r/(2m)) E(q, 7} hea been plotted. This scaling removes trivial kinematic effects, and
emphasizes the mote interesting interaction effects. The scaled response of an isolated proton would simply be given
by E{q,7) = 1.

For the longitudinal response, we show only the “lull” response, that obtained with cue- and two-body charge
operators. In the tranaverse case several curves are presented, the measured response as well as the responses for the
impulse (one-body) and full (one- and two-body} current operators. [n‘the longitudinal channel, the contribution due
to the neutron charge operator, relativistic corrections, and two-nucleon couplings are found to be quite small, the
response from the single-proton cowpling is nearly identical to the full resylt.

The imaginary-time response Ep{g,7) measures the propagation of charge with imaginary time in a nucleus. In
the limit = = 0, the propagator (R|exp{—(H — Eg)r]iR’) = §(R — R’). As 7 increases, the nucleons move, the
imaginary time propagator is proportional to exp[-m/(27)(R ~ R')?|. This is the part of the response that comes
from the PWIA, in the limit that we consider a struck nucleon only (imagining that the propagator acting on the
spectator nucleons can be approximated as one), we cbtain the response due to the nucleon’s momentum distribution
in the ground state. Including the interactions of the spectator nucleons with each other recovers the spectral function
approximation to the response.

However, another effect is also important. As the system evolves with imaginary time, the charge can propagate by
charge exchange interactions, the most important being cne pion exchange. The charge exchange implics a hardening
of the response, a shilt to higher energy, as the portion of the response due to single-nucleon processes is reduced. In
a static picture of the longitudinal response, the part of the response due to the isovector part of the charge operator
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is shifted to higher energy as it costs energy to change the isospin of the mucleus. In the path-integral picture,
the hardening appears as an increased propagation distance {or equivalently, a reduced effective mass) associated
with nuclear charge exchange. In effect, the virtual photon sees an “enlarged™ micleon for processes in which the
momentum of the photon is comparable to that of typical pions in the nucleus. At even larger T (lower energies)
this effect saturates because only a finite number of nucleons are exchanging charge and the total charge must be
conserved. In this regime the attractive nature of the average nuclesr interaction Increases the response.

Of course, this charge-exchange mechanism should also exist in the single-nucleon transverse coupling, since it is
largely 1sovector. The scaled transverse data for A=3 are plotted in Fig. 70. In fact, this does occur, as the response
that would be obtained from single-nucleon couplings alone is substantially quenched due to charge exchange. However,
when the full current is included, the exchange currents add to the final response and yield a result rather different
than that obtained for single-nucleon {impulse) currents. As is apparent in the figures, the agreement with experiment
is fairly satisfactory. The energy dependence is reproduced quite well, and the normalization is within 10 %.

The situaticn is even more dramatic in the a-particle, a3 the difference between PWIA and "complete” calculations
ta much larger. This is not entirely sutprising, since the a-particle has twice as many palrs as the trinucleons, and the
density is somewhat larger. Hence, the effect of charge exchange in the longitudinal response is even larger. The scaled
Euclidean response  is presented in Fig. 71. The figure shows both the truncated response, which assumes that there
i8 no response above the experimental w,y, and the extrapolated response obtained from sum rule considerations.

The experimental values of the response are available only up to a finite energy wmas. It is possible to estimate the
reaponse at higher energies through sum rule techniques {Carlson and Schiavilla, 1994), this extrapolation introduces
an uncertainty in the measured response at small 7, which ia indicated by the difference between the dashed line and
the points labeled “Saclay” in the figure. The response above wme I8 exponentially suppressed at larger T, and by
7 #= 0.015 MeV this difference is negligible.

Again the charge-exchange mechanism produces a quenching of the response in the Jongitudinal channel. At large
7 {low w), though, the overall attractive nature of the nuclear interaction increases the response. The PWIA or
spectral function approximations do not really contain information on the low-lying states of the A-body system, so
such cabeulattons cannot be expected to work well in this regime. As is apparent in the figure, both the normalization
and the energy dependence of the PWIA calculation are quite poor.

In the transverse channel, the two-body currents provide a very important enhancement to the response. Again,
the calculated responses are in good agreement with experimental results. We should stress that this agreement is not
obtained if realistic ground state correlations, final state interactions, and two-body currents are not sl considered.

To further the understanding of the dynamical mechznisms in nuclear quasi-elastic response, one can also consider
the response of thie nucleus to idealized single-nucleon couplings. The nucleon, proton, isovector, spin-longitudinal,
and spin-transverse couplings are defined, respectively, as:

prlg) =3 £tm (11.24)
i
pla) =Zi: gar % , {11.25)
pefa) =) ¥ my,, (11.26)
Sort(@) =3 ™oy 8) T4y, (11.27)
i
porrla) =¥ ¥ (o x §) Tuyi . (11.28)
‘

For each coupling p, one obtains an associated response, which _we normalize such that Folg = 00,7 =0) = 1.
These reaponses are shown in the a-particle in Fig. 73, except for E,, which is a simple weighted average of the apin-
longitudinal and spin-transverse isovector responses. In the large = limit, the only contribution to E , is from elastic
scattering, and hence here Ey = E,/2, given the normalization above. There is no clastic scattering contribution to
the isovector responses in the a-particle, and hence they are much smaller at large . The rapid increase (decrease)
of Enp (Egrpq Egrr ) 8t large (small)  indicates that there is substantial response at w < wg (W > woel

The charge-exchange effect described above occurs in all isovector responses. Indeed, this effect has been observed
in comparisons of quasi-elastic spectra obtained in (p, p’) and {p, n) reactions (Fig. 74) (Chrien et al., 1980, Taddeucci,
1991, Carlson and Schiavilla, 1994). More recent experiments have measured the spin-longitudinal and spin-transverse
responses in heavier nuclei {Taddeuncci et al., 1994}, These experiments find a tranaverse response much larger than
that obtained in {raditional random-phase approximation (RPA) calculations.
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In contrast to a simple interpretation of the experimental results, microscopic calculations find an excess strength in
the spin-longitudinal response, both in sum rule calculations in 1*0 and in the Euclidean response in the alpha particle
(Pandharipande et al., 1994). However, this enhancement is significantly smaller than obtained in RPA calculations.
A variety of physics lssues, including couplings to more than single nucleons and multiple scattering effects, need to
be better understood before this situation is satisfactorily resolved. Experiments on several light nuclei could prove
extremely valuable in this regard, as they have in electron scattering.

Before leaving the subject of nuclear response, we should also consider recent measurements of inclusive scattering
of polarized electrons from polarized YHe (Woodward et ol, 1990, Thompson et ol., 1992, Gao et ol, 1994). By
polarizing the electrons and the target nucleus, additional response funttions can be obtained {Donnelly and Raskin,
1986). For a apin 1/2 nucleus, the additional response functions are Ry and A%, and the related spin-dependent
asymmetry:

cos 8° v By + 28in 8" cos " vrr Ry (11.29)

A= vp Ry +vrRr

where the v are again kinematic factors and ¢~ and 6~ are the polar and azimuthal angles of the target spin wich
respect to the three-momentum transfer q.

The initial motivation for these experiments was to try to extract the neutron electric and magretic forin factors
by exploiting the fact that in *He the neutron is largely polarized parallel to the spin of the nucleus {the two protons
coupling to spin-0). This idea was frst investigated by Blankleider and Woloshyn (1984) in a closure approximation,
and then by Friar et al. (1990). Later, impulse approximation calculations were performed by Ciofi degli Atti, Pace,
and Salmé {1992) and Schulze 2nd Sauer {1993). These calculations use realistic spin-dependent spectral functions
to calculate the asymmetry, but do not include the effacts of final-state interactions or two-body currents. Gao et al.
{1994) extracted a value of the neutron magnetic form factor at )7 =0.19 GeV/c? that is consistent with the dipole
parameterization. Given the significant effects of exchange currents and final-state interactions however, significant
uncertainty remains in the extraction. More complete calculations, as well as a wider range of measurements, are
likely to provide us information as much about nuclear dynamics as about the nucleon form facters.

