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Abstract

The covariant spectator (or Gross) equations for the bound state of three identical
spin 1/2 particles, in which two of the three interacting particles are always on
shell, are developed and reduced to a form suitable for numerical solution. The
equations are first written in operator form and compared to the Bethe-Salpeter
equation, then expanded into plane wave momentum states, and finally expanded
into partial waves using the three-body helicity formalism first introduced by
Wick. In order to solve the equations, the two-body scattering amplitudes must
be boosted from the overall three-body rest frame to their individual two-body
rest frames, and all effects which arise from these boosts, including the Wigner
rotations and p-spin decomposition of the off-shell particle, are treated ezactly.
In their final form, the equations reduce to a coupled set of Faddeev-like double
integral equations with additional channels arising from the negative p-spin states
of the off-shell particle.
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I. INTRODUCTION AND OVERVIEW

The three-body spectator (or Gross) equations were first introduced and ap-
plied to scalar particles in 1982 [1]. This original paper included a treatment of
non-identical particles and an introductory discussion of the definition and role
of three-body forces in a relativistic context. Shortly afterward, in lectures given
at the University of Hannover [2], the equations for three identical spin 1/2 par-
ticles were written down, but many details heeded for a practical solution of the
equations were never worked out. In this paper we complete the development
by expanding the amplitudes into purtial waves and reducing the equations to
a compact form suitable for numerical solytion. The development is carried out
only for the case when the three-body ecattering amplitude can be obtained by
iterating successive two-body interactions, so that the three-body forces of rela-
tivistic origin discussed In the original paper [1] are neglected. However, because
our covariant equations include the negative energy part of the Dirac propaga-
tor of the off-shell nucleon, many contributions are automatically included which
would arise from three-body forces in a nonrelativistic context.

The bound state equations we presant in this paper have already been solved
numerically for a variety of cases, and some results have already been published
[3,4]. From this experience we know that the general development presented here
is a suitable basis for a practical solution of the covariant three-body problem.

In the remainder of this section we give a brief summary of the current status
of nonrelativistic calculations of the binding energy of the three nucleon bound
state, and a review of previous work on the relativistic three-body problem. Then
we will give a brief summary of the physics underlying our spectator equations,
and present the final equations. The derivation of these results is found in the
subsequent sections. In Sec. IT we begin the development by writing the three-
body equations in an operator form which is independent of the basis states used
to describe the three-body system. In Sec. I11 we introduce basis states and write
the equations in momentum space. In this representation the physical content of
the equations is clear, but the equations are not in a form most convenient for
numerical solution. To solve the equations numerically it is convenient to use a
partial wave decomposition based on the helicity states originally introduced (in
a three-body context) by Wick [5] and this is developed in detail in Sec. IV. The
evaluation of the permutation operator, which interchanges particles between in-
teractions and permits us to express the equation in terms of only one amplitude,
is discussed in detail in Sec. V, and all of the results are collected together and



1e final equations given in Sec. VI. There are three appendices which discuss
yme points in detail. '

A. Brief history of the three-body bound state problem

The first realistic nonrelativistic calculations of the triton binding energy were
ympleted in the 1970’s [6]. Later it was shown that different methods arrived at
1e same results, and that the binding energy could be calculated to a numerical
:curacy of a few keV by considering all nucleon-nucleon (N N) partial waves up
» j = 4 [7]. Today, if three-body forces (3BFs) are not considered, a discrep-
acy of about 0.5-1.0 MeV remains between the experimentally observed value
[ —-8.48 MeV and values obtained from realistic nonrelativistic NN potentials.
alculations of the contribution of the A resonance to the 3BF find that the
ot effect of the A is small [8,9]. State-of-the art calculations often include in
Idition also 3BF's based on meson-nucleon interaction processes other than A
ceitation [10]. When the strength of phenomenological 3BF's is adjusted to give
1e correct triton binding energy, an excellent value is also obtained for the He
inding energy (and to a lesser extent other light nuclei up to A ~ 7) [11].

However, relativistic effects should make a contribution to the binding energy
b the level of several hundred keV. Using a mean momentum of about 200 MeV
:onsistent with nonrelativistic estimates) we expect to see corrections of the
rder of (v/c)? =~ (p/m)? =~ 4%. If this is 4% of the binding energy, then it
mounts to about 300 keV. However, if relativity has a greater effect on the
ttractive o exchange part of the force (as it does in nuclear matter calculations
sing the Walecka model {12]) then we might obtain an effect 10 times larger.

Interest in relativistic three-body equations goes back to 1965, when Alessan-
tini and Omnes {13] used the Blankenbecler-Sugar equation {14] to describe the
:attering of three particles, and Basdevant and Kreps [15] applied their ideas to
description of the three pion system. Taylor [16] discussed the application of
ie Bethe-Salpeter equation [17] to three-body systems in 1966. In 1968 Aaron,
mado, and Young (18] introduced three-body scattering equations in which all
ie particles were on shell. Later, Garcilazo and his collaborators [19] treated
wee-body bound states using the Blankenbecler-Sugar equation, and Garcilazo
0] applied Wick’s helicity formalism to the three-body problem, and used it
» treat the 7NV system relativistically [21]. Recently, the size of relativistic
fects were estimated by Rupp and Tjon [22] using a separable kernel in the
ethe-Salpeter equation, by Sammarruca, Xu, and Machleidt {23] using minimal
lativity and the Blankenbecler-Sugar equation, and by the Urbana group [24]
sing the Schrodinger equation with corrections of first order in {v/c)?. All of

FIG. 1. Diagrams from the infinite class of successive two-body scatterings (repre-
sented by the ovals) which contribute to scattering of the three-body system. We use
the convention that the initial state is on the right and the final state on the left in
each diagram. The x labels internal spectators, which are put on-shell in the spectator
formalism. In this example, alt of the diagrams but the first contribute to the subam-
plitude 72 where particle 1 (on the top) is the last spectator and particle 3 (on the
bottom) is the first spectator. The first diagram contributes to the subamplitude ™,

these calculations include some contributions coming from relativistic kinemat-
ics, but none treats the full Dirac structure of the nucleons, or investigates effects
which might arise from a realistic relativistic treatment of the NN dynamics.

B. The physics behind the spectator equations

In the absence of three-body forces, the three-body scattering amplitude (and
the three-body bound state vertex functions} can be obtained by summing all
successive two-body scatterings, as shown diagrammatically in Fig. 1. This sum-
mation can be organized into Faddeev-like equations, shown diagrammatically in
Fig. 2. When the three particles are identical, the different Faddeev subampli-
tudes can be obtained from each other by interchange of variables, leading to a
single equation for a single subamplitude represented diagrammatically in Fig. 3.
It is necessary to know the two-body scattering amplitude before the equation
shown in Fig. 3 can be solved. More specifically, the two-body scattering am-
plitude must be known in the rest frame of the three-body system (or any other
frame independent of the internal variables).

The two-body amplitude is usually calculated in its own rest frame, so it
must be boosted to the three-body rest frame before it can be used in the Faddeev
equations. The velocity of this boost depends on the momentum of the spectator,
which is one of the dynamical variables of the problem, and hence the boost

[ ]
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FIG. 2. Diagrammatic representation of the Faddeev equations for the amplitudes
1%, Note that the spectator is identified by the solid dot.

nust be known for all velocities. In the nonrelativistic case this is trivial because
he two-body amplitude is invariant under Galilean boosts. However, in the
elativistic case this may present a problem, depending on the type of formalism
ised. Here, for the purposes of discusslon, we distinguish two fundamentally
lifferent ways to approach relativistic calculations. In one approach, which will
e referred to as Hamiltonian Dynamics (including light-cone methods) [25], some
f the Poincaré generators include the interactions, and either boosts or rotations
annot be carried out exactly. In this method one must treat relativistic effects

FIG. 3. Diagrammatic representation of the bound state spectator equation for three
lentical particles. Spectators are identified by the solid dots, and on-shell particles by
he x. Note the interchange of particles 1 and 2.

approximately. In a second method, which we will refer to as Manifestly Covariant
Dynamics [2G], the generators are all kinematic, and the boosts can be done
ezactly. The spectator equations developed in this paper are an example of the
latter method; we will reduce the three-body equations to a practical form by
exploiting our ability to boost the two-body amplitudes to their rest frame.

Of the methods discussed in the previous subsection, only the Bethe-Salpeter
(BS) formalism shares the property that the two-body amplitudes can be boosted
exactly to their rest frame, and we will therefore compare the spectator equa-
tions with the corresponding BS equations. Both approaches conserve total
four-momentum. This leaves an integration over all independent internal four-
motmenta, which are two for the three-body problem. The three particle Bethe-
Salpeter equation does not restrict any of these eight independent components,
and after a partial wave decomposition there still remain four integrations, lead-
ing to coupled four-dimensional Faddeev equations. Furthermore, these equa-
tlons contain singularities arising from the indefinite nature of the Minkowsky
metric. In the spectator formalism the two time components of the internal
four-momenta are eliminated (or, more precisely, expressed in terms of the other
variables) by requiring that two of the three particles be fixed to their positive
encrgy mass shell. This reduces the number of independent variables to only
str, and after a partial wave decomposition one obtains coupled two-dimensional
equations with a Faddeev structure. The three-body spectator equations there-
fore have the same structure as nonrelativistic equations, and this is one of their
most significant advantages.

A particle is put on-shell when it i3 » spectator to the interaction of two
other particles. When this is done systematically, two of the three particles are
always on-shell. The particle which is off shell is the (unique) particle which has
just interacted and is about to interact again (in a topological, not time-ordered,
sense), as illustrated in Fig. 1.

It is natural to assume that restricting particles to their mass-shell represents
an approximation to the BS equation, but it can be shown that it is equivalent
to a reorganization of the perturbation series of all ladder and crossed ladder
diagrams which, in some cases, sums these diagrams more efficiently [1,27].

In summary, the spectator equation is used because:

{i) it sums the infinite series of all ladder and crossed ladder interactions
efliciently,

{ii} it reduces the number of independent variables to a minimum, making



the covariant three-body problem tractable, and

(iii) it permits us to boost the two-body amplitudes to their rest frame and
calculate relativistic effects exactly.

Before we turn to the details of the derivation of the spectator equations, we
‘esent the equations in their final form in the next subsection.

C. Spectator equations for three spin 1/2 particles

In the absence of 3BFs the three-body scattering amplitude is obtained from
sum of all successive two-body scatterings. Because the three particles are
entical, each two-body scattering differs from the others only by a permutation,
1d they can therefore all be summed by one operator equation of the form

ITY) = 2MIG1Pyq|TYY, (1.1)

here |} is a vertex function describing the contribution to the bound state
om all processes in which the 23 pair was the last to interact (with particle 1 a
rectator), the two-body amplitude M! describes the scattering of the 23 pair, G!
the propagator for the 23 pair, and P, is a permutation operator interchanging
irticles 1 and 2. These are labeled in Fig. 3. The factor of 2 comes from the
mtribution of P13 which equals the one of Pj2. The permutation operator
arranges the particles so that the same equation sums up the scattering of ail
virs; 12, 23, and 13.

The three-body spectator equations have the same structure as (1.1), but
corporate the additional feature that the spectator is restricted to its positive
lergy mass-shell in all intermediate states. With the conventions implied above,
msistency also requires that particle 2 be on-shell, so that two particles are
ways on-shell. As already stated above, we think of these constraints as a
organization of Eq. (1.1) which will, in some cases, improve its convergence.
he constraints are manifestly covariant, and lead to the following equation

T3} = 2M3,GLP1|TY), (1.2)

here the lower index labels the second on-shell particle. Hence only particle 3,
e {unique) particle which has just left one interaction and is about to enter
wother one, is off-shell in Eq. (1.2).