A variety of important physics issues remain in inc¢lusive, electron scatteting experiments. They include: microscopic
calculations of the response in heavier nuclei, more accurate descriptions of the pion and delta electroproduction region,
effects of FSI and two-body currents on polatization observables, and response 1o other probes, including the weak-
Interaction couplings probed in parity-violating electron scattering. Inclusive scattering remains an imporiant tool
for studying nuclear dynamics, and a rich field for both theory and experiment.
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XIL. OUTLOOK

The last few years have seen the maturing of our techniques for predicting and calculating the properties of light
nuclei using non-relativistic quantum mechanics, as well as witnessed extensive development of relativistic methods
for the treatment of few-body systems.

Nuclear many-body theory based on non relativistic Hamiltonians with two- and three-nucleon interactions and
ong- and two-body electroweak current operators constructed consistently with these interactions, has been shown, so
far, to provide a satisfactory, quantitative description of many nuclear properties that can be reliably calculated. The
success achieved within this framework suggests that: i) nucleons are the dominant degrees of freedom in nuclei; ii)
meson-, and particulatly pion-, degrees of freedom can be eliminated in favor of effective two- and many-body operators
involving only nucleonic cocrdinates; iii} so far, no experimental evidence exists for in-medivm modifications of the
nucleon’s structure, such as ita electromagnetic form factors. Clearly, the validity of these contlusions is based on the
ability, developed in the past few years, to solve nuclear bound- and scattering-state problems very accurately. In this
respect, it is worth emphasizing that this progress coutd not have been realized without the parallel and tremendous
progress in computational resources.

13 there any clear breakdown of the above outlined view of nuclear dynamics? Its present [ailure to correctly
reproduce {Schiavilla and Riska, 1991, Van Orden, Devine, and Gross, 1995, Plessas, Christian, and Wagenbrunn,
1995) the observed deuteron structure functions and tensor polarization at relatively low momentum transfer values
is suggestive that this may be the case, although more accurate data, particularly on Ty, are needed in order to
firmly resolve the issue. These data will be forthcoming in the next few years from experiments currently underway at
NIKHEF and TINAF. A second failure consists in the inability of present two- and three-nucleon interaction models
to accurately predict the nucleon and deuteron vector analyzing powers, measured in elastic Ndand dN scattering at
energies below the three-body breakup threshold (Kievsky et ¢l, 1996). The A, and i Ty, observables appear to be
very sensitive, at the few percent level, on the values of the Py, phase shift and ey, mixing angte, which in turn
are influenced by the 3P, phase shifts in the NV interaction. Three-nuckesn interaction terms only modify marginally
present theoretical predictions. It is indeed an open question whether present N interaction models, including only
mild non-localities via momentum-dependent components, can provide a simultaneous, satisfactory description of the
polarization abservahles mentioned above. Finally, another relevant discrepancy is that between the spin-longitudinal
and spin-transverse response functions measured in quasielastic (f, i) reactions and existing theoretical predictions,
particularly the substantial underestimate of strength by the latter in the transverse channel (Taddeucci et al, 1994).
Again, forthcoming data on few-body nuclei from IUCF will be very helpful in clarifying the situation. In this
respect, Faddeev- and, possibly, hyperspherical-harmonics-based calculations of the cross section and polarization
transfer coefficients measured in the d(f, A)pp reaction should allow us to assess the validity of the factorized impulse-
approximation assumption made in the analysis of the data, and the impact on the latter of effects presently ignored-
specifically, multistep contributions to the inclusive apectrum, spin-dependent distortions, and medium modification
of the NV amplitudes.

With regard to future prospects, it now appears possible to carry out exact GFMC caleulations of the Jow-lying
spectra of H, He, Li, Be, and B isotopes with mass numbers < 10 (Pieper and Wiringa, 1996), and of the associated
elastic and inelastic electroweak transitions. These studies should allow us to test and refine the present models of
three-nucleon interactions and electroweak cutrent operators. To date, results on the A=~6 spectra indicate that the
binding energies of low-lying states of p-shell nuclei are underestimated by theory (Pieper et of, 1996). Although
three-nucleon interactions are much weaker than two-nucleon ones, they nevertheless contribute = 15 % of nuclear
binding, due to the large cancellation between kinetic and two-body potential energies. Current models for them
include a long-range part arising from two-pion exchange via excitation of intermediate A-resonances; however, the
spin-izospin structure of their short-range components are not known. It is an open question whether, in a non-
relativistic framework, it is possible to correctly reproduce the apectra of miclel via a two-nucleon interaction, fitted
to NN data, and a three-nucleon interaction, constrained by fitting the bound state energies of the few nucleons.

The GFMC methad will also allow the study of neutron drops with =~ 10 neutrons (Pudliner et al., 1996). Thesc
studies will put useful constraints on the spin-orbit and pairing interactions in nuclei, as well as on the energy-density
functionals commonly employed to model nuclei far from stability and neutron star crusts.

Of course, continuing progress in the hyperspherical-harmonies (HH) (Kieveky, Rosati, and Viviani, 1996) and
Faddeev-Yakubovsky (FY) (Glockle, 1996) approaches will lead to very precise determinations of the binding energy
of the e particle {at the fraction of ke¥ Jevel} and low energy scatlering parameters in the 3+1 and 242 elastic channels.
These calculations will be useful, for example, in setting bounds on the contribution of four-nucleon interactions to
tuclear binding.

Apother area in which substantial progress can be expected in the next few years is that of nuclear astrophysics.
Low-energy elecitoweak caplure reactions involving light nuclei have great astrophysical importance in retation to
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the mechanism for energy and neutrino production in main sequence stars, in particular the determination of the
solar neutrino flux, and in relation to the abundances of primordial elements in the universe. Examples of these
are: 2A(d, v)'He, 3He(p, et v, ) He, *He(*He,7)?Be, and *Be(p, 1)*B. The rates for some of these reactions cannot
be measured in terrestrial laboratories in the energy range typical of the stellar interior, and it is therefore crucial
to have accurate thearetical predictions for them, given their relevance for studies of stellar structure and evolution.
The HH and FY methods for A=4, and Quantum Monte Carlo (QMC) techniques, in the Variational Monte Carlo
[VMC) and possibty GFMC versions, appear suitable to attack these problems. The calculations of experimentally
accessible reactions should provide stringent tests for madels of two- and many-body electroweak current operators.
In particular, they will allow the study of a variety of related issues: the role of A degrees of freedom in nuclei; the
contribution of three-body currents associated with the three-nucleon interaction; the effect of non-localities in the
two-body currents due to relativistic corrections; the influence of charge independence breaking terms in the NN
interaction; and, in a more speculative vein, the problem of clectron screening in very low-energy nuclear reactions,
and its impact on the extrapolation of the astrophysical factor from the corresponding tow-energy data.

The prospects for an ab initio microscopic description of depton and hadren scattering from light nuclei in the
quasiclastic regime are also quite promising. The full response of the trinucleons to polarized and unpolarized probes
will be mapped out in Faddeev (Glickle, 1996} and [I1T (Kievsky, Rosatt, and Viviani, 1996) calculations. These
techniques may not be ensily extended to heavier systems, however, because of the large number of channels to
be included for converged solutions of the scattering state at the relatively high energies of interest in quasielastic
processes.

On the other hand, the integral transform method, both in its Laplace and Lorentz kernel versions {Carlson and
Schiavilla, 1994, Martinetli et of., 19935), should be very useful, at least to deal with inclusive scattering from 4 >4.
These techniques are in principle also applicable to exclusive channels (Efrcs, 1893), but whether they will provide
accurate predictions for the cross section of reactions like A(e, €'p) or Ale,e’d) is unclear at this point, simply because
practical calculations of this type have not been attempted.

This aspect of few-nucleon physics is of great importance, particularly in view of the experimental effort currently
underway or already in progress at facilities such as TINAT, Mainz, and Bates. For example, a substantial part
of the experimental program is directed toward parity-violating scattering of spin-polarized electrons. The goal is
to study the distribution and polarization of virtual strange guarks in nuclei. The proper interpretation of these
experiments requires a detailed understanding of many-body effects (Musolf et af, 1994, Musolf, Schiavilla, and
Donnelly, 1994), including those, for example, due to pair currents, strange hadron admixtures in the nuclear wave
function, or dispersive effects associated with Zy- exchanges.

Finally, the next few years should also see substantial advances in the relativistic treatment of {ew-nucleon dynamics-
a tapic we have not discussed in the present review. Broadly speaking, it is possible to identify three lines of attack: 1)
quasipotential reductions of the Bethe-Salpeter equation, such as the Blankenbecler-Sugar {Blankenbecler and Sugar,
1856) or (Gross {Gross, 1969, Gross, 1974, Gross, 1982) equations; 2) the light-front Hamiltonian dynamics (Keister
and Polyzou, 1991} 3} the Bakamijan-Thomas-Foldy {Bakamjian and Thomas, 1853, Foldy, 1961, Krajcik and Foldy,
1974, Friar, 1975) approach to the many-body theory of particles interacting via potentials.

Covariant two body quasipotential equations have been solved with realistic OBE interactions, and have been
found to give a reasonable overall description of low energy NN data (Gross, van Orden and Holinde, 1992}, and
deuteron elastic (Hummel and Tjon, 1989, Van Orden, Devine, and Gross, 1995} and inelastic (Hummel and Tjon,
1990) electromagnetic observables. Initiat calculations of the *H binding energy have also been carried out with the
Gross equation and a realistic two-nucleon interaction, including some off-shell couplings for the exchanged (scalar
and pseudoscalar) hosons (Stadler and Gross, 1997). Within this context, Stadler and Gross have shown that these
off-shell couplings play an important role in improving the description of the two-body data and in predicting the
3 binding energy. They have also argued that these couplings, in a hon-relativistic theery, Icad Lo sirong energy-
dependence of the two-body interaction as well as to many-body cffective interactions. However, a more thorough
examination of these issucs is necessary to assess their [ull impact. These gtudies will, no doubt, be forthcoming in
the next few years.

The other approach to the relativistic dynamics of few-nucleon systems is that pionecred by Bakamijar and
Thomas (Bakamjian and Thomas, 1953), and further developed by Foldy and others {Foldy, 1961, Krajcik and Foldy,
1974, Friar, 1875). This approach, discussed in Sec. II, appears to be particutarly convenient from the computational
standpoint {Carlson, Pandharipande, znd Schiavilla, 1993}, Variational Monte Carlo methods have been developed to
treat the non-localities in the kinetic energy and vy; (Forest, Arriaga, and Pandharipande, 1997), and calculations have
been carried out for the A=3 and 4 nuclei. \When compared to results obtained with a non-relativistic Hamiltonian
containing a phase-equivalent two-body interaction, the total relativistic effects produce a repulsive contribution of
0.3 MeV in *H and 1.8 MeV in *He, most of which is due to the boost corrections, respectively 0.42 MeV in 3H and
1.94 MeV in "He. The non-localities from the kinetic energy and rest frame v;; almost cance] exactly: theit overall
contribution is {~0.1240.6) MeV for *H and {-0.1740.10) MeV for *He (Forest, Arriaga, and Pandharipande, 1997).
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In Bethe-Salpeler-equation based approaches, the nucleons are described by Dirac spinors, interacting via the ex-
change of observed or “effective”mesons. The lower components of the spinors, associated with antinucteon degrees
of freedom, play an important role in these theories. On the other hand, in the Bakamijan-Thomas-Foldy method
antinucleon degrees of freedom, and indeed the composite nature of the nucleons, are subsumed into effective, phe-
nomenological interactions vy {and Vi), constrained by data. Thus, the latter approach should be useful, if the
compositeness of the nucleon is crucial in suppressing antinucleon degrees of freedom,

Quantum Monte Carlo {both VMC and GFMC) are currently being extended to accurately caleulate, using the
relativistic Hamiltontan, properties depending upon the ground and scattering states of systems with A < 6. Electro-
magnetic properties are of particular interest, since future experiments at TINAF and other facilities will involve large
momentum transfers, where relativistic effects may be important. Clearly, this will require the consistent treatment of
the electromagnetic current op and the “boost"effects (such as Lorentz contraction and Wigner spin rotation}
on the wave function. The next few years should see substantial progress made along these lines.

Although quark models of mesons and baryons (not discussed here) have been developed which give an excellent
account of the observed spectrum, their implications bave not been fully incorporated in current models of the nuclear
force. In this respect, the ability to calculate six-fermion ground states with relativistic Hamiltonians may allow us to
calculate the properties of the deuteron and the NN scattering states directly from the interactions of six constituent
guarks. However, any progress in thls direction will depend on our ability to define a realistic six-quark Hamiltonian,

In summary, substantial progress has been made in our understanding of few-nucleon physics, progress which is due
to rapid development in both experimental and theoretical techniques. The developments which we have highlighted
cover a broad range, from nuclear structure studies, to low-energy reactions, to hadronic and electroweak reaction
studies at intermediate energies. We look forward to continued development and growth in the field of few-nucleon
physics.
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TABLE 1 Experimental deuteron properties compared to recent NV interaction models; rneson-exr.haﬁge effects in pg and
@ are not included.

Experiment Argonne vip Nijm-11 Reid’'03 CD-Donn Units
As 0.8846(8)" 0.8850 0.8845 0.8853 fm'/?
] 0.0256(4)" 0.0250 0.0252 00251 0.0255
rd 1.9660(68)° 1.967 1.9675 1.9686 fin
Ha 0.857406(1)4 0.847 o
Qa 0.2855(2)" 0.270 D.271 0.270 0.270 fm?
Py 5.76 5.64 5.70 4183

*{Ericson and Rosa-Clot, 1983)
®(Rodning and Knotsen, 1990)
*(Simon, Schmitt, and Walther, 1981)
4(Lindgren, 1965}

*(Bishop and Cheung, 1979)
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TABLE II. Domiuant channels jn the Faddeev and CHH calcutations of the A=3 ground state.

channel

P

T

Spectator
{

Total
=

1

2
3
4
5

— D O

[y

LS S = = =]

i
172
12
1/2
32
3/2

1/2F
12+, 3/2+
112+, 372+
12+, 372+
1/2+,3/2

TABLE 111 Quantunt nutnbers cotresponding to channels & = 1+ 322 included in the partial wave decomposition of the wave

function ¥y. Labels A and B correspond to partitions 3+t and 2+2, respectively.

TABLE IV. Triton binding enetgy comparison for different methods.