To prepare Eq. (1.2) numerical evaluation, we take matrix elements of the
rerators using three-particle states. Both p-spin states (where p = + is the u

ky=-q
(a} (b)

F1G. 4. Diagrams showing the momenta in the two-body rest [rame (left panel) and
in the three-body rest frame (right panel}. We chose the momenta of particle 1 to be in
the —2% direction, so the boost from the two to three-body rest frames is +£ direction.

spinor positive energy state and p = — is the v spinor negative energy state} of
the off-shell particle must be treated. First we reduce the equation using states
with definite particle helicities, similar to those defined by Wick [5). These three-
body states will be written in the abbreviated form |J1(23)p), where J is the total
angular momentum of the state, p the p-spin of the off-shell particle, 1 = {q, A1}
(where ¢ and A, are the magnitude of the three-momentum and the helicity of
the spectator in the three-body c.m.), and (23) = {p, j, m, Az, A3} (where f is the
magnitude of the relative three-momentum of the 23 system, 7 and m are the
angular momentum of the pair and its projection in the direction of q, and A,
and A3 are the helicities of particles 2 and 3, all defined in the rest frame of the 23
pair}. The momenta are defined in Fig, 4, which also shows the relation between
the rest frames of the two and three-body systems. The three particles have mass
m, and the total mass of the three-body bound state is denoted by M,. [We use
the symbol m to denote both the projection of the momentum and the particle
mass, but the difference between them should be clear from the context.] Using
this notation, and suppressing isospin, the final form of the three-body spectator
equation for I'! is given in Eq. (6.3). It can be written

Gerit m "
J1(23)p|TY) = f q'qu'-—/ dx siny
(J1(23)plL") gZ A By Jo
A;A;,\:’;p"
9



x(5(23)pl M [5(2"3") ")——9" (97"

7 [1(273),1'(2'3)] = (J'1(2'3)p'| 1), (1.3)
Ey

here {j(23)plM!|j(2"3")p") I8 the jth two-body partial wave amplitude for
1e scattering of particles 2 and 3 in their own rest frame (precisely the am-

litude obtained from the two body spectator theory as described in Ref. [28]),

fzp {1'2”3" . "(2'3’)} is the matrix element of the perrihtat.on operator, gi'v'f:ﬂ

1 Eq. (1.6) below, and ¢°(q, §) the propagator of the off-shell particle in different
spin states
gt (e, p) =

1 = 1,
ml g (‘I'P)—"‘W;' (1.4)

here W, is the mass of the 23 pair, and depends on g,
= M2 +m® - 2M,E,, (1.5)

ith E, = y/m? + q2%. Note that Eq. (1.3) includes a sum over intermediate
slicities and angular momentum quantum numbers, and an integration over the
ternal spectator momentum ¢’ and the angle x between the directions of q' and
. The momenta §’ and ;6" depend on ¢, ¢, and x, as given in Eq. (5.18).

The integration over g’ has been limited to the finite interval [0, g i), where
it i8 the root of the equation W = 0. At this criticsl spectator momentum
qual to ~ 4m/3 ~ 1200 MeV) “the two-body subsystem is recoiling at the
reed of light and the relativistic effects are enormous! One consequence of this
that the solutions of the three-body equations go smoothly to zero as ¢ — gerne
is is discussed in detail in Sec. VI). Contributions from ¢’ > gcrit, which come
om two-body states with spacelike four-momenta, are suppressed both because
" this zero and because the propagators for large g are small. Hence, even if
1e spacelike two-body scattering amplitude is not small, we expect spacelike
ntributions to the overall three-body amplitudes to be very much suppressed,
1d it seems sensible to simply neglect the region ¢' > ¢ and set the three-
»dy amplitudes to zero there. This also removes the need to calculate two-body
nplitudes for spacelike total four-momenta.

Exchanging particles 1 and 2 implies that particle 2 becomes the spectator and
»w its momentum and helicity must be expressed in the ¢.m. frame of the three-
ody system, while the variables of particles 1 and 3 must be expressed in the
st frame of the 13 pair. Boosting from one frame to another introduces Wigner
tations of both the single particle and two-body helicities. In the helicity basis,
1is exchange operator is

10

PRY (12", (23] = (<)M /25 + 1127 +1
12

J j = o
L AN 09 x.(a")dfi g (@)
xd2 () dfH ~BNGE (@dx) (16)

where the functions dg{?,]n,(ﬂ) are the Wigner rotation matrices, and

N x: X (9,4, x) describes exactly the Wigner rotations of the off-shell particle 3,
as woll as the nontrivial matrix elements between the different p-spinors u and
v of particle 3 as they appear in the rest frames of the 23 pair and the 13 pair,
The matrix A is defined in Eq. (6.2), the anglos 8’ and §” in Eq. (5.18), and the
Wigner rotation angles 1 and 3, in Eqs. (6.25) and (5.28}).

For practical calculations it is more convenient to express Eq. (1.3) in terms of
states with definite isospin and parity. These states will be denoted |T'j "(mA)p),
where we suppress reference to the tota! angular momentum and parity J& =
1/2%, T = 0 or 1 and r = :£1 are the isospin and parity of the 23 pair, and
A=Az — A3 = 1/2 - A3. As discussed in Sec. VID, the states of good parity are
superpositions of positive and negative helicity states [see Eq. (6.17)], so that the
two-body subspace is fully described by adopting the convention A; = +1/2, and
identifying the states by their parity r and helicity difference A = 0 or 1. In this
basis Eq. (1.2} becomes

(T "(mA)p|Tr)
Gerit m T
= E Zf q’qu'—br—f dysiny
Ty 0 ¢ Jo
'T' A’ ’

X (T "(mA)p| M TIT5 " (mA")p") —— Yo 9" (@.7")

xP” (T (mA")p", T "'(mA)p’] (T (m'X)PI0E), (L7)

where the permutation operator 5?29 is given in Eqgs. (6.27) and (6.30). Note
that Eq. (1.7) includes a sum over the intermediate isospin 17,

This concludes our brief introduction; we now turn to a detailed derivation of
the three-body equations (1.3) and (1.7) given above.

II. THREE-BODY EQUATIONS IN OPERATOR FORM

We start with a derivation of Faddeev-type Bethe-Salpeter equations and
introaduce the spectator equations afterwards by substituting a new propagator

11



nd repeating the derivation with all necessary modifications.

A. Bethe-Salpeter Equations

The total scattering amplitude for the three-nucleon system 7 can be decom-
osed into three parts T°,

3
T=) T. (2.1)

i=1

“he partial amplitude 7 sums up all diagrams in which particle i is the spectator
uring the “last” interaction (in the sense of “leftmost” in the diagrams of Fig. 1).
lach amplitude 7 is further split into sub-amplitudes 7%, this time according
o which particle does not participate in the “first” {or “rightmost”) two-body
nteraction,

3
T =3 "TY. (2.2)

i=1
“he amplitudes T satisfy the integral equation

TY = iyM'G - MG TH (2.3)
ki

rhere G is the propagator of a single off-shell particle i, Gl = G4 ® 1; =
-1G; @ Gy ® 1; is the free two-body propagator for the {j,k} pair, and M* =
' ® 1; is the two-body scattering operator acting in the two-body subspace
f particles j and k, with 1; the identity operator for the spectator particle 1.
n our notation G; is real, and any overall factor of i1 which emerges when the
perator expressions are represented by Feynman diagrams is included in the
ropagator Gizg. If V! = V* ® 1, represents the sum of all irreducible diagrams
escribing the interaction of the two particles j and & with particle i a spectator,
he Bethe-Salpeter equation

M =V - ViIGh M (2.4)

ields the scattering operator M®.
A bound state of the three-body system can be defined as the residue of a pole
f the three-body scattering amplitude 7. For the triton we denote the position

12

of the pole as P2 = M2, where P = ki + k3 + k3 is the total four-momentum

of the system and the k; are single-particle four-momenta. One can write 7% as
the sum of a pole term and a part R¥ regular at P? = M?2:

_ ey

T =
M — P?

+RY, (2.5)

where |I*) are the partial vertex amplitudes for the bound state. Insertion into
Eq. (2.3), multiplication by (M — P?), and performing the limit P? — M2 yields

M) = ~M*Glg Y ITY). (2.6)
F#i

These are the Bethe-Salpeter equations for the partial bound state vertex ampli-
tudes.

Up to this point the equations are very general and apply to systems of any
three distinguishable particles. Now we want to specialize to the case of three
identical particles. We define the transpositions P;; of two particles i and j as
follows

Przlabe) = |bac)
Pialabe) = |cbay), @27
Note that P;; interchanges the quantum numbers of the particles in the ith and
jth locations in the state ket. The symmetry of the scattering amplitude under
particle interchange can be expressed as
PijT=(T
TPij=(T,. (2.8)
where { = 41 for bosons and —1 for fermions, and T is the symmetrized version

of 7. If we introduce the combined amplitude

3

IF> = z 11‘!1) ) (29)

i=1
then the symmetry (2.8) of T carries over to |['}, ie.,

Pi;|T)= ¢|F)
(D[Py= (T (2.10)

13



These relations can be used to derive the permutation properties of the in-
ividual vertex factors |I'). If the particles are identical, then the two-body
cattering operators and propagators acting in each two-body subspace are iden-
ical, and this is expressed formally by the relations

'ngMi'P‘j = M"
PisGisPi = Ghg., (2.11)

rhere M is a symmetrized version of M. Using these, and the fact that Pf_., =1,
re obtain

Pyll?) = =Py M PyPyGhe 3 %)

kA
= ~M?GhgPy (1) - IT)
= —MIG% ¢ (¢IT) ~ Pyll™)) , (2.12)
;omparing with
(IM) = ~MIGE (CIT) —¢Ir)) (2.13)
ne obtains immediately
Pisiry = ¢|T7). (2.14)

hus the three-body equations for identical particles can be written
IT%) = —CM*Glys (Pis + Pa) [T%) . (2.15)

'he three equations for the three possible choices of i are equivalent. It is there-
e sufficient to solve Eq. (2.15) for, say, § = 1, and calculate |I'?) and {I'®) by
teans of Eq. (2.14).

Eq. (2.15) can be simplified further if we take into account the fact that
1e two-body amplitude M? is symmetrie or antisymmetric under exchange of
articles 2 and 3 for the case of identical bosons or fermions, respectively. Thus

PosM! = M'Py3 = (M. (2.16)
sing this relation, Eq. (2.15) (with i = 1) can be written

Paall!) = —(PaM'Ghs (Piz + P1a) IT)
= ~(*M'Ghs (P12 + Pi3) IT')
¢rty. (2.17)

14

Next, using the definitions Eq. (2.7) note that

P23P12‘P23!abc)= 'P23,P12i(1£'b) = Pza[mb)
= lcba) = 'Plafabc} . (2.18)

Hence, the operator Pz can be written
P13 = PaaP1aPas . (2.19)

Using the relations (2.16) — (2.19) together with the fact that Gk commutes
with P23 we can write the Faddeev equations (2.15) in the following simple form
II') = —(M'Ghg (Piz + PasP1aPas) [T)
= ~(M Gl (1 + (Pa3) Pya|TY)

= ~2(M'GpgP12|Tl). (2.20)

To reduce these equations to a practical form, it is sufficient to evaluate the
permutation operator Pia.

B. Spectator Equations

Now we turn to the spectator equations. We begin by replacing the two-body
propagator G ¢ ® 1;, which describes the propagation of particles j and k (both
not equal to i) in Eq. (2.6}, by a new propagator,

Gps®L =GB, (2.21)

where Qy is a projection operator which places particle & on the positive energy
mass-shell, and, as in the BS case, G; is the propagator of a single off-shell particle
J. Choosing particle k to be the spectator during the “previous” interaction gives
the unclosed form of the spectator Faddeev equations

M) = - Y~ M'G;QT%), (2.22)
kAfikf

where the sum is over k and j with i fixed and no two indices equal. Explicitly,
Eq. (2.22) is shorthand for the following three equations:

IT!) = — {M'G2Q3[T°) + M'G3Q,|T%)}
IT2) = — {M?G3Q,|T") + M?G, Q3|7 }
IT%) = — {M*G1QAl?) + MG, [T} } . (2.23)



Vote that the projection operator Q) insures that particle k is on-shell both
15 it leaves the partial amplitude |T'*) and as it enters the two-body scattering
umplitude M°.

To make a closed set of equations from Eq. (2.22), it is necessary to place the
inal spectator particle £ on shell, which then also forces one of the two interacting
sarticles in the final state (denoted by k') to be on shell. The spectator scattering
wquations are shown diagrammatically in Fig. 2. The final bound state equations
:an be written algebraically in the following form

QT =— > QuM'Qy G; QQill¥), (2.249)
ki

vhere no summation over the index { is implied, and we used the projection
soperty QxQy = Qx and G;Qx = QiG).
Alternatively, we may introduce the notation

IT5) = Q:iQ;|T)
My = QuM'Q ®1;
G, =G 0L, (2.25)

vhere the indices 1, j, and k are all different, and the lower indices on M and I’
abel which particles, apart from the spectator, are on mass shell. In this notation
1q. (2.24) becomes

IMh) = =) Mi,GiTH), (2.26)
ki

e will use this notation in most of the remainder of this section, but will return
o the definitions (2.25) later in the paper. As an example, consider the case
=land kK =2

IT3) = —MzG3IT5) — M3G3ITY). (2.27)

As discussed in Ref. [1], for distinguishable particles without three-body forces
3q. (2.26) becomes a coupled set of siz equations for the six amplitudes |I'}),
nstead of only three equations for three |T'*), as in the Bethe-Salpeter case.