H *He
Hamiltonian Method B (MaV) B {MeV]
PHH 7.683 7.032
AV14 Faddeev/Q 7.680%
Faddeev/R 7.670° 7014
GFMC 7.670(8)°
AVIB/IX GFMC 8.471(12)°
PHH §.475"
5.43 7.72

a | set [l l: fa fu L 3,, S5 ST, T, T
1[A[0 0 0 ¢ 0]1 12 0[0 1/2 0
2|A|0 @ 0 ¢ 0|0 1/2 0|1 /2 0
3|40 o 2 o 2[1 32 2{0 1/2 ©
4140 2 0 2 2|1 3/2 2|0 1/2 O
51410 2 2 2 01 /2000 1/2 0
6(Aflo 2 2 2 1|1 1/2 1}{0 1/2 O
7140 2 2 2 1|1 32 1|0 1/2 0
8|40 2 2 2 2(1 32 210 12 0
91B(|(2 0 2 2 0]1 1 0(0 o0 O
Ww|B|2 0 2 2 1}1 1 1(0 O O
nm(gj|2 0o 2 2 2|1 1 210 0 O
2lale 11 1 of1 Y2z o|l1 120
13410 1 1 1 111 y2 1|1 {2 0
ulale 11 1 1|1 32 1|1 120
B5lAlo ¥ 1 1 2|1 3/2 2[1 /2 0O
B|A|1 1 0 0 01 Y2 00 12 0
1w|Al1 1 0o 1 5|1 12 1|0 y2 0
1B A{1 1 0 1 EF|1 32 1|0 12 0O
wlali 1 0 2 2(1 a2 2|0 172 0
w|{B{0 0 0 0 0f1 1 0[O0 0 0
2{Bjo0 0o 2 0 2(1 1 2|0 O O
2|B{2 0 0 2 2|1 1 2(0 0 O

*(Glackle et al., 1993)

®(Chen et al., 1985)

¢{Pudliner et of., 1997}

d(Kievsky, Viviani, and Rosati, 1995)
*{Viviani, 1997)

TABLE ¥, Triton binding energy comparison for different interactions, See text for a discussion of these results.
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Hamiltonian B {MeV) x*/Ny Type
Nijm 1I 7.62% 1.03 local
Reid 93 7.63* 1.03 local
AV18 7.62* 1.30 local
Nijml 772 103 non-local OBE
CD-Bonn 8.00" 103 non-local
CD-Bonn 8.19%  1.03 rel. BbS Eq.
Gross 8.50° 2.40 rel. Gross Eq.
ED-Bonn+ 1M 845 TRI (Ajme = 4,856 )
Nijm II4+TM B.48¢ TNI (A/m, =4.99)
AVI18 +TM B.48% TNI (Afme = 521}
AV18 + TNI 9 847" TNI

e ———————— ==
*(Friar et al., 1993)

B{Machleidt, Sammarruca, and Song, 1996)

¢(Stadler and Gross, 1997}

9{Nogga, Hiiber, Kamada, and Glackle, 1997)

*(Pudliner et ol 1997)

TABLE V1. *He binding energies with and without three-nucieon interaction, comparison of different methods. Error bars
in CHH calculations are estimates of the effects of channel truncation.

Harmiltonian N AVI4  AV14 + TNI 8
CHH -24.17(5)" -27.48"
FY -24.01°
vMC 27.601)
GFMC 24 23(3)* -28.3(2)'

*{Viviani, 1997)

b (Viviani, Kievsky and Rosaci, 1995}
(Glickle et al., 1995)

9{Arriaga, Pandharipande and Wiringa, 1995)
*(Pudliner ef ol., 1997)

f(Carlson and Schiavilla, 1994)
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TABLE X. lsovector and isotensor energy differences in MeV, one photon exchange and total including CSB and CD

TABLE VI1 Experimental and quantum Monte Carlo energies of A=3-T nuclei in MeV (Pudliner et al, 1997).
components of vuw.

A ..

,:((l{,;'; ) Y;;f“m CEMC F;;’;m - = AE (GEMC) AF {Expt)
SR 1) s3201) 8.4701) 548 He-7H 0.680{1) 0.756(1) 0764
gz g He - *He 2.005{4) 2.239(17) 2.345
He(0%:0) -27.76(3) -28.30(2) -28.30 "Be - 'L 1501(3) o 1644

*He(0;1) -24.87(7) -27.64(14) ~29.27 B - "He 1326(8) _ 410
:E;(z:;x) -23.01(7) -25.84(11) -2r47 ©Be 4 ®He - 2xLi* 0.558(3) 0.767(32) 0670
*Li(1*:0) -28.09(7) -31.25(11) -31.99 8 4 "He - 'Li* - "Be* 0713(3) _ 0.80
Li{3*.0) -25.16(7) -28.53(32) ~29.80

SLi(0*1) -24.25(7) -27.31{15) -28.43

Li2*.0) ~23.86(8) -26.82{35} -27.68

Be(0*;1) -22.79(T) -25.52{11) -26.92

"He(: 1) -20.43(12) -25.16{16) -25.82 #

i 1) -32.78(11) -37.44(28) -39.4

i h -32.45(11) -36.68{30) -38.76

TLi{17: 1) -27.30(11) -31.72{30) -34.61

"Lif} i $) -26.14(11) -~30.88{35) -32.56

L3 3) -19.73(12) -24.79{18) -28.00

TABLE VIII. GFMC energy components in MeV for A=6,7 grournd states.

AZ(J".T) 3 vy Vi vl ) ik

TH{i%: ) 1981 ~22.05 0.0 0.018 -21.28 0.0

AR 50.0(8} -57.6{8) -1.20{7} 0.04 -41.8(2) -2.21)
He(0%.0) 112.1(8) -136.4(8) -6.5(1) 0.86(1) -99.4(2) -11.3{1)
SHe(0%;1) 140.3{15) ~165.9{15) -7.2(2) 0.87{1) -109.0(4) -13.6{2)
SLi(1+;0) 150.8(10) -180.9{10) -7.2(1} LT -128.9(5) —13.7(3)
*pe(0*;1) 134.8(16) -160.5{16) -6.8(2} 2.97(2) -108.0(4) -12.8(2)
He(2™:}) 146.0(17) -171.2Q17) -7.4(2} 0.86(1) -109.9(6) -14.1(2)
Li(§ ;L 186.4(28) +222.6(30) ~8.9(2) 1.78(2) -152.5(7) -17.1{4)

TABLE IX. VMG valuea for proton rms radii {in fin), for quadrupole moments (in fm?), and magnetic moments (in n.m.)
all in impulse approximation. Only Monte Carlo statistical errors are shown.

(rtf n

VMC r experiment YMC experiment VMC expetiment
TH{i¥;0) 1.067 1953 G847 0.857 0270 0.286
JH(E L 1.59(1) 160 2.582(1) 2970
THe(1*: ) 1.74{1) 177 -1.770(1) -2.128
*He(0%;0) 147(1) 1.47
"le{0t: 1) L.95(1}
SLi{1*;0) 2.46(2) 2.43 0.828(1) 0.822 ~0.33{18) -0.083 '
"Me(0+;1) 2.96(4)
QAIE Y 2 26(1) 2.27 2.924(2} 3.256 ~3.31{29) -4.06
:UE T} 2.42(1) -1.110(2) -5.64(45)
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TABLE XI. Magnetic moments in n.m., obtained with the AV18/IX Hamiltonian model in impulse-approximation {IA)
and with inclusion of two-body current contributions (TOT). For the trinucleons A-isobar degrees of freedom are included
non-perturbatively with the transition-correlation-operator method.

*H H *He °Li
1A 08T 2571 “1.757 083
TOT 0.871 2.080 —2.09 086
Exp 0.857 2070 -2.127 0822
109

TABLE XII. The calculated values of f44 and other ratios in various nuclei.

o T
Nucleus Rae frala e -T.-A N
IP ¥,

THe 20 2.1 2.4{1)* ~2T 15 149
‘He 47 5.1 4.3{6)" ~4° 3 2.99
i 63 63 55 5.46
Li 72 78 8.5(5)" 6.75 6.79
¢ 188 22 17(3)° 16(3)" 30 30.1

*{Alteholz et al., 1994}

b(Mateos, 1995)

“{Mack et al., 1992)

4 {Fetisov, Gorbunov, and Varfolomeev, 1965; O'Fallon, Koester, and Smith, 1972)

*(Arkatov el af, 1980)

[(Ahrens et of., 1985; Jenkins, Debevec, Harty, 1994}

TABLE X111. The calculated values of RS g and Nf 5 in various nuclei.
Nucleus Ry Ny Rio Néo R{, Ny
1P ¥, IF ¥, 1r ¥,

THe 6.087 15 1.35 0.0016 [} 0.01 9.012 0 014
‘He 0.22 3 25 0.0085 0 0.01 0.060 1] 0.47
"Li 0 45 40 0.061 1% ] 0.52 9.104 4.5 4.98
TLi 0.37 6.7% 6.1 0.118 0.75 0.77 0.18 6.75 7.41
Q0 1 30 28.5 1 ] §.05 1 54 555

TABLE XIV. The asymptotic D/S state ratios and [z coefficients in fm? for the dp, dd, and od breakup channels of He,
“He, and °Li, respectively ‘The *He-dp result for # is from & Faddeev calculation {Friar ef al., 1988), while &ll other results are
from ¥MC calculations (Forest ¢t ol., 1996).