We emphasize that an important difference between the spectator subam-
slitudes |[') and the Bethe-Salpeter subamplitudes |I™) is that it is no longer
rossible to add the spectator subamplitudes together in order to construct a
otal amplitude, as we did in Eq. (2.9). This is because the amplitude |['}}, for
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example, restricts particles 1 and 2 to the mass shell, while the amplitude |T'}) re-
stricts particles 1 and 3 to the mass shell, and hence they are defined for different
regions of phase space. Only operators or amplitudes which satisfy identical con-
straints, such as {['}) and |I'?), for example, can be combined. No total three-body
amplitude erists in the spectator formalism.

For identical particles, Eqs. (2.26) can be further reduced by using permuta-
tion operators. Using the fact that the operator M is symmetric under particle
interchange, Eq. (2.16), and the relation

P32Q2 = QaPa2, (2.28)
we obtain

PaxMy= (M3 = M}; Py
PaaMsy= (Myy = M3, Pa3, (2.29)

where { = +1 for bosons and —1 for fermions, as before. (These are the operator
form of the symmetry relations discussed in Ref. [28]; note that, in the spectator
formalism, the exchange operator does not relate an amplitude to itself, but to
another amplitude with a different particle off-shell.) We will find it convenient
to exploit the fact that Pjx = Py, and always write relations like those above
so that the initial and final indices on both sides of the equation match. The
spectator and on shell interacting particle can also be interchanged, leading to
the following relations for the operators G}

P12GiPa = G
PusGiPs = Gy. {2.30)

The two-body amplitudes exhibit a similar symmetry

PraM Py = M7
PpaMiyPan = M), (2.31)

Further relations can be found by combining the relations (2.29) and (2.31). One
relation we will use below is

P12M9}3'p32p21 = CM?l = M123'P31 . {2.32)

It is now easy to derive the effect of permutations on the spectator subam-
plitudes. For example, under the interchange of two particles in the interacting
pair,
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Pa2|l3) = ~PsaMHGHITT) — PaaM3, G
—(M3,GyT3) ~ (M3 GHITY)
= (Ir3)- (2.33)

sing this, the interchange of the spectator with the on-ghell particle in the
teracting pair is

P12|03) = —PioMdyPar P1aGiPar P [T} = PraMlPazPay PraPaaGilT)

= —M{GIPn(T}) — M{yPayP1aGy Pl

= =M} GIPu|T) — MEGEPa PiyPyT)

= ~M{GiPx|T}) — M3yGiPauT?)

= —M{;G}Py T1) ~ (MBGHTY), (2.34)
nere Eq. (2.19) (with 1 « 3) was used in the next to last step. Comparison
th the equation for {I'%),

S “CMﬁGﬂTé) - CM?:;G§|F§) , (2.35)
iplies
Pa|T}) = ¢IT3). (2.36)
Using these relations, we can obtain a single equation for [I'})

IT3) = —¢M3,GyPa|T}) — (*MoaGiP1aPas|Th)
= ~(MLG}Pa|T}) ~ My P Pya Gl P3Py [T}
= —2(M},G}Pxu |3}, (2.37)
1ere Eq. (2.19) was used in the next to last step. From now on we will only
nsider fermions, so that the threc-body equation for the vertex function I},

iich singles out particle 1 as spectator in the “last” interaction and particle 2
the interacting particle to be put on mass shell, becomes

[T}) = 2MLGLPy ). (2.38)

1is equation is illustrated diagrammatically in Fig. 3.
A more explicit form of Eq. (2.38), which expresses M}, and G} as operators,
d [T}) as a vector in Dirac space, is

|F;)aﬁ'r = 2[M212].3131"7‘!1 [G%].G:ﬁh’?’:‘h [Plzlré)]m@fﬁ ’ (2'39)
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where «, 8, and « are Dirac indices for particles 1, 2, and 3 respectively, and
summation over repeated Dirac indices is implied. Note that M and G operate
on a two-body space only; the third particle (the spectator) is unaffected by these
operators,

In the next section we will give a momentum space representation of these
equations.

III. MOMENTUM SPACE REPRESENTATION

We specialize to three identical particles with mass n, spin 1/2, and four-
momenta ky, ka, and k3. The total momenturn

P = ki + ky + kg (3.1)

is conserved. The Gross equation restricts two of the three particles to be on
mass shell, which for the choice {2.38) ure particles 1 and 2, with particle 3 off
mass shell. In the three-body c.m. system

P = (Mtlo) 1 (3.2)
where M, is the mass of the three-body system, the momenta are

k= (Eknkl)

k2 = (Ey,, k2)

k3 = (ksp, k3) = (M, — By, — Ey,, k1 — ko). (3.3)
In Eq. (3.3) the four-momentum of the off-shell particle, k3, is fixed by four-
momentum conservation. It is obvious that the problem has only 6 independent
momentum variables, just as in the nonrelativistic case.

The three-body basis states are direct products of a single particle state and
a two-particle state,

|k1(k2k3)) = |k1) ® lkakKa), (3.4)

where, by convention, the off-shell particle has a bar over its momentum.
Completeness and orthogonality relations are:

(ky(k2k3) k) (k3kD))= 2Bk, 6% (k1 — K1)2ER,6° (k2 — k3)6*(P — P') (3.5)

d*ky &3k _ ~
B 2Ek11 2E,: d" Pl (kaka)) (ks (kzFs)l (3.6)
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Next, we specify the matrix elements of all operators in this momentum space
sis. The propagator is

k1 (kaFa) (Gl ap vy 1L (KEHE)) = 2B, 8%(ky — k}) 2Ei, 8% (k2 — k3) 6% (P — P')

x2m (A4 (k2)]pgr —m—-“L—,f?-"'—"— , (37

tere Ay(k) = (m £ K)/2m are the positive and negative energy projection
erators. The two-body M matrix is

(k1 (kaks){[ M3 0,0 1K1 (K2KS)) = 2B, 8%(ky — k1) 6*(P — P')
X Mppt oy (K23, k333 P — K1), (3.8)

iere P ~ k; is the total two-body four-momentum, and the relative momenta
the two-body space are denoted by

ku = 'gli(kt - kj) ' (3.9)

ste that ki; = —kj;. The two-body amplitudes in Eq. (3.8) are identical to
ose discussed in Sec. IIA of Ref. [28]. The partial vertex amplitudes will be
itten

{k1(k2k3)IT3) sy = Cagy(k1, k2, k3), {3.10)

1ere, by convention, it is understood that the last momentum is the one which
off shell. Therefore
(k1 (kok3)IP12IT3Yapy = —(k2(k1Ka)|T3) par = —Tpay(k2, k1, ka) - (3.11)

We can now obtain the momentum space representation of Eq. (2.38). Insert-
1 the completeness relation (3.6) gives

(k1(k2k3)|T2)apy
a3k} &3k} k! d3kY
=9 1 2 4 pt 2 A it
/2Ek; 2Ek"2d P 2E}¢" 2Ekud P
x (k1 (kaKa) [ M2zl apr v K (KK5)) (KL (K3RE) G Rl 7 e LR (RZRE))
x (kY (k3 kD) |P12|T3) agryr - (3.12)

serting the above expressions for M and G, and carrying out all integrals gives
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oy (K23, ko3 P — k1)

e

m
Tagy(k1, ko, ka) = —2/d3k’2E
]

Torapr(k ke, k3),  (3.13)

where kjj = P — ki — k. This equation is manifestly covariant.

These equations may be further reduced by multiplying the M matrix and
the three-body vertex functions I' by the on-shell spinors u (for on-shell particles
in the initial state) and % (for on-shell particles in the final state):

['x apy (k1) k2, k3)= Balky, A1) @g(ka, A2)Tapy (K1, k2, k3)
M, xg oy (Kas, K3 P — k1)= tip(ka, A2) Mpg -y (K23, Kogs P — kn)ug (k3. A) , (3.14)

where 1,(kq, A1) is an on-shell Dirac spinor with three-momentum k; and helicity
A1. This gives us quantities with “mixed indices”; a Dirac index on a matrix
element is replaced by a helicity index when it is contracted with a u-spinor of that
helicity and with matching momentum. These amplitudes are stilt covariant, and
simpler because the four-dimensional Dirac space is replaced by a two-dimensional
helicity space. If we then replace the on-shell projection operator by a sum over
on-shell u-spinors

[Aslk2)lgp = D ulkz, Ao)ulka, Ao}, (3.15)

Az

and multiply Eq. (3.13) from the left by @ia(k1, A1)idg(ka, Az) we get

Pk ) =23 Mz Wi P = )

+ "
X-(rni'—'—"‘%rxl Al“f"(k2!k!-'k3) (3.16)

Equation (3.16) is still manifestly covariant, but is not suitable for a numerical
solution. The main reason is that the two-body M matrix is given as a partial
wave expansion in the two-body rest frame, and not the three-body c.m. system,
as needed in the above equation. A related problem is that the propagator for
particle 3 depends on the angle between the vectors k; and k3 and is therefore not
diagonal with respect to all angular momenta after a partial wave decomposition.

In the nonrelativistic case, the first problem does not occur because the partial
wave expansion is invariant under a Galilean boost, and the second is solved
by introducing Jacobi coordinates. Because of the different energy-momentum
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elations in special relativity, neither of these problems can be handled so simply
1ere.

However, we can eliminate these problems here by exploiting the covariance
f the formalism, and by explicitly boosting the two-body subsystem to its rest
rame. To prepare the way, introduce the total four-momentum of the two-body
bsystem,

Pa=ky+ky=P—k;=P+gq, (3.17)
vhere here it is convenient to introduce the momentum g = —k;, Next, the boost
wperator Ay, is defined by the requirement

Ak Py = Pyg = (W,,0). (3.18)
Che square of the mass of the (23) pair is then
qu=15 P23_(M¢—Eq)2—q2,
= M2+ m? — IM,E,. (3.19)

\ tilde (“"”) on top of a variable always indicates that it is defined in the two-
rody rest frame, We have, e.g.,

’Eg = A;“ kz '
k3 = Ai k3. (3.20)

Ne now define the relative momentum # through

E = ij23+p_—1 (Ef’tf))
ks = 3Py —p= (W, - E;, —p), (3.21)
und therefore
= kas = §(ka — ka) = (E5 — }W,, P). (3.22)

Next, we introduce the representation on the Dirac space, S(A), of a Lorentz
woost A. These transform Dirac matrices and spinors according to the following
ules :

STHANMS(A) = Ay (3.23)

S(AYulk, A) = 3 DD (Rax)u(Ak, ) (3.24)
I

a(k, )5 (A) = 3 a(Ak, w) D/ (Rar), (3.25)
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where Rp; is the Wigner rotation accompanying the boost that connects the
momenta k and Ak (sce Appendix C), and the Dirac indices have been sup-
pressed. The propagator of the off-shell particle 3 in the three-body rest frame
can therefore be expressed in terms of its form in the two-body rest frame using
(3.23)

- + f
,"n'g‘n_'%ﬁ'i“)';?; =5 !(Ak.)-m_g—'i‘,};—a_)es(ﬁh)- (3.26)

Similarly, the full two-body M matrix in the three-body system can be written
M3 3(kas, ki Pas) = S5 (Ak,)S3 Ak, ) Me 3 (5,75 Paa)Sa(Ax, ) S3(Ax,), (3.27)

where the subscripts 2 and 3 are shorthand for pairs of Dirac indices on particle
2 (8, etc.} and on particle 3 (¥, ete.), and the two-body scattering amplitude
M, #'; Pa3) is a solution of the two-body Gross equations in the two-body c.m.
frame. {Do not confuse My 3 with amplitudes like M}, used in the last subsection;
here the subscripts refer to the Dirnc indices, and in the previous subsection they
referred to which of the interacting particles was on shell. From now on we have
made the choice that particle 2 is on shell, and in the language of the previous
subsection, all two-body amplitudes are A),.] Using (3.24) and (3.25), we obtain
the following expression for the mixed index M matrix

M, x; 3(k23, k333 Pos)
= 55 (Ak ) DS (Raw, ) Musuy 35, 73 PP (R, 1) S(Aw,) , (3.28)

Aapig

where summation over all repeated indices (including helicities) is implied. Sub-
stituting these relations into Eq. (3.16} gives

Tauaay(ks, ko, k3) = —2 [ Py 7y Syt (A DY (Ra, k2) My s (52 5 Ps)
m+

‘D,t(tl{\%)(R Ap, k 2)(_% ‘)‘s"r'(A‘kl)

XD,y {Ka2s k1, k3) « (3.29)

This equation can be further reduced if we decompose of the propagator of
the off-shell particle 3 into positive and negative energy parts

_..___..__....(m )y UT(_E3:A3)1-)T’(—E3,/\3)J

2E; — Wy —ie

Z u., kg,/\g 11..1 (1(3,A3)
— k2 —ie Ej; Wy —ie

uy(—P, Aa)ip (P, A
:E_Z[ P, A}ty (—PyAs)

U’r(f’a Aa)ﬁ‘r' (ﬁ! /\3)]
3.30
2B; — W, —ie » (3:30)

W, —ie
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here the second expression can be obtained from the first using the fact that
1e spinors depend only on the three-momentum and ks = —p. At this point it
convenient to introduce “p”-spin by letting

4 —_ ’U(p, A) if p=+
u’(p, ) {‘U(—p, A) ifp=—. (3.31)
hen the decomposition (3.30) becomes
m + F3)yy m . . -
(mt By _ —=uh (P, A3) ¢°(g, ) &, (~D, M) , (3.32)

m?2 -k —ie Ej;
‘here summation over p and Aj is implied, and

1
2E5—Wq—‘i€
1
W, —ie’

g+(QvP~)=

97 (q,P)=— (3.33)

ubstituting (3.32) into Eq. (3.25), multiplying from the left by #”(ka, A3), and
sing (3.24) and (3.25), give the following reduced three-body equations

2
L ™ * 2)=
rixhn\s (kl’kz’ k3) = —Z/dsk; (“E_’.;‘—) Di(\lziizz) (RA"I"")DE\ISI#S) (Rﬁk;ka)
2

X M“:;’;; sy o Wq)Df‘l,’/,\? (Ray,x; )DLZ&? (Rﬂ’h k)
xg” (7,4} T, yc 5, (ks k1, K5), (3.34)
‘here RY, is the Wigner rotation for the spinor u”, and
T4, xana (k1 k2, ka) = 16 (ka, Aa)Tx agq (K1, k2, Ka)
MO 5o B W) = (s, 59) My e (B, B3 W2 (R, 1) . (3.35)

We have reduced the three-body equations to six-dimensional integral equa-
ions for the coupled set of 24 = 16 amplitudes F';I Aghg+ Which can be written

ng\no\a (kl, kz. ks) = (klz\l(k2A2E3A3)p|P) . (3.36)
'he new states |k1)\1(k2,\27c'3/\3)p) have simple completeness and orthogonality

elations (developed in the next section) which make them a useful starting point
or further discussion.
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This form (3.34) for the three-body equations displays the Wigner rotations
which appear when the two-body scattering amplitude is boosted from the overall
three-body rest frame to its two-body rest frame. For practical calculations the
equations will be further reduced by decomposing the amplitudes into partial
waves, which will be discussed in the next section.

IV. ANGULAR MOMENTUM STATES

In this section we follow the conventions of Wick [5] and define a basis of
three-body partial-wave helicity states. Completeness and orthogonality relations
are defined and the matrix elements of the propagator and two-body scattering
amplitude are obtained. Using these states, the operator equations (2.38) are
written directly in terms of the partial wave states. To obtain the final equations,
the matrix elements of the permutation operator must be evaluated, and this is
done in the following section.

A. Construction of the states

The three-body states are constructed in three stages. First, we construct the
state of particle 2 and 3 in its rest system, choosing the momenta so that k; lies in
the zz plane with ko positive, as shown in Fig. 4. By convention, particle three
is off shell, and requires both u {p = +) and v (p = —) spinors to describe its
Dirac structure. This degree of freedom is referred to as the “p-spin” of the off-
shell particle. Next, we boost the (23) system to a frame with three-momentum
q = —k; in the positive z direction, and take the direct product of this state with
the state of particle one with its three-momentum k; in the negative z direction.
Finally, we obtain the partial wave states by an angular average over the Euler
angles {®, ©, ¢}, as defined below. In shorthand, this three-body state is denoted
[1(23)), to remind us that particles 2 and 3 are the pair which was boosted from
their rest system. _

Begin with the construction of the state for particle 2 with momentum |ko| = p
pointing in the positive z-direction, and with helicity A2. This state will be de-
noted by |(5,0,0), A2}, where the second two arguments in the parentheses are
the polar and azimuthal angles of the momentum. The state with momentum
pointing in an arbitrary direction can be obtained by applying a rotation operator
Ry5.,= e~ *J:e=i0Jue~7J: through Euler angles ¢, 8, and . For vectors with-
out internal structure, we need only two angles, and following Wick characterize
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he states by the polar angles é and ¢, and represent the rotatlons by R ;,, so
hat o

|(5,6, ), A2} = Ry 5,01(5,0,0), Az) - (4.1)

Jote that this differs by a phase from the convention adopted in Jacob and Wick
29] and used in Ref. [28], where the rotation was defined to be R, ; _, instead
f Ry 5o The phase difference is

R, 5._gl(5,0,0), 22) = e*M R, 5 1(5,0,0), X2} . (4.2)

\s discussed in Wick [5], the new phase convention turns out to have significant
dvantages for the treatment of the three-body system, and gives identical results
f ¢ =0, where the two-body states were previously defined [28].

The state for particle 3, which in the rest system of the pair has a momentum
if the same magnitude but oppesite in direction, is defined

(5,8, ), Aa p) = Ry 5,0l(Fr i), 23 p) (4.3)

vhere p = & is the p-spin of the state (for more details, see the discussion below),
ind the following phase convention is incorporated into the definition of the state

(ﬁv T, W)r A3 P):
I(ﬁl m, Tr)i A3 P) = e_iwssRﬂ-‘l‘-OI(ﬁf 01 0)| A3 P) ] (44)

vhere s3 is the spin of particle 3 (in our case 53 = 1/2). The phase factor e=*"%
s precisely what is needed for the definition Eq. (4.3) to agree with the phase
.onvention of Jacob and Wick [29] for “particle 2", which was used previously in
tef. [28]. To see this, recall that

Rrr,ar,o = e—inJ’. e—hr.l,, — e—hr.l,eiw.)’. (4_5)
nd hence

e—i"“Rw,r.Ol(ﬁr 01 0)! A3 P) = e—iwsae—iﬂ‘JVeier, I(ﬁ! 0, 0): A3 p)
= e_iw(a:’-*’)‘n{),r,ﬂl(ﬁ: 0|0)y A3 P)
= (1) Ro,x,0/(5,0,0), A ), (4.6)
s used in Ref. [28]. (According to our phase conventions, the value of J, is

ndependent of p; see Eq. (A9) of Ref. [28].) The two-particle state (in its rest
iystem) is now written
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(5,8, 8} Azds p)= Ry 5 ol(5:0,0), h2As p)
= ¢,tj,0 (](p"! 0!0)' AZ) ® I(ﬁl w, “)"\3 P) ) ’ (47)

where we emphasize that the phase e™*"** is included in the definition of
|(B, 7,7}, Az p), as given in Eq. (4.4). Two particle states of definite total angular
momentum and total helicity can be projected from these general two-particle
states by integrating over the polar and azimuthal angles

2w r o . Ny _ _
|im, Mads p) = u; [] dp /0 disind DI 5 (#,0,0)Ry 5,|(5,0,0), Azha p)
(4.8)

where we use the abbreviation

2j + 1\ /?
w=(E2) (49)

The next step is to boost the two-particle state in the direction of the pos-
itive z-axis such that its total three-momentum becomes g. The required boost
operator will be denoted Z; (it is equal to Aj 1 of the last section), and the
(23) pair can be treated like an elementary particle with momentum ¢ in the
positive z-direction, with “spin” j and “helicity” m, and a mass W, given by
w2 =(P- k1)2. The boosted state of the pair is no longer an eigenstate of
the single-particle helicities, because a boost which is not in the direction of a
particle’s momentum mixes helicities. The three body helicity state is then con-
structed by taking a direct product of the boosted (23) pair and the state of the
single particle 1 with a momentum of magnitude ¢ in the negative z-direction.
For consistency, the same phase convention is used to define the state of particle
1 that wes used before to define particle 3, i.e..

(@7, %), i) = €7 Ry 2,01(9,0,0), As ) (4.10)

This gives a three-body helicity state with total 3-momentum zero and the mo-
mentum of the pair in the positive z-direction:

(g, 0,0), Bim, A1 (A223)p) = {{4,0,0), A1) ® |[BFm, A2Aa p) - (4.11)

Following the convention for rotation of states first introduced in Eq. (4.1), the
state in which the momentum of the pair is in an arbitrary direction is obtained
from (4.11) by applying the rotation Re o0

27



!(qu el q’)!ﬁjml /\1(A2'\3)P) = R@,B.OI(Q) 0; O)rpmjm! )\1(/\2'\3).9) . (412)

inally, the three-body helicity states with fixed total angular momentum J and
rojection M are obtained from the states (4.12) by the angular average

lgJ M, Bim, A1 (A2A3)p)

2 T
=m[ d® | dOsin®D" _, (9,0,0) (g, ©, ®),5,5m, M (A2ha)p)

v

2x L 2r T - 7
=nm,-fo d(I)/D desinefo d¢j0 dfsind DY~ _, (9,0,0)
X'D&:?;,—,\,(qb! é,O)Rq,‘e,o {l(q,ﬂ',‘ﬂ'),A1>®ZqR¢,§'O{(ﬁ, 0,0), A2A3 P)} ’
(4.13)

there 7y is obtained from Eq. (4.9} by replacing 7 with J . Note that this
xpression contains the two-body partial wave states (4.8), and if we denote the
otation Ry g0 by Ry, and

2x ki
/dU:f dti)f dB8sin 6
o 0

J)= Ji=
Dy ($,0,0) = 2 VA (7))

re have

1M, pjm, Ar(A2A3)p) = 14 _[ dUDn_, (U) Ry {l(g, 7. 7), M)® Zy|Bm, Aada p)} -

(4.14)

Another useful form of Eq. (4.13) is obtained by exploiting the fact that
rotation about the z-axis commutes with a boost in z-direction, so that the
peration of the rotations on the (23) pair can be written

R@-G-OZqR¢.§,o = R‘P-G-DRD.O"#ZGRO,E,O = R*P.B.tﬁzqRo,é.U' (4.15)

In the other hand, the rotation of particle 1 can be written
Rs0,0 =Ree,4R00,-9 — Rep e, (4.16)
rhere the last step is obtained by letting Ry p —4 operate on |(g,7,7), ), and

ecalling that this state is an eigenstate of J, with projection —A;. Finally, noting
hat
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DS\}I,);._A. (9,6, D)Dfi?;z—z\a (¢,8,0) = e™*DY)x |\ (2,0,0)D5 _, (0,6,0)

m, A —Aa

. D j 7
= e‘Al¢D‘(~f')m—a\1 ((I)’ e' ¢) din.AQ—AS (0) (4.17)

shows that the factors of **1# cancel, and that Eq. (4.13) can be written

lgJ M, Bim, A (A2Aa)p) = nu7; f dS D§Pu 5 (S) fn dfsing dY), _,.(6)
X Rs [k7A; (k3A2k5A3)0) , (4.18)
where
KIAL (KSA.E5A5)0) = 1(g, 7, %), Ar) ® Zq Ry 5,0l(5,0,0), A2da p) (4.19)

is the three-body state in its canonical configuration in the zz plane with special
4-momenta k{, k3, and k3§, as shown in Fig. 4, Rg = Rg 6,4 is the rotation which
carries the three body system from its canonical configuration to the most general
orientation described by Euler angles &, 6, and ¢, and

2n ” 2x
/dS:/ d@f d0sin® | dp
0 0 0

D‘(A:’I!);_Al (S) = DS\;.);I—-AI ((I)? e) ¢) . (420)

Eq. (4.19) shows that the canonical three-body configuration is constructed by
starting from a two-body state in the two-body rest frame where the relative
momentum of the two particles is restricted to the xz plane with polar angle
d, then boosting this state in the positive z direction, and finally adding the
spectator (particle 1) with momentum along the negative z-axis. Since the most
general rotation Rg is performed after the boost Zg, the Wigner rotations that
accompany the boost are all rotations about the y-axis, which greatly simplifies
the calculation.