" Da (fm?}

Th Exp. Th Exp.
THe-dp -0.043 ~0.042£0.007* -0.15 —0.20£0.04%
‘He-dd -0.081 -0.12 ~0.310.1°
SLisod 029 -0.07

*(Sen and Knutson, 1982; Eird and Santos, 1990)

b(Karp et al., 1984)
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TABLE XV. The 'H{n,7)Il cross section at thermal neutron energies obtained with one-body currents (TA), and with
inclusion of the two-body currents associated with, respectively, the leading model-independent terms due to w-like exchange
{PS), all model-indcpendent terms from the AV14 model {MI), wxy mechanism (way), and percurbative & components. The
different contributions are added successively in the order stated above.

ar (b}
1A 304.1
IA4PS 3227
1A+MI1 326.9
TA+Ml+wny 328.2
1A+ -+ Apr 3314
EXP 334.220.5*

*(Cox, Wynchank, and Cellie, 1965)

TABLE XVI1. The 'H{p.e*+.}’H cross sections at Ecm=1, 2.5, and 5 keV obtained from the AV14 model with one-body
axial currents (1A}, and with inclusion of the two-body axial currents associated with, respectively, = and p-meson seagull
terms and pm mechanism {mesonic), and perturbative A tomponsnts {&p7). The different contributions are added suceessively
in the order stated above.

a(Ecu=1 keV} olEcu=2.5 keV) o(Ecm=5 keV)
107 fm? 107% tm? 10+ fm?
IA 9.054 1.291 4.061
[A-+mesonic 9.086 1.295 4.075
{A+--- + Apr 9.188 1310 4.1

TABLE XV!1. Cumulative contributions to the cross section {iz mb) and photon polarization parameter R of the reac-
tion *H{n, 4)*H ot thermal energies calculated with the AV14/VII and AV18/1X Hamiltonian models. Results obtained with
one-body currents {[A), and with inclusion of the two-body currents associated with, respectively, the leading model-independent
terms due to w-like exchange (PS), all model-independent terms from the interaction models AV 14 or AV1S (M), the pry and
wry mechanisms (MD), and A components treated either perturbatively (Apr) or non-perturbatively {A) with the transi-
tion-corretation-operator (TCQ) method, are tisted. Rc(Mi) (Rc(M1 + E3)) has been calculated without (with) inclusion of
the electric quadrupole contribution.

or (M} Re(M + Ea)

AV14/VIN AVIS/IX AVI4;VII AVIS/IX AVI4/ VI AV18/1X
TA 0.225 0229 ~0.08% -0.083 0.029 ~0.068
[A+PS 0.408 0.383 —0.422 -0.397 -0.345 -0.385
[A+MI 0.502 0.481 ~0.460 -0.446 -0.369 -0.437
LA +MI+MD 0.50% 0.489 -0.464 ~0.452 -0.394 -0 442
A+ -+ Apr 0.658 0.631 -1+.492 -0.487 -0.430 -0.478
1A+ +4 0.600 0.578 —0.485 -0.477 -0.420 -0.469
EXP 0.50840.015* -0.42+0.03°

“(Jurney, Bendt, and Browne, 19582)
biKonijnenberg et al., 1988}
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TABLE XVIII. Cumulative contributions in eV b to the S- and P-wave capture zero energy S-fartor of the reaction
H{p.7)*He calculated with the AV14/VIII and AY18/IX Hamiltonian models. Notation is same as in Table XVII

Ss Sp

AVI4/VIN AVIS/IX AVid/VIIL AV18/1X
1A 0.0605 0.0647 00650 0.0731
1A+PS 0.0880 0.0900 0.0794 0.0876
T1A+MI 0.0939 00943 00822 0.0900
IA+MI4+MD 0.0971 00972 0.0824 0.0901
In+-+- + Apr 0.117 0117 0.0824 0.0901
IA+--+ A 0.105 0.195 00800 0.0865
EXP 0.10910.01* 0.07310.007 .

*(Schmid et ol., 1996)

TABLE XI1X Cumulative and normalized contributions to the total cross gection of the radiative capture He(n,y) He at
thermal neutron energies. Notation is same in Table XVIL

ar{ph)
1A 5.65
IA+MI 2.5
TA+MI+MD 837
TA+ -+ A 85.9
EXP 35+3*

*(Wolfs et al., 1989; Wervelman e of, 1991}

TABLE XX. Cumulative and normalized centributions to the S-factor of the weak capture lIie[p.:*v,)‘[‘{e at zern energy,
obtained with one-body cutrents (IA), with inclusion of the two-body axial currents associated with, respectively, the r- and
p-meson seagull terms and pr mechanism ([A+mesonic), and finally alse including the two-body terms due to A-isobar degrees
of freedom, generated with the transition-correlation-operator {TCO) method.

10% S(MeV b)

IA 6.88
{4+ mescnic 7.38
A+ a 1.44

TABLE XXI. Contnibutions to the matrix element of the radiative capture *He(n,y)*He at thermal neutron energies. The
rows labelled [Afy., correspond Lo contributions from, respectively, direct 3-A couplings and rencrmalization corrections.

10* M.E. (fm*/?)

A 26,365

] 0756

MD 0.044

[&q]a . . 6174

[ -0.125
112



TABLE XXII. Conuibutions to the mstrix element of the weak capture >Hel{p.t*w.)*He, mulliplied by

[{exp{2rn) — 1)/(2rm)}"?, st 2er0 cnetgy. The rows labetled [8]o.r totrespond to contributions from, respectively, direct
axial-vector-A couplings and renormalization corrections.

M.E. (fm*/")
IA .3849
mesonic 0.0037
[Ag]a -0.3974
[Aa]r 0.1861
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FIG. 1. Nucleon densities of the 5:=1 deuteron in its two apin projections, 5,==I and 5:=0, respectively.
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FIG. 2. Singlet 'Py phases in a variety of previous.generation interaction models. Not all interactions have been fit to the
same data.
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FIG. 7. Energy spectra of A=4-7 nuclei, obtained in VMC and GFMC calculations with the Argonne v two-bucleon and
Urbana model IX three-nycleon interactions. Both the central value and the one-standard deviation error eéstimate are shown.
GFMC results are 2 variational bound obtained by averaging from 7=0.04-0 06 MeV ™',
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FIG. 8. Convergence with imaginary time + of the GFMC calculations of A=6. Curves are fits based to ground-state plus

exci tal lines are the average from r = {.04-0.08 M#V™~" plus and minus one atandard deviation.
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FIG. 9. The proton electric form factor data are compared with the Iachello, Jackson, and Lande (1973) (LJL}, Gari and
Krimpelmann {1936) (GK), Hohler et al. (1976) {(H). and dipole (D)) parameterizations. The ratio Grp/Go Is plotted.
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FIG. 10. Same as in Fig. 9, but for the proton magnetic form factor.
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FIG. 11. The neutron electric form factor data are eompared with lachello, Jackson, and Lande (1973} (I1JL), Gari and
Kriimpelmann {1986) (GK), Hohler et ol. (1976) (H), and Galster et al. (1971) (G} parameterizations. The ratio Gga/Gp is

plotted.
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15 ¢ 1
1.0 L 1{ |
! e - l I FiG. 13. Feynman diagram representation of the isovector two-body currents associated with pion exchange. Solid, dashed,
T - and wavy lines denote nuclecns, pions, and photons, respectively.
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FIG.12. Same as in Fig. 9, but for the neucron magnetic form factor.