The results (4.14) and (4.18) are equivalent, and either may be used to eval-
uate matrix elements,

B. Representation of the states

In the previous subsection we showed how the states

kiAi (k2 Aak3As)p) = Rs [K3Xy (k3A2K3A)0) (4.21)
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introduced abstractly in Eq. (3.36), are to be constructed. These states can
also be written as a direct product of the momentum space plane wave states
introduced in Eq. (3.4) and Dirac helicity spinors:

[k A1 (k2 A2k3A3)0)
= g~ r{o1093) 1k (koF))

®Rs ([Re,no (@ M), ZeRogp {uslh,2a) Remow @ 2),}) . (122)

where a, 8, and -y are the Dirac indices of particles 1,2, and 3, respectively, and
all rotations are displayed explicitly, so that all spinor states in Eq. (4.22) are
“particle 1" states (in the sense of Jacob and Wick). Explicitly

cosh(n/2) —2Asinh{n/2)
u(p,A) = ( )x()\) v{p, A) = ( ) x(2), (4.23)
2\ sinh(n/2) cosh(n/2)

with

x(3) = ((1)) x(-4) = (‘1)) ) (4.24)

tanh Ep (4.25)

and

Since the helicity spinors depend only on the magnitude of the three momentum
P, we have used the notation v(p, A) = v(—p, A}, so that the correspondence given
in Eq. (3.31) now becomes

ifp=+4

ifp=—. (4.26)

LRRE

All of these conventions are consistent with our previous work (check Eq. (A9)
of Ref. [28] with i =1).

Using the representation (4.22), and the orthogonality relations (3.5) we ob-
tain generalized orthogonality relations for the three-particle helicity states (4.21)

(1'(2'3")0'11(23)p) B
= (k1AL (k3 AZEAA3) P (k1 A1 (k2 AokaAz) )
= (ky(kyka) K (koka)) [u(q’, A]) Rt;) oR3! ReR, . ou(q,A1)]
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x [u(p Al )R‘o oZe

R RsZ, Ry ;o ulf, Ag)]
X [ ( ’\f?.) R;lw{) 00 ,0 q IRS RS ogoRn,w,ﬂuP(ﬁl’\:i)]
= 2B, 8% (k1 — k{)2E, 6% (kg — k3)5"(P = P') 61, baga,

o
[u"’ (5 2} v (5, Aa)] (4.27)
Note that the states are not orthogona! in p space. Using Eq. (4.23) gives

(75, X) w0 (5, 33)] = 633, O, ), (4.28)

where, if p = + is the first column and p == — the second, the matrix representa-
tion of O is

_ 1 ~2Asinhn
Opp(ps A) = ( —2Asinh g -1 )
= (T3)p’p - 2Asinh Ul (TI)P'P ’ (4.29)

where sinh i = p/m. It is also useful to express the covariant product 2E;, 6% (k2 —
k3) in the rest frame of the two-body subsystem, where k; = p depends on the
polar angles § and ¢. Hence the generalized orthogonality relation will be written

(1(2'3")p11(23)p) = (ki-\'l(kéz\ékéz\s)p k1 A1 (kaAaK3A3)0)
= 8y, a0, Oapas Opta() A3)
X 2B, 63 (k) — k{)2E;:8%(5' — p)6{ (P — P) .  (4.30)

Even though the states {4.21) are not orthogonal, the matrix O(j, A) has a
simple property which will enable us to carry out the calculation much as it they
were. From Eq. (4.29) we obtain

2 2
[O(p, O(p, N)) sy = bprp cOsh™ n = 6,1, E% . {4.31)
Using this we can show that the completeness relation for the states can be
written
3=
d kl d p m d4P Z

1=QuaQppbyy= [1(23)0") Op (B, A3) (1(23)p|

2
2[}1“ 2E E AN o'
d*ky &5 m? 4p
d
/2Fk, 2E; E’! .\p\%p’p
X k1 A1 (k2 A2k3A3)p’) Op (B Az) (k11 (ko dakara)p| (4.32}
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where Q) = Qq, is the positive energy projection operator for particle 1 (with
Dirac indices o and o) introduced in Sec. IIB. Eq. (4.32) tells us that the states
span only the positive energy sectors of particles 1 and 2 (which is sufficient) but
they span the entire four-dimensional Dirac space for the off-shell particle 3.

We will only describe the emergence of the factor 4., in the derivation of the
completeness relation (4.32). To see how this factor emerges, evaluate the sum
over A3, p, and p’ explicitly using (4.23)

m2

_E_g Z: uf,' (B, A3) OP'P@! )‘3) ’&'ﬁ@, A3)
P xap'p
2
m [nd — - . ~ ’ -~ — ~

=37 D" pul. (5, Aa) T(H, As) — sinh 7 > 23l (5, M) T, As)
P |lsp As, p#p’

_ 12 1 —r3sinh# m?sinhj [ sinh 7 T3
;.’ T3 sinh j 1 iy E,% —T3 sinhg i

=6 mﬁcoshz“—é‘ 4,33
= 0 g2 =0y, (4.33)
P

Subsequent operations by the rotations and boosts leave this factor invariant. In
the same way, the sums over A; and A, give the projection operators Q; and Q.

We will now use these relations to work out the generalized orthogonality and
completeness relations for the partial wave amplitudes (4.18).

C. Generalized orthogonality and completeness relations

Using the generalized orthogonality relations (4.30), the definition (4.21), and
the notation

|J'1”(2"3")p) - lqMJfMI ﬁ”_]’m A”(A”A ) ) (434)
we obtain

(J'1(2'3)p'|J1(23)p)
= {q'J'M', §'§'m!; M (ApA5) 0 |¢ T M, fiim; Ay (A2Aa)p)

=’7J"’Ij"’]ﬂ7jfd3' Dg')m' X S’)/dSD(,,;,'),; y(9)

x fo ' sin d(’,)x ) fo dfsind d2, _, (@) (1'(2'3)p'|1(23)p)
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J’ J)*
= 6x1a Oagn, Oxyag My 1Ty de' D,gzp,)m'_,\,(s') de Dg/{,)mfz\g(s)

™ r ~ " -
x /; df’ sin ' d,(i.fh_h (6') —/(; dfsin dff,))\,q.,\a 0]

X Oy o(B, Aa) 2E4, 8% (ky — k{) 2E;8%(5 — p) 8% (P' — P). {4.35)
Writing the §3 functions in polar coordinates
3 ' T 6(‘]’ - q) ' '
264, 8% (ks ~ k) 283676 — 7) = 28, L p(cos & ~ cos ©)5(8' - )
x2FE; ﬂgp—p)é(cos 0" —cos6)5(¢' — @), (4.36)

allows us to integrate easily over dS’ and d?, giving &' = S and &' = 6. The
remaining integrals over dS and df can then be easily done using the orthogonality
properties of the D and d functions. We obtain

(J’l’(2’3')p’[.]1(23)p) = 6Jr_)6MiM6j'j6mlm6,\;,\‘ él'zhﬁ);h Opfp(ﬁ, A3)
ot L
XZEqé(qqg q )2Eﬁ6(pﬁ2 D ) 64(}3! _ P) .

(4.37)

Using Eq. (4.32) and the orthogonality of the D and d functions, the com-
pleteness relation for the partial wave states can be derived
q’dq p*dp
_ ‘I'P 5 m? 4 .
1= Qura Qurp byry = f 2F, 35, BT 2 W1@9F) Opylh hs) (11(23)s]

JMim
AqAgrz o'p

J M G
ApAgryptp

x|gI M, jm; A1(AaA3)p’) O o(B, Az) (gJ M, Bim; Ai(A2)3)p| -

(4.38)

Note that this is consistent with (4.37).

D. IReduction of the equations
The partial-wave expanded three-body equations can now be obtained directly

from the operator equation (2.38). Restoring the projection operators Q, this
equation is
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Q102" = 20, M'G1 Q2 [©1Q2] Pi2 [Q1Q2) C1 @I, (4.39)

‘here we have made frequent use of the fact that Q; operates only in the space of
article ¢, and hence commutes with all operators which operate only on particles
# i, and the property Q;Q; = @. Replacing the two terms [Q,Q,] ® 1 with
1e completeness relation (4.38}, and using the relation

Q1QalJ1(23)p) = |J1(23)p) (4.40)
e obtain
<J1(23) )
_ s Z / H2dq" nz -if mz qmdq" ﬁﬂdﬁ' i'f_
J"M"Jm A"A"-\”pqu 2E " 2Eﬁ” Eﬂ” 2E'I' 2Eﬁ' Eg’
*;‘\3'\3”’"1
X (J1(23)p| M G3|J1"(2"3")pg) Opy (B, 35)
X (J17(2"3") pa|P12| 1" (2'3")p2) O pupy (7, 3) (JV(23py Y. (441)

his result anticipates the overall conservation of the total four-momentum, P,
nd the conservation of the quantum numbers J, M, j, and m by the operator
G,

The matrix elements of the operator M'G3 are most essily evaluated using
q. (4.14). Recalling that M'G; operates only in the two-body subspace (23),
1e matrix element is

T1(23)AAM Gl 1/ (23} p2) O 0 (7', 1)
= [0 a0 D, @D s @)

x{(g,, 7), M|RG R [(g, m, 7), Ay)

x (Fim, Aada pIR 27 M GaZy Ry 55 m!, Ao )G 92) 0 (1 N5) . (4.42)

he orthogonality relation for single particle states is

((‘L m, ﬂ-)i )\llREIRU'l(q- , 'ﬂ'), )‘1)
= {(¢,0,9), A1l(¢", &', ¥}, A7)
= 63,0, 2E,6 (g — ¢')

6 P
= QE,,%J(COSG — cos8)6(P — ). (4.43)
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Inserting this, integrating over dU’ (which fixes U’ = U}, noting that the boost
operator Z, and the rotation operator Ry commute with M1G3, and carrying
out the U integration using the orthogonality of the D functions gives

(J1(23)p| M G3|J"1'(2'8) p2) Opop, (F', X3)

§la—a
= J.IJ'fsMM'&jj'amml&,\“\: ZEq'(q—ng'—)

® (3(23"_ ; (1 (9’2’ pq ~Bapi (Jﬁ, ’31 ¥ (4‘44)
where we have used the following shortened notation
7(2/8")pa) = |p'jm, X225 pa) (4.45)

and removed from the two-body matrix element of M!G3 the factor of bij*Bmme.
Now, including the projection operators, the propagator G3 in Dirac space is

(m + fa)
kg — e
(X0 @, B) 7 @)

Gz—— G3Qa — (m + ﬁ?)

-_— —_— P
2 Qs - [u (4.46)

where we inserted the decomposition (3.32) with g?(g, p) given in Eq. (3.33). The
only dependence of the two-body helicity states |§(2'3")pz) on p2 and A; comes
from the factor w?2(p’, A})), which leads to the following property (where there is
no sum over p')

v @, 2w 7, )] 132302 = 123" [ (5, M (7, 00)] - (447)

Using Eqs. (4.46) and {4.47), and recalling Eq. (4.31), the two-body matrix ele-
ment in (4.44) is reduced as follows

> (5(23)p| M Gal(2'3") p2) Opypy (5 X)

Pz
=2mz= 3 (GE3)pIM [0 ) 07 (0, 5) 8 (5, 29)] 15(2'3)02) Opaps (1, X5)
P PPza\"
m Hy ? ' -t re =1
=2m = 3 GENAM I3 ¢ (@, 5) [ (5, XYTP (5 X5)] Opaes (7, X5)
r P'Pz)‘”
m 3 - Fofl ! F
=2mo— D {(i(23)pM15(2'3")0') 8% (0,5) bxy3 Ot (B, X3)Opap (7, 03)
7 prpary
Es

= 2m =2 (j(23)p| M j(28)01) 0" (0, F) - (4.48)



Inserting this result into Eq. (4.41) gives finally

nz o =t m =2 dp~f m2

J1{23)p|0Y) = 2 ’Zd'm] d L

wiEmAr =2 52 - 3 / 2By By | 2By E3
A;A;Aap:pl

x{(7(23)p| M [5(2"3")p3) g7 (q,5") (J1(2"3")p3|P12|J'1' (2’3} pa)

XOpaoa (7, ) {J1(23) [T (449)
In Appendix A we show that
- 1t -rntinh E; EP £Pa =~
{7(23)p|l M *}5(2"3")pa} = @r )3m2M'\3’\" a9 Pas), (4.50)

where M{? ;;?.53 xa,(f), 7"; Pa3) are the two-body amplitudes previously determined
from Ref. [28], Eq. (2.88).