FIG. 14. Feynman diagram representation of the iscecalar pxry and isovector wm+y transition currents. Solid, dashed,
thick-dashed, and wavy lines denote nuclteons, pions, vector mesons (either p or w), and photons, respectively.
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(a) (b)

FIG. 15. Feyrman diagram septesentation of the WV — NA and NN — AA transition interactions due to one pien
exchange. Solid, thick-solid, and dashed lines denote nucleons, A-isobars, and pions, respectively.

FIG 17. Electron scattering in the one-photon exchange approximation. Solid, thick-solid and wavy lines denote electrons,
hadrons, and photons, respectively.

(a) (b)

FIG 16 Feynman diagram representation of the Born amplitudes for photoproduction of virtual mesons. Solid, dashed and
wavy lines denote nucleons, micsons, and photons, respectively.
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FIG. 18. The charge form factor of the deuteron, obtained in impulse approximstion {IA) and with inclusion of two-body FIG. 19. Same a3 in Fig. 18, but for the quadrupote form factor of the denteron.
charge contributions and relativistic corrections (TOT), is compared with data from Schulze ef of. {1984), The ot ol
{1991), Dmitriev er al. (1985), Gilman ef ol (1990} (empty and filled circles denote, respectively, positive and negative ex-
perimental values for G¢{Q)). Theoretical results corresponding to the Argonne vis {vis) (Wiringa, Stoks, and Schiavilla,
1995}, Bona-B (B} (Plessas, Christian, and Wagenbrunn, 1995), and Nijraegen (N} (Plessas, Christian, and Wagenbrunn, 1995)
interactions are displayed. The Héhler parameterization is used for the nucleon electromagnetic form factors.
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FIG. 20. The deutercn B((Q?) stracture function, obtained in impulse approximation {IA} and with inclusion of two-body cur-
rent cortributions and refativistic corvections (TOT), is compared with data from Simon, Schmitt, and Walther (1981}, Cramer
et ol (1985}, Auffret ef ol {1985a), and Arnold et ol (1987). Theoretical results corresponding to the Argonne wip
{vis) (Wiringe, Stoks, and Schiavilla, 1995}, Bonn-B {B) {Plessas, Christian, and Wagenbrunn, 1995) , and Nijmegen
(N} (Plessas, Christian, and Wagenbrunn, 1995) interactions are displayed. Also shown is the relativistically covariant full
calculation of Van Qrden, Devine, and Groas (1595). The Hohler parameterization is used for the nucleon electramagnetic form
factors.
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FIG. 21. The denteron A{Q?) structure fynction, obtained in itnpulse spproximation ([A) and with inclusion of two-bady
charge and current contributions and relativistic corrections (TQOT), is compared with data from Simon. Schmitt. and Walther
(1981), Cramer et al. {1985), Platchkov =t ai. {1990), Amold et al. {1975). Theoreucal results corresponding to the Argonne
vis {vis) (Wiringa, Stoks, and Schiavilla, 1855), Bonn-B (B) (Plessas, Christian, and Wagenbruna, 1995), and Nijmegen
(N) (Plessas, Christian, and Wagenbrunn, 1995) interactions are displayed. Also shown is the relativistically covariant full