To obtain the final three-body equations, the matrix elements of the permu-
tation operator must be evaluated, which will be done in the following section.

V. THE PERMUTATION OPERATOR P2

In this section we will derive the matrix elements of the operator P;» which
interchanges the states of particles 1 and 2. Using the shorthand notation given
in Eq. (4.34), the action of the permutation operator is

172(13)p) (5.1)

where the relation of the momenta of the individual particles to the relative
momenta g and F, and to the quantum numbers j and m, is unambiguously
determined by the order in which the single-particle names are written. For
example, the state |J2(13)p) is one in which the second particle is the spectator
with momentum ¢, and particles 1 and 3 are the pair with angular momentum
j and m, and particle 1 has CM momentum variables § and §. More precisely,
from the result (4.18), the state |J1(23)p) is obtained by averaging over rotations
Rg of a state with the canonical configuration ki°, k2, k!, shown in Fig. 5a, and
the state |J2(13)p) is obtained by averaging over rotations Rgv of a state with
the canonical configuration k{°, k7%, k4°, shown in Fig. 5b. Note that the two
configurations are related by mterchangmg particles 1 and 2, but the definition
of the states requires that k)’ and k3° both be in the negative z-direction, and
that kP and ki both lie in the xz-plane with positive z component.

Pr2| J1(23)p} =
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FIG. 5. (a) The momenta kY°, k5%, k¥ in their canonical configuration. (b) The canon-
ical configuration of the momenta k"" k53°,k3° which result from the interchange of
particles 1 and 2. {c) Figure showing how ki, k3°, k3° are rotated into ki, kq, ka by the
rotation Ry which equals Ry only when ki, ka2, k3 line up precisely with k%, k%, k7.

Any three-body configuration with canonical orientations in the zz-plane can
be completely characterized by three variables. For the vectors in Fig. 5a, these
variables can be chosen to be |k} | = ¢/, |kj| = 7, and the angle x between ki and
k), (recall that |kj| is the vector kj in the c.m. of the pair). For the configuration
in Fig. 5b, the corresponding variables are (k3| = g”, |kj| = 7", and the same
angle x. If the total c.m. energy of the three-body system is fixed, then there
is a constraint between these three variables, leaving only two independent. If g’
and §’ are specified, the angle ¥ can be determined, and this was the approach
taken by one of us previously [2]. However, the final equations are more tractable
if ¢’ and x are specified, and §' is determined by the constraints, and this is the
approach we will take below.

Examination of the two configurations shown in Figs. 5a and 5b shows that
the rotation Ry = Ry 0 (not to be confused with the rotation Ry discussed
below which carries the configuration shown in Fig. 5b into 5c¢) will bring them
into alignment, or

RV flo___ kla
RVk”o klo
Rykie= k. (5.2)

Furthermore, since the final momenta ki, ks, and k3 can be obtained either by
rotating the (k°)’s through Rg, or the (k"°)’s through Rg~ (because they are
cqual), we have the relation

ki = Rg:k? = Rgnky® = Rgn Ry kY {5.3)
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which implies
RS' = RSHRV . (5.4)

This rotation Ry will eventually emerge from the derivation below.

A. Initial reduction of the matrix element

We now turn to the details of the evaluation of the matrix element. Using the
form (4.18) for the three-body state, the matrix element of 7;3 can be written

(T2 [Pall1(2)p)
= (q’JIM’| ﬁ’j'm’: X‘l ()"2’\’3 )p’i'pl 2|qJM: pim, A1 (AZ)‘S )P)
= QM B3 NN M)l T M, 5, Aa(Mes)g)

= 17 _[ s’ f @5" DYt -3¢ () Df 2, (5")

L £
~ . - -~ N - '!') - -

x /0 4 sin & /; disind” d9),, (@)%, (0")

x (KL (K723 kX3 )'| B! R |k Ao (K{°MEPAg)p) . (5.5)
lence the matrix element depends only on the rotation Rg.%.. This rotation will
»e equal to Ry after the constraints imposed by the evaluation of the { k@ | k° )
natrix element have been realized, but until then this rotation will be denoted

Rvt = Ra,'p. Hence Rgr = RS-RE.IRsu = RgRy+, and using the group
roperties of the rotation matrices

Ditm3,(5") = S DRSO, (v). (5.6)
A

Che invariance of the group integration insures that

f ds" = j v, (5.7)

ind the orthogonality relation for the D functions,
, . 2
f dS'Dg;’Qm._xl (SVYDLPA(S") = 6.0 560t s Bumr— s n—’; , (5.8)
J
llows the reduction of (5.5) to
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{J'1'(2'3")p'|P12]| J1(23)p) = nonumber (5.9)

JJu
= 2m 8y ybpe T / av’ Dfn')—x;.m_za(v')

m - m - - . ~ R -
x fo dd'sin§' fo dé" sin@” df,{,f,‘,r X (@)d9), _,. (6"
X (KX (KX K224 )0 | Ry (K3 Dok M 5 Ag)p) . (5.10)
We now define the vectors
vakiﬂ,:‘. kl
Ry kg®= ky
Ryky®= ks (5.11)
(where k; is not lined up along the negative z axis and equal to k® until Ry =
Ry). This rotation of the vectors & into the vectors k; is represented in Fig. 5c.
Guided by the discussion leading up to Eq. (5.2) and the representation (4.22) for

the three-body states, the matrix element involving Ry- is a product of a plane
wave momentum space matrix element and Dirac space matrix elements

(kXL (B2, B2 )| Ry Ko ha(k1° AR5 As))
= (KP(K2k)| Ry k3O (KOS x U
= 2B, 6@ (K — k1)2B3, 6D (k2 — k)6 (P ~ P) U, (5.12)

where
U = [T, ) Ry oRv ZgRo 3 (5, A1)
x [T a(F, N) Ry S, (2 Ry R0 (g, 2a)]
x [0, X5) By h oRihy o 2 By ZaRey .o Bor .0 W0 (5, )|
=U uBD U, = (XA 15, Aa(M Ag)) (5.13)

will be referred to as the reduced matrix element of the permutation operator.
Note that g = |k;| and ¢’ == |k}| (as above). The matrix element (5.13) contains
Wigner rotations which result from the fact that the helicities {A{} and {\;} are
defined in different frames.

We first turn to the evaluation of the § functions on the right hand side of
Eq. (5.12).
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B. Evaluation of the § functions

In Appendix B it is shown that the two delta functions can be written

2By, 69 (ki — k1)2Ey, 6@ (kP — k3)

65— o) 6 (7 ~
= 4E;, Ez 8(B)8(a — ) ( - o) “’,,2 Po)
b4 Do
x6 (cosémcos "o) 6 (a‘;osé’ —coséo) , (5.14)
ith
fo =1jo(q, q,x) 1?_6 = ?0(11', 7, X)
6o =0(a, ¢\ x) Gy=06c(d.a,%), (5.15)
nd
. M, — E)E, +qq' cosx]?
po(q,q’.x)=\/[( ‘ ")“‘; i1 X] —m?
q
i W, Ey — (M; ~ Eg) Ezy(q.0
cos { Golg, ;, - 2l - q) ~po(a.q .x)_ 5.16
{ o(0:g X)} abo(a, 7, X) (5.16)

'he first two 6 functions insure that the rotation Ry: = R4y g is now Ry . 0,
nd the delta functions in p and § fix the angle x’ to x. The angle x will remain
variable, since we prefer to express the “allowed” magnitudes of the momenta
and 7' as functions of y rather than the other way round.

We now combine the expressions (5.10}, (5.12), and (5.14) and insert the
ssult into the three-body equation (4.49). In doing this we must be careful to
hange the arguments of the matrix element {5.12), which is expressed in terms
f (o', q, Xrl)\’2 3IPy @, A AzAg), to (", q AlAgAglp'1 g, X;.A&’\fl)? 50 as to agree with
he labeling used in Eq. (4.49). Carrying out the dj’ and dj integrations then
ives

71(23)pi")

=Y V2 +I/27H1 Y
im MAY pa

’
ALAGAL PRy

x(§(23)pIM* (23"} ps) 972 (0, B") " 20dD, L (6400, . (6)

2
m m* N .
Xy BT (8", A (A5AD)palB, Ay (A A5)p2) Oy, (5, A5) (J'1 (23 )pTY) (5.17)
p:

2,0 M [T ()
¥ .
jq dqr_E_q_'fo dxsiny dm—A1.m'—A‘,(X)
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FIG. 6. (a) The canonical configuration of momentum for the calculation of the
Wigner rotalion. The helicity is +-.l; in this example. (b) The transformation of mo-
mentum and spin after the boost in the -+ direction. The spin is now no longer aligned
with the momentum, but rotated by angle 3 with respect to it.

where

P =bold e x) B =po(a, 9. x)
# = oﬂ(q'a ‘LX) 0” = Bﬂ(‘); Q';X) )

and {7, MMM palF, Mo (M| Ay)pa)) is the reduced matrix element defined in
Eq. (5.13). This matrix element is calculated in the next subsection.

(5.18)

C. Wigner rotations and the reduced matrix element

It will be sufficient to define a Wigner rotation only for the special case when
a spinor with helicity A and three-momentum in the right half of the zz plane
is boosted in the positive z-direction, as shown in Fig. 6. The boost is denoted
by Z, [defined in Eq. (B4)], the initial three-momentum of the state by p {with
magnitude f and polar angle §), the final three-momentum by p (with magnitude
p = ¢ and polar angle # = m—x), so that the Wigner rotation R(g,¢’, x) is defined
by the relation
Zou(D, A) = ZRy j o Lu(0,A) = Ro00LpR{q.¢",x)u(0, ), (5.19)

where the representation of the pure boosts Ly, (for k = p or $) in four-dimensional
space-time is
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cosh sinh gy
Ly = , (5.20)
sinh Nk cosh ny

with

tanhn, = (5.21}

&=

In Appendix C we show that R is a pure rotation about the y-axis,

R(9,9'1X) = Rop0, (5.22)

and find the general equation for cos as a function of ¢,4’, and x. Since 0 >
B 2 m, @ is uniquely determined by itz cosine. Using the result (5.22), we have

Zau(p, N} = 3 ulp,v) a2 (p). (5.23)

We now are ready to evaluate each of the matrix elements in
Eq. (5.13), but we will make the substitution {p',q', \{A;M5p, g, Ad2ds) —
", g, N M3p . ¢, A' ALAL) so as to agree with the labelmg I.ISBd in Eq. (5.17).
Noting that k, = lmphes that p' = g and # 4 x = 7 (see Fig. 5) the matrix
element for pa.rticle 1 becomes

Mﬂ?\; - [el"l'rali(q’ A1)R;,fc,oRVZa‘Rn.5',0“ 5’,1\'1)]
=™ Y [@(g, M) Rok oRo.x,0Ro o p (e, V)] df}){f)(ﬁl)

v

= gi™ Z [ﬁ(q, Ar)u(q, v} dfa])\/',z)(ﬁl)

v

= g0 (), (5.24)
where, using the function § defined in Appendix C, Eq. (C14),

= g7\ q,x), (5.25)

Similarly, to evaluate the matrix element for particle 2 use 87 = 7 —x, p" = ¢',
and

Ra,‘lr,(] = RO,ar,—n:
Ryao=Ro—ax, (5.26)
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which gives

Ui, = [e o2, X5) Ry 5 o Zq 'Ry Rem o uld, 52)]

= p—imm z ['ﬁ(q | Ela.,.DRﬂ-,x'oRﬂ'w,o u(q’, ,\'2)] df,l)\/.?) (B2)

= ‘”’”Elu(q v) Roo.~2r u(d', M) 432 (Bo)

- - 1/2 —im{sg— (1/2
= gminle2 2*2)df\;{\£(ﬁz)=-e a0 () (5.27)

where

By =Blgdx)- (5.28)

Calculation of the matrix clement for particle 3 is complicated by the fact
that its physical four-momentum is off-shell, while the four-momenta used in the
definition of the u” spinors are on-shell. However, as shown in Eq. (3.31), the
four-momentum of the negative energy spinor is identical to the four-momentum
of the on-shell particle in the interacting pair, and an efficient way to proceed is
to first express both of the u” spinors in tertms of v, Then it will turn out that
the boosts of both p-spin states can be evaluated in terms of quantities related
to the on-shell particle in the interacting pair.

To this end, note that u* can be expanded In terms of u~ and 7% u~

E, p -
W= |2+l 7”] u=(p,A), (5.29)

5_ (01
*=(10)

commutes with all rotations and boosts. Then, using the fact that

where the matrix

Iz[l,'lr,() = e—i:r"rsaqf‘z = _iTEOZ ' (530)

where ag is the Dirac matrix, and using the explicit form of the spinors given in
Eq. {4.23), we obtain
Renou™(p,A) = €™y ut(p,-1). (5.31)

Combining this with Eq. {5.29) gives a simple formula for R, » o u*(p, A). These
two relations will be summarized
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Ry xou?(p, A} = &2 N, (X u(p, —A), (5.32)
vhere u¥ = u is implied and
_ ﬁ D s 5 K
+(pA) = [m +22 -y ] ,  N_(pA) =7 (5.33)

These relations can now be used to evaluate the matrix element ()
{)(3') fALp [“p (", X )Rw ol 0, 611" 07 IR”:X-OZ 'Ry g g Rz w0 (7 Az'a)]
= (86", ~X) N " VR o 23 R Zar B s o N2 25) (i, = X5)|
=Y ['ﬁ(ff, ~") Ry b s 0Nt (8", A9) No (5, X5) B, 0 Ro,x— x,0 4(g, -V)]

v’
xd . (B)dC12,, (By), (5.34)

there N, = 4° N,4° and, because we were able to write the states Ry .ou”

n terms of the positive energy on-shell spinors ¢ using Eq. {5.32), the matrix
lements of particle 3 have been expressed in terms of the Wigner rotations
vhich already appeared in the treatment of particles 1 and 2. Since the N
actors commute with the rotations, the matrix element can be further simplified

s follows

{3 im 1/2 1/2
{a\_',')p'.x;p = E v df_,f )...,\" (ﬁZ) dE.;{'_),\;(ﬁl)

v’

x [#(d', ") Ro,-x N (5" X5) No(#, Xs) ula, —v)]

==Y e dUD (B) a2, (1) AP (<x) [Appdy + Bprpds]
v
rhere the matrix elements d; and ds are
[@(q, —') Ro,—x0 (g, ~¥)] = d%/P (—x) di = d¥/2(~x) (d'c — 4/'vs's)
wq',~') Ro,—x.07° u(a, —v)] = d¥P_(~x) ds = dVLP(—x) (2v's'c — 2uc's)
(5.36)

vith

¢ = cosh(ng/2)
s = sinh(n,/2)

¢’ = cosh(ny /2}
s' = sinh(ng /2),
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(5.35)

and
ql
sinhn, = = sinh g = pnp (5.38)
From the explicit form of the N's, we obtain
E ”E _ 4/\MXr ﬁ”ﬁ’ _2)\:;13”
A.a’p = m? m?
\ —2/\' d -1 /
( 9 )\' 7 Ep
By, = ) E;,r 7(1)1 . (5.39)
\ m

The sum over v and ¢’ in Eq. (5.35) can now be carried out if care is taken
to remove all phases which depend on v or +/. There are four possibilities, all of
which occur. We may write the “standard” sum in a compact form

ZI 2 GO0 (8O (—x)dP  (BY)

e 23 a2 B (—x)dSL D ()
vt

= ™36y + B — X) = ¢ Nd(By + B2~ X), (5.40)

where symmetry properties of the d functions have been used, and for compact-
ness the AJ A} indices are suppressed in the final result. By similar arguments,
the remaining three sums give

Y T = = ead(By + B2 + X)

v’

Z W ==e"d(-B+B+X)

vi'

Y wI==e"3d(~f1+ 8- X)- (5.41)
v’
Using these identities, the matrix element for particle 3 finally becomes
(3) _ uu\ 3
Ussiimhyon = AL (5.42)

where the matrix X7 ° is



rl E"l' i r ﬁ"
- [D1A + DsB] —(=1)/2-% [ T; Dy ~ (_I)“ﬂ""ﬂ;Dl]
o'p
XA;’A; - E-' -’
(—1)Y/2-% [—'-P—Da + E—DI] D,
m m
(5.43)
with the notstion
Dy = d(B1+ B2 = x)'c — & /2 (By + B + X)s's
1/2
Dy = df\;,/ Ag (=B1+ B2+ x)s'c— dglg/ 3; (=B + P2~ x)c's
A=Ay
B = 2AISB++ . (5.44)

Combining the results (5.24), {5.27), and (5.42) gives the following expression
for the reduced matrix element

(8" MO psl, My (N A)eah =~ (81 df D (- X352 . (5.45)

D. Symmetries of the permutation operator

The reduced matrix element (5.45) satisfies a symmetry condition which can
be obtained from the following property of scalar products

(8", MAZA3)pslF, A5 (A1 A3)p2l) = €', Ay (A1 A5)p2l”, Ar (A5 MG )pa)” -

Because the permutation operator is hermitian and the initial and final states are
composed of identical nucleons, this equation tells us that the matrix elements
{5.10) must be identical under the substitution g «» ¢’ (which also implies 5” —
7,0" = & and B1 o () and

(5.46)

jiey AL & Ay
m e m' Xy — A] . (5.47)
£3 < p2 A = A

Examination of the matrix elements shows that this implies

- Ll 1
(—1)m R gl 00 ALK (0 A3 (—2) X3

m—Al ,m'—A;

m' =AY (S 2 a
= (-G L (O A8 D () A

{2k, (5.48)
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which reduces to the condition
(-NTRALG = a0 (5.49)

However, the transformation (5.47) glves A & A, B —(—1)";""58, D)
(=1)*3=% Dy, and D5 «+ — Dy, showing that the result (5.43) satisfies the sym-
metry condition (5.49).

Another symmetry of the matrix elements of the permutation operator follows
from the fact that Pjz commutes with the parity operator P, which leads to the
identity

'plg = P]gpn = PPHP . (5.50)
The action of the parity operator on the states defined in Eq. {4.13) can be worked
out, giving
Plg IM, pjm, A (Aads)p) = (=17 =172l UM, 5§ —m, =A1(=h2 ~A3)p) -
(5.51)
Hence the matrix elements of Py2 must satisfy the identity
( IM' ' 5'm!, N (W3 A3)p | Przlad M, 5 jm, Ay (Agda) p)
=g TM', 53w’ N (Ap25)p |PP1aPla I M, fjm, M (X2da)p) = (1)~ ppf
x{q' JM'\F §' ~m' A=A~ ) |Pralg IM, 5§ —m, di(=dg —As)p). (5.52)
For the triton, where J = 1/2, this means that under the substitutions

Al = =M A =N
VAP VAR VI
Ay =A3 Ao =g
m e —m' me -m (5.563)

we should recover the same matrix element multiplied by a factor of pp’.
To verify that the matrix elements of P satisfy this symmetry, return to the
full expression given in Eq. (1.6), and use the identity

d3(0) = (=1)*¥dY) _,.(0) (5.54)
to obtain the condition
Nk, = (CIPS8p" NS (5.55)

where N ,(’” f' is defined in Eq. (6.2) below. Examination of this equation confirms
173

that Eq. {5.55) is indeed satisfied.
In the next section we present our final results for the three body equations.
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VI. FINAL EQUATIONS

In this final section we collect the previous results together, and explain how
. is that integration over the the spectator momentum, ¢', is limited to a finite
iterval. Then we describe the changes in the equations which are required by
ospin and the conservation of parity. Finally, we describe how the three-body
hannels are classified and counted.

A. Spectator equations in angular momentum space

Using Eqs. (5.43) and (4.29) gives the following compact result

. Eg
S X3 O M) =~ N2RL (6.1)

P2

here the matrix N°'? is

E'" 5
-';_f;-D] - 4A’3’A'3;D5 —2/\5 [D1B + D5 A)
NEA, = . (6.2)
Ay . =
—2X, D; %’inl + %Ds

id A, B, Dy and Dj were defined in Eq. {5.44).
Combining Eqgs. (5.45) and (6.1) and substituting into Eq. (5.17) gives

Qerl
1(2)pl0)= Y V2T FIVZF 1 3 ]0 ‘q'qu'Eﬂ
ql

J'lmf A;’A;’ !

YL,
ALAL A o

i v )
x/o dxsmxdm_,\hm,_,\;(x)
. - m »r - : - .t -
x{j(23)p| M1 [§(2"3")p") For 9° (¢,7") diﬂ?a;’—x; (8") d,(,’,rfx. _x{0)
—_ r ] 2 " _r m
<D N0 AR NS, - (T,
(6.3)

his is identical to the final result given in Secc. I, Eqs. (1.3) and {1.6). Ttis a
ro-dimensional integral equation depending on the variables q' and y, where the
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integration over the angle x runs from 0 to =, independent of the value of ¢’, and
the integration over ¢’ has been limited to the finite interval [0, gcri}, as discussed
in the next subsection. The momenta §' and §”, the angles & and §”, and the
Wigner rotation angles ) and g, all depend on ¢,¢', and x, and are defined in
Eqgs. (5.18), (5.25) and (5.28). The matrix A is defined in Eq. (6.2).

B. Removal of the space-like region

‘The physical reason for restricting the ¢’ integration in Eq. (6.3} to the finite
interval 0 < ¢’ < gepe will be discussed now.

As given in Eq. (3.19), the invariant mass of the two-body subsystem decreases
with increasing momentum of the spectator, ¢, and at the value

ME—m?

4
q = Qerit = __2Mt o gm (6.4)

the mass of the two-body subsystem is zero. This means it is recoiling with the
speed of light, and under such circumstances the relativistic effects are clearly
enormous! Furthermore, as ¢ increases beyond the critical value, we pass from a
region where the two-body states are time-like into a region where they are space-
like. The two-body scattering calculations are carried out in the rest frame of the
two-body system, which does not exist for space-like states, and, more generally,
it is unlikely that an effective theory designed to describe time-like scattering
would be useful in the space-like region. Furthermore, since the space-like two-
body states appear only at rather high momentum (above 1200 MeV) where the
amplitudes are expected to be very small anyway, it would be sensible to simply
neglect the region q > qcrit, and set the three-body amplitudes to zero in this
region. As it turns out, the three-body amplitudes go to zero qutomatically at
the critical value of q, permitting us to impose the condition that they are zero
for q > geniy without making the three body amplitudes discontinuous in q.

To see that the Faddeev amplitudes (J1(23)p|I'!) — 0 as ¢ — g¢ri¢, note that
the function fg(q,q’, x) [defined in Eq. (5.16)] approaches infinity as ¢ — grie (as
long as ¢’ > 0, which is true over the entire region of the ¢’ integration except at
the boundary where the integrand is zero). Specifically,

o, G Byt qcosy) _ C

= 6.5
P T crit W, W, (6.5)

and in this limit

49



(-—M)N""P_’ _W (ﬁ"K+p) = (Wq)l

et W i (L) Ky = W), (65)

e \mC

E-u

there C and K., are functions which are finite in the limit as ¢ — gcrie. Note that
he possible 1/W, singularity from the negative energy part of the propagator is
anceled by the m/ Eg» factor. Hence the Faddeev amplitudes go like

(LRI 2, e (W) 0 4 e (W)™ 67)

there nyy and n,_ are powers with which the two-body amplitudes (4.50} fall
rith momentum as $” — oc:

1 I 1\ e
(7(23)p|M*|7(273")ps ) o \ 5 . (6.8)
Ve conclude that the Faddeev amplitudes not only go to zero as ¢ — g,i¢, but
hat they approach this limit smoothly.

C. Isospin

Since the main application of the three-body equations for spin 1/2 particles
rill be the three-nucleon system, we have to incorporate the isospin degree of
:eedom. This can be done separately from the other degrees of freedom, as
escribed in this subsection. We will assume that isospin is conserved by the
quations.