calculation of Van Orden, Devine, and Gross (1995). The Hahler parameterization is used for the nucleon electromagnetic form
{actors.
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FIG. 22. The deut tensor polarizati (2%}, obtained in impulk {IA) and with inclusion of two-body
charge and current contributions md rellnvml:ic corrections (TOT), is mmpued with data from Schulze et al. (1984), The ¢
al. (1991}, Dmitriev et ol. (1985}, Gilman et al. {(1990). Theoretical resuits correaponding to the Argonne vip [vis)} {Wiringa,
Stoks, and Schiavilla, 1985), Bonn-B (B) {Pleasas, Christian, and Wagenbrunn, 1995), and Nijmegen (N} {Plessas, Christian,
and Wagenbrungs, 1995} interactions are displayed. Also shown is the relativistically covariant full calculation of Van Orden,
Devine, and Gross (1995). The Hohler parametetization is used for the nucleon electromagnetic form factors.
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FIG. 23. The crosa zections for backward electrodisintegration of the deuteron neatr threshold, obtained in impulse approxi-
wmation (IA) And with inclusion of two-body current cortributions and relativistic corrections (TOT), are compared with data
from Cox, Wynchank, and Coltie (1965), Bernheir ef of. (1081), Auffret ef al. (1985b), Arnold ef al. (1990). Theoretical results
corresponding to the Argonne v (via} {Schiavilla, 1996}, Paris (P) (Leidemann, Schmitt, and Arenhivel, 1990), and r-space
version C of the Bonn (QC) {Leidemann, Schmitt, and Arenhdvel, 1990) interactions are displayed. The dipole parameteriza-
tion {mclndmg the Galster factor for Gg.n) is used for the nucleon electromagnetic form factors; in particular, the Sachs form
factor G‘;(Q ) is used in the isovector model-ind dent two-body tors. For the Paris interaction, the resulis
obtained by using the Dirac form factor FY (Q?) in these two-body currents ue also shown (curve labelled TOT(P; FY ).
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FIG. 74 'The cross sections for backward electrodisintegration of the deuteron near threshold, obtained with the 1)L {lachelto,
Jackson, and Lande, 1973), GK {Gari and Krilmpelmann, 1986}, H (Héhler et al., 1976), and D (Galster ef ol.. 1971) parameter-
jzations of the nucleon electromagnetic form factors, are compared with data from Cox, Wynchank, and Collie (1965), Bernheim
el al. (1981}, Auffret et of. (1985b), Arnold et al. (1990). All theoretical results correspond to the Argonne vy interaction, and
include two-body current contributions and relativistic corrections {Schiavilla and Riska, 1991}, The Sachs form factor GLQY)
ts used m the isovector model-independent two-body current operatora.
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FIG. 25. The magnetic form factors of “H, obtained in impulse approximation (IA) and with inclusion of two-body current
contributions and A admixtures in the boupd-state wave function {TOT}, are compared with data (shaded area) from Amroun et
ol. {1994). Theoretical results correspond to the Argonne iy two-nuclecn and Urbana IX three-nucleon {Schiavilla ard Viviani,
1996) and Paris two-nucleon (P) (Strueve et al., 1987) interactions, use, respectively, Correlated-Hyperapherical-Harmonics
and Faddeev wave functions, and employ the dipole parameterization {including the Galster factor for Gg.») for the nucleon
electromagnetic form factors. Note that the Sachs form factor GE(Q?) (Dirac form factor F'(Q%)) is used in the isovector
model-independent two-body current operators for the Argonne-based {Paris-based) caleulations. Also shown are the Argonne
results {curve labelled TOT(Aptr) obtained by including the two-body currents associated with intermediate excitation of a
single A-isobar in perturbation theory.
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FIG. 26. Same a8 in Fig. 25, but for *He.
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FI(. 27. The charge form factors of 3H, obtained in impulse approximation (IA) and with inclusion of two-body charge
contributions and relativistic corrections (TOTY, are compared with data (shaded area} from Amroun ef al. (1994). Theoretical
results correspond to the Argonne vis two-nucleon and Urbana IX three-nucleon (Schiavilla and Viviani, 1996) and Paris
two-nucleas (P) (Strueve et al., 1987} interactions, use, respectively, Correlated-Hyperspherical-Harmonics and Faddeev wave
Funetions, and cinploy the dipole parameterization (including the Galster factor for €' 5.n} for the nucleon electromagnetic form
factors. Note that the Paris-based calculation also includes A-isobar admixtures in the *H wave function.
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FIG. 28. Same as in Fig 27, but for *He. FIG. 29. The charge form factors of *He, obtained in impulse approximation (14) and with inclusion of two-bedy charge
cantributions and celativistic corrections (TOT), are compared with data from Frosch et al. {1968) and Arnold el ol (1978).
Theoretical results correspond to the Argonne vy two-nucleon and Urbana VI three-nucleon interactions, usé a variational
Monte Carlo *He wave function, and employ the dipole parameterization (including the Galster factor for G £} for the sucleon
electromagnetic form factors {(Musolf, Schiavilla, and Donnelly, 1994).
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FIG. 30. The H charge form factors, calculated with the IJL (Tachello, Jackson, and Lande, 1973}, GK (Gari and
Krimpelmann, 1985), H (Hohler et ol., 1976), and D (Galster et ol, 1971) parameterizations of the nucleon electromag-
netic form factors, are compared with data {shaded area) from Amroun et al. (1994). All theoretical results correspond to
the Argonne vt two-nucleon and Urbana IX three-nucleon interactions, use a Correlated-Hyperapherical-Harmonics *H wave
function, and include two-body curreat contributions and relativistic corrections {Schiavilla and Viviani, 1996).
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FIG 31. The [ongitudinal form factors of %Li, obtained in impulse approximation {IA) and with inclusicn of two-body charge
operator contributions and relativistic corrections (TOTY}, are compared with data from Li et of. (1971). The theoretical results
correspond to the Argonne viy and Urbana IX three-nucleon interactions, ust a variational Monte Caslo 8L wave function, and
employ the dipole parameterization (inclnding the Galster factor for G ) of the nucteon electromagnetic form factors (Wiringa
and Schigvilla, 1996).
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FIG. 32. The transversa form factors of °Li, obtained in impulse approximation {IA) and with inclusion of twa-body current
contributions (TOT), are compared with data from Rand, Frosch, and Yearian (19G6), /citeasnounLap78, and Bergstrom,
Keowalski, and Neuhausen (1982). The theoretical results correspond to the Argonne via and Urbana IX three-nucleon interac-
tions, use a variationa! Monte Carlo ®LI wave function, and smploy the dipole parameterization {including the Galster factor
for G'£.a) of the nucleon electromagnetic form factors {Wiringa and Schiavitla, 1996).
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FIG. 33. The longitudinal form factors for the transition from the 1+, T=0 10 the 31, T=0(2.18 MeV) levels of °Li, obtained in
impulse approximation (IA} and with inciusion of two-body charge operator coneributions and relativistic corrections (TQTY), are
compared with data from Bergstrom (1979). The theoretical results correapond to the Argonne vis and Urbana IX three-nucleon
interactions, use variational Monte Carlo 1+ ,T=0 and 3%, =0 °Li wave functions, and employ the dipole parameterization
(including the Galster factor for GE.») of the nucleon electromagnetic form factors (Wiringa and Schiavilla, 1996).
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FIG. 34. The transverse form factors for the transition from the 1%, 7=0 to the 0% T=1 (3.56 MeV) levels of °Li, ob- FIG. 35. The upper four lines show expectation values of §!i" for Ms=0, 8=0, and the lower four lines are far Ms=0, P=m/2
tained in impulze approximation (JA) and with inclusion of two-body current contributions (TOT), are compared with data or cquivalently Mg=x1, 8=0. The expectation values for Ms=+1, §=7/2 (not shown} are half way in between.
from Bergstrom, Deutschmann, and Neuhausen {1978). The theoretical results correspond to the Argonne vip and Urbana
IX thres-muclegn interactions, use veristional Monte Caslo 1,70 and 0%, T=1 °Li wave [unctions, and employ the dipole
parameterization (including the Galster factor for g 4) of the nucleon electromagnetic form factors Wiringa and Schiavilla
(1996). ..
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F1G. 36. The top, middle and bottom four curves respectively show the denteron density p:" for the indicated values of X (fm)
My and 8, obtained from various interaction models (Forest ef al., 1996). Note that in the deuteron the two-nucleon density

P gan(F) = (1/4R)A) M5 (e = £/2).

FIG. 37. The deuteron density pf"*'(z".x’) obtained from the Argonne vys interaction. The peaks ave located at z'=0
and #'=+d/2 (Forest el ol., 1996). Note that in the deuteron the two-nucleon density p22mE! (r) = (1/48)p™* (¢ = ¢/2).
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PIG. 39. The surfaces having p}*™4'(r'}=0.24 fm~? (A) and p5*°(r'}=0.24 fm~> (B). The surfaces are symmetric about
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FIG. 38. The deuteren density gy
z'=+d/2 (Forest ¢f al., 1996) Note that in the deateron the two-nucleon density pi
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FIG. 40. P¥-’n.s-|("- #}/ Raq for vasious nuclei (Forest et al., 1996).
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ones are for AMfs=0, §=x/2 and equivalently Ms=1, 8=0.
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FIG. 42. pfo{r)/R\s for various nuclei (Forest et al., 1096).
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FIG. 43. p} 4(r}/R{lq for various nuclei (Forest ef of., 1996}
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FIG. 44. Denuity distributions of dd ciusters in *He in parallel (§=0) and transversa (#=n/2) directions (Forest ef al., 1996).
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FIG. 45. The experimental 5. {open data paints) and tail-corrected Si (filled data points with errar bars) are covnpared
with theory (Schiavills, Pandharipande, and Fabrocini, 1989) {full lines) in ?H, "H, *He, and *He. The dashod curves show the
f:..m.: of *He and "He. The Saclay (Marchand et al,, 1985) (circles) and Bates {Dow et o, 1938) {squares) data are showa for

Iic, while the Bates data are shown for *H (Dytman et ol 1988), °H (Dow el af., 1988}, and *He (von Reden ef al., 1990).
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FIG. 46. The experimental longitudinal-longitudinal distribution function {LLDF) of *He, obtained from the measured charge
form factor and tail-corrected Coulomb sum rule data, is compared with theory (Schinvilla, Wiringa, and Carlson, 1993). The
curve labelled pp only takes into account the proton contributions to the nuclear charge operator, while that labelled TOT also
includes the contributions from two-body charge operators and relativistic corrections. Also shown is the LLDF for untorrelated
protons (curve labeiled ppunc). Note that the empty and filled circles denote positive and negative values for the experimental
LLDF.

FIG. 47. The proton (p), reutron (n), neutron spin-up (n,up), neutron spin-down {n,down} momentum distributicns in a
spin-up *He nucleus (Carlson and Schiavilla, 1897).
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FIG. 48. The N(p) = }_,  No.(p) per nucleon in *H, He, 'He, '°0, and nuclear matter (n.m.) (Pieper, Wiringa and
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FTG. 49. ‘The proton spectral function in *He, as obtained by Meier-Hajduk et al. {1983).
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FIG. 51. The hole spectral function for p=2.26 fm™" in nuclear matter at equilibrium pr=1.33 fm™', as obtained Benhar,
Fabrocini, and Fantoni (1991).

FIG. 50. The hole spectral function for p=12 fm™" in nuclear matter at equilibrium pe=1.33 fim~", as obtained Denhar,

Fabrecini, and Fantoni (1991)
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FIG. 52. The thermal nd radiative capture cross sections as a function of the triton binding energy. Circles (squares) specify FI1G. 53 The photon polarization paramater R. in thermal fld radiative capture. Notation as in Fig. 52. The experimental
results obtained from a Hamiltonian based on the Reid goft-core {Argonne t4) two-nucleon interaction with and without the value is [rom Konijnenberg et ol. (1988).
inclusion of the Tucson-Melb {Brasil) tl leon interaction; solid symbols depote 34-channel bound states. Results

arc also shown corresponding te §, 9, and 18 channels. The pion-nuclesn form factor cutoffl in the twe-body currents is A (in
unite of m.}. The experimental value is from Jurney, Bendt, and Browne (1982).
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FIG. 54. The S-factor of the *H(p,7)*He reaction, obtained with the AV18/IX H

model in imp

approximation

(1A} and with inclusion of two-body currents and A-isobar admixtures in the nuclear wave functions (TOT), is compared with
experiments! results from Griffiths, Lal, and Scarfe (1963), Schmid et al. (1996} and Ma et af. (1996).
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FIG. 55. The energy-integrated relative cross sections, a(#)/ao (4mao is the total cross section), obtained with the AV18/IX
Hamiltonian model in impulse approximation {IA) and with inclusion of two-body currents and A-isobar admixtures in the
nuclear wave functions (TOT), are compered with experimental resulta from Schmid et al. (1996). Note that thia plot only
shows data with E, =0-40 keV (Ecm =0-27 keV). This ia done to allow the {d.7) data with E; =0-80 keV {Ecx =0-27 keV)
and the (p,7) data to be shown in the asme graph (with the (d,y) data reflected}.

166



1 T T i T T T T T

oa| _ °DATA “H(p,7)°H
— TOT Ep=80—0 keV

T A L L AR T

"H(d,y)°*He
E,=80-0 keV /

/
Pty
AY

— P

N -, \
~02 . e . _
~— ! \‘\ ,’/ \

S i -~ -

0.1 ! )

0.0 1 1 N 1 1 1 N =03 1 1 N L . 1 i
0 30 60 90 120 150 180 0 30 60 90 120 150 180
6(deq)

8(deg)
FIG. 56. The energy-integrated vector analyzing powers of the *H(f;7)*He reaction, obtained with the AV18/IX Hamiltonian

FIG. 57. The energy-integrated tensor Analyzing powers of the 'H(r.i-,'y)’He reaction, obtained with the AV18/1X Hamiltonian
model in impulee approximation {IA} and with inclusion of two-body currents and A-isobar admixtures in the nuclear wave madel in impulse approximation (IA} and with inclusion of two-body currents and A-isobar admixtures in the nuctear wave
functiona (TOTY}, are compared with experimental results from Schmid et of. {1996). functions {TOT}), are compared with experimental results trom Schmid ef of. (1996).
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FIG, 58. Total cross section for nd scattering. Different NV interactions are showan: Bonn-B (o), Paris (¢), AV18 (b}, and
Mijm 93 {¢). Data are from Fox i af. (1950), de Juren {1950), Riddle et al. (1966}, Measduy and Palmieri (1956), Shirato
and Koori {1968), Davis and Barschall (1971), Clement ef ol. {1972), Kooti (1972}, Phillips, Verman, and Seagrave (1980),
and Sthwarz, et al. (1943).
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FIG. §%. Elastic pd and nd angular distributions.
3 MeV: pd data (o} (Sagara et ol, 1994); nd data (o) {Schware, ¢t al., 1983); theory' Nijm I {(~—), Nijm II (- -}, Nim 93
{---), and AVIB (------}.
12 MeV: pd data (o) (Sagara et af., 1004}, (o} (Grilebler et al, 1983), () (Rauprich ef al., 1988); theory: AV1B (—}.
28 MeV: pd data (o) (Hatanaka et al., 1984); nd data () (Gouanere el al., 1970); theory: Nijm [ (—).
65 MeV: pd data (o) (Shimizu, et al, 1982); nd data (o) {Rihl et al, 1991); theary: AVIS (—).
146 MeV: pd data {o) (Postma and Wilson, 1961}, (0] {Igo, G. et al,, 1972); nd data at 152 MeV {x) (Palmieri, 1972); theory:
AVIS (—)
240 MeV: pd data {0} (Schamberger, 1852); theory: AV18 (—).
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F1G. 60. The nucleon analyzing power A, for elastic Nd scattering at 30 MeV and abova.
30 MeV: pd data (o) (Johnston ef al., 1965); nd data (o) (Dobiasch et al., 1978); theory: Nijm I (—}, Nijm I} (- -}, Nijm 93
[+++) AVIB (------ )-
50 MeV: pd data {o) (King ¢! al, 1977); nd data (o) (Remeto et al., 1982; Watson, ¢f al,, 1982); theory: AVIB (—-).
155 MeV: pd data {o) (Kuroda, Michalowicz, and Poulet, 1966); theory: AV1S {(~—).
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F1G. £1. The nuciecn analyzing power A, for elastic Nd scattering at 10 MeV.
10 MeV: pd data (o) (Sagara ¢t al., 1994), (x) {Sperisen et ol., 1984}, (4) (Rauprich e? al , 1988), and {s) {Clegg and Hasberls,
1867); nd data (¢} (Howell et ol., 1987); theory: Nijm I (—) , Nijm IT {~ -}, Najen 93 (--- ), AV18 {-- - ), AV14 (- ), and
Nijm 78 {- -}.
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FIG. 62. Comparison of A, data with resuits obtained from the Boan-B NV interaction model plus Tucson-Melbourne
thres-nutleon interaction, »-v {- -), m-#+7-p {- - - ), and w-wdm-pgtpp {---- - ). The nd data are from (McAnineh et ol
1993}, (McAninch, Lamm, and Haeberli, 1984} (3 MeV}), and {Howell ¢t ol., 1987) (14.1 MaV}.
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FIG. 64. Breakup cross sections near np F5I peak kinematics. Data at
10 Me¥: pd data (¢} {Grosstnan, 1953);
13 MeV: nd data (o) (Strate et af, 1988; Strate et of., 1989), pd data {¢) {Rauprich et al., 1991);
t9 MeV: pd date (o) {Patberg, 1995).
Calculations are far AV18 {—), Nijm 93 (- -), Nijm [ (- - - } and Mijm I (-+---- ) NN interaction models.
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FIG. 65. Deuteron longitudinal response at 300 MeV /¢, theory from Cazlson and Schiavilla (1992) and experiment from Dyt-
man el al. (1988). Calculations include FSI and show results with one- and two-body charge cperators.
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FIG. 66. Dn

resp at 300 MeV/c, as in Fig. 65.
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FIG. 67. "He (a) and *H {b) longitudinal response at 250 MeV/c. Calculations are from Golak et al, {1995), and uge the
Bonn B (solid line) and MT I-III {long dash line) N interactions. The experimental data are [rom Marchand et ol. (1985)
(squares) and Dow et al. (1988) {circles).
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FIG. 68. *He {a) and *H (b} longitudinal response at 300 MeV/c, 8s in Fig. 67.
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FIG. 69. Scaled Euclidean loagitudinal response of *He at 400 MeV/c compared to the Laplace-transform of experimental FIG. 70. Scaled Euclidean transverse response of *He at 400 MeV/c compared to the Laplace-transform of experimental data

data from Marchand ef ofl. (1985). The ahaded bands represent the approximate experimental uncertainty and statistical errors from Marchand ef af. (1985). The curves marked “impulse"and “full"represent results with single-nucleor and the complete
in the Monte Carlo calculation. current operators, respectively. In each case the calculations includes a full treatment of final-state interactiona.
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FIG. 71. Scaled Euclidean longitudinal responsa as in Fig. €9, but for *He. Data are from Zghiche ef ol (1993). Also shown FIG. 72. Transverse Enclidean response an in Fig. 69, but for *He. Data are from Zghiche el n,; (1993).

is an estimate of the contribution of the response beyond the experimentally accessible energy.
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FIG. 74. Peak position measured for quasielastic scattering with different experiments. The solid Line is the free-particle
peak position.
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