To lay the foundation we return to the discussion in Sec. II. The exchange
perators Py are a product of a part which acts only in isospin space, and a part
thich acts on all other coordinates, denoted by ﬁ-j. If the i pair has isospin Tj;,
1e action of P;; on the isospin part of the wave function will be denoted simply
y its eigenvalue (—1)Tis=1. The phase { which occurs in Eq. (2.29) is —1 for
rrmions and is therefore a product of the phase (—1)T#~! from the exchange of
1e isospin variables, and the phase u, resulting from the operation of 13,-,-. Hence

¢=—1=u(-1)Ts1, (6.9)

wen though ( is always —1 for fermions, there are in general two possible values
fu corresponding to the two possible isospin channels, and Eq. (2.29) generalizes
>

7332M212= "M:}z = M:'}:iﬁn
PraMiy=uMj}y = M},Py3. {6.10)

The vectors |I'}} are also vectors in isospin space. Taking matrix elements of
Eq. (2.38), and inserting 1 = }_,. |T){T|, gives

(TI0}) =2 (T1P1a|T") M G3Pra(T'T3), (6.11)
T'

where |T) are the isospin wave functions discussed below, and (T|Py2|T”) is the
matrix element of the permutation opetator in isospin space. The calculation of
this matrix element is familiar from the nonrelativistic theory, but for complete-
ness we will briefly present it here.

In more detail, the states in isospin space will be denoted

[T} = [({tals)TH)T T}, (6.12)

where £; is the isospin of particle 1, T' is the isospin of the pair, and 7 and 7;, are
the total three-body isospin and its projection. As the notation suggests, ta and
t3 are first coupled to T, and then T and ¢, are coupled to 7. These states form
a complete, orthonormal basis

{((2ta) Tt )T TA((t5t35)T8)T'TY) = 61,0, 8yt esy ST1 677087, 7

3 (et )T LY ({tats)T4) T Tl = 1. (6.13)
L1628 TTT,

The effect of Py2 is to interchange particles 1 and 2:
Poal((tata)T'1)TT,) = |((t1t3)T't2) T T;) (6.14)

The matrix element of P|3 in isospin space reduces therefore to a simple recou-
pling coeflicient,

(TIP12IT’) = {{{t2ta)Tt)T TIPr2l{(tats)T"t1)TT,)
= {({t2ta)Tt)T T |((t113)T"t2) T T.)

VT + V2T + { :2 tg% T,}. (6.15)

In the next subsection we complete the reduction of Eq. (6.11) by inserting a
complete set of good parity cigenstates.



D. Parity eigenstates

The two-body scattering amplitudes which drive the three-body equations are
separated into channels which are eigenstates of P! (the parity operator on the
23 subspace) and isospin. Isospin was just discussed in the previous subsection,
and need not be revisited again until the next subsection below where we explain
how iscspin {or exchange symmetry) plays a role in the description and counting
of the channels. The role of the conservation of parity, which has not yet been
taken into account, will be discussed in this subsection.

The helicity states |J1{23)p) are neither eigenstates of the full parity opera-
tor, P, nor of the two-body parity operator, P!. Since the two-body scattering
amplitudes which emerge from the two-body calculations are eigenstates of P!,
the three-body equations must be re-expressed in terms of these states. This is
not difficult because the eigenstates are merely linear combinations of the states
we have already obtained.

First we return to the two-body helicity states |jm(AaAg)p), where the relative
momentum, § is suppressed because it will play no role in the discussion which
follows. If we apply the operator P! (referred to simply as P in Ref. (28]} to this
state we get

Pim{A2da)p) = pe |im(-A2 —Aa)p), (6.16)

where € = (—1)7~1, It is easy to see that the state

i "(mA)p) = % (14 1P |im(A2As)p)

= -1—2 {lim(A2)a)p) + rpelim(=Ag —A3)p)}, (6.17)

with A = A3 — A3, is a normalized eigenstate of P!
PYiT(mA)p) =r[j "(mA)p). (6.18}

If we replace the individual particle helicities A; and A3 on the rhs Eq. {6.17)
by —A2 and —Aa, we obtain the same state, apart from a phase factor. We should
therefore include in our new basis (6.17) only states that are not related to each
sther by changing the sign of both helicities. We choose the convention A, = +%
and label the states by the difference A. With this convention A can be 0 or 1,
and the parity r can be + and —, and we have again 4 independent states, just as

before when each of the individual helicities were allowed to be :!:%. The selection
rule

|A2 — As] < j (6.19)

excludes X = 1 for states with § = 0.

For the construction of three-body parity eigenstates we can proceed in pre-
cisely the same way, treating the two-body subsystem as one elementary particle
with spin j, helicity m, and (now well defined) intrinsic parity ». The parity
operator which acts in the three-body space will be denoted P, and should be
distinguished from P!. To carry out this construction, we first introduce the
three-body states

173 "AamA) ) = {1, 5mi 21 (hada)o) + roeld, jmi Ma(—ha —Xa)e)}

1 .
=7 (14 rPY) |4, 5m; A (A2Aa)p) {6.20)
where |J, jm; A1(AgA3)p) = |J1(23)p} are the same three body states introduced

in Sec. IV, Eq. {4.34), but with some of the notation restored for clarity. The
parity operation P on these states yields

PIJj "M(mA)p) = mr(=1)"7T 7T =X(-mA)p), (6.21)

and the three-body eigenstates of parity, with eigenvalue II = 1 are therefore

|75 7 (mA)p) = -}5 {175 "M (mA)p) + Timr(—1)777=2 T3 7 =X (-mA)p)}
1
V2

In this case we adopt the convention 4; = +% and let m vary, subject to the
condition that

(1 + IIP) |77 "Au(mA)p) . (6.22)

|m—)\1|=im—%15.}. (6.23)

Nucleon one is always in a positive-energy state, and therefore ; = 1 and
s1 = 4. The triton is characterized by J" = %+. Three-body states with these
quantum numbers are

15,57 (mA)p) = —}E{I%j'%(m)«)p)—rd%j’ “L-mNg)} . (6.24)

Expanding these three-body parity eigenstates in terms of the original three-body
helicity states (4.34) gives



. 1, . .
l%+J (mA)p) = 3 {13, 3m; A(A223)p) + roeld, jm; Ai(=Xa —A3)p)
—rel3. 7 —m; =M(A2da)p) — pld, 5 —mi “Aa(=h2 —As)o)}
1 .
=5(1+7P) (T +7PY) 13,3m Ai(A2ha)p) - (6.25)

We now return to Eq. (6.11) and take the remaining spin-momentum matrix
lements of the operators using the basis of good parity states Eq. (6.25). For

implicity, we represent the states by !-%+ JT(mA)p} = |5 "(mA)p), and the direct
roduct states by |T) ® |j "{mA)p) = |I'f "(mA)p) . Then, in our abbreviated
otation,

' "(mA)plTh)

Gertt 2t m c
=2 3 [ [ axsinx
$rt AN T 1) q 0

mlTl A pl

. s m " -
X(T5 " (mNp MY TIT " (nX)") 5 ¢ (0,5")
p"
xPha” [T57(md")p", T3 (m'N)p') g ('3 (m!X)ITF) , (6:26)
pl

there (T "(mA)p| M T|T§ T (mA")p") = M :‘;3:' (T7 7) is the two-body scattering

mplitude for the jth partial wave with parity r and isospin T, and

2" [T (mA")p", T'5' ™ (m! N)o'] = (TPl T x (3 " (mA")p"[Praly’ ™ (m'N)p)
= (T|Ppa|T") x (Prz)) . (6.27)

q. (6.26) is our final result. It expresses the three-body equations in terms of the

hysical states with definite parity and lsospin, driven by two-body amplitudes

I;‘}:’(Tj *) which have been previously caiculated as described in Ref. [28].

The new matrix element {(P;)) is readily obtained from the original matrix
ements Eq. (5.5), which are, in the notation of this section,

(Pr2)) = (.3'm"; AL P12l 4, i M(A2)a)p)
rom the definition (6.25) we have
P12}
: %(%’j'm';)\i()*'z%)ﬂq (L+rPY 1+ PYP(1+P) (14 rPY) |1, jms A (A2ha)p)

(6.28)

1 L ! / ! -
(33 m NG {1+ 1'PY) Pra (L+ PY 1+ 7P |, mi M (A2ds)p) , (6.29)

where we used the fact that P commutes with Py, Using Eqs. (6.16), (6.21),
and {5.52), we obtain

— 1 ; .
{Pi2)) = 2 { (%,j'm'; Ay (3'2/\5).0'|pl2|‘%-3m; Ar(AzAa}p)

410 (5, 7'M M (=N — A5 1Pzl 3, i A (A2 da)p)
+rpe(d, im’ s AL (AP | Pral g, dm; M(~d2 =As)p)

+r'rp’p 3, i'm AL (=M =23)P | Pial, im; Ar(—A2 —2As)p)
—p(§,3'm M(A5A0)0 [Pralg, 5 —m; =Ai(=Az —X3)p)
—r'p'pe (3,5 M A=Ay =) |Prald, 5 —mi —Mi{=he —A3)p)
—re(d, 3'm’; A (A3A5)0 |Pizld J ~m; =M (Azds)p)

—r'rp'e'e(, 5'm M (A AP Piald. i —m; —/\1()\2/\3)!’)}: (6.30)

This is the correct form of the permutation operator to be used with the physical,
good parity states.

E. Three-body channels

We conclude this paper by counting and classifying the channels which con-
tribute to the final three-body equations.

In order to clarify the following discussion we restore some of the notation
which we previously suppressed, and denote the two-body helicity states (6.17)
with good parity, |7 "(mA)p}, by [Po j "(mA)p), where

o = Epo — 5 Was (6.31)
is the difference in the energies of the two particles in the two-body rest frame
(with particle 2 on shell) and Wa3 the rest frame energy of the two-body system.
Note that fip is in general not zero because particle three is off-shell, and that we
continue to suppress explicit reference to the magnitude of the three component
of the relative momentum, §, because it will play no role in the discussion which
follows. This state satisfics the relation

Qalpo 7 "(mA)p} = |o J "(mA)p}, (6.32)

where @3 is the projection operator introduced in Sec. IT which places particle 2
on shell, and is equivalent to the identity when operating on states where particle

I3,
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! is already on shell. Note that the state with relative energy —pp has particle 3
m shell and hence

Qs| —Poj "(mA)p} =1 —Foj "(mA)p). (6.33)

In terms of the states (6.17), the interchange of space and spin coordinates
everything but isospin) has the following effect:

Paa [0 § "(mA)p} = (ro)* €=M [ —o 3 "(mA)p). (6.34)
Chis equation follows from the definition (6.17) and the relation

Pos o im(AaAa)p) = € | —o im(Ash2)p) , (6.35)

vhich {except for notational changes) is Eq. (2.97) of Ref. (28].

Using Eq. (6.34), we can extend the discussion of the previous subsection and
ntroduce states with both good parity and good exchange symmetry. Introduce
he states

5™ m) == = (14 uPs) o (), (6.36)

[Chese are normalized eigenstates of both P! and Py

f" |5 ™ (mA)p) =715 ™(mA)p)
Palj ™(mA)p) = ulj ™ (mA)p) . (6.37)

jince 4 = (—1)T, which can be written T = (1 — u)/2, these states are also the
sorrect spin-momentum states to use with isospin.

The counting and classifying of three-body states depends in part on the
wmber and classification of the two-body scattering states. Since both P! and
Py are conserved by the two-body equations, two-body states can be classified
¥y different possible values of the quantum numbers r and u. There are four
'ombinations:

singlet r=—¢ = ¢
triplet r=-—¢ U= —¢
coupled r= ¢ U= €
virtual r= ¢ U= —¢.

The last set of states, referred to as virtual states in Ref. [28], do not contribute
0 physical two-body scattering. This is because, in the positive p-spin scctor,
‘heir parity assignment would require that 5 = £ £ 1, which in turn requires a

TABLE 1. Possible quantum numbers for three-body states with J™ = §+ {for the
triton). Virtual two body states have been neglected.

) A T u P m number of states
Y] 0 + - + 0 4

>1 0,1 + € + 01 16

>1 0,1 —€ —€ + 0,1 8

total spin S = 1. These assignments are consistent with an exchange symmetry
of u = —e only if these states are odd under change of sign of the relative energy
varieble pg, which insures that they are zero on shell. However, because the two-
body quantum numbers r and u are not conserved in three-body scattering, they
can contribute to relativistic three-body scattering and to the three-body bound
state. In the calculations completed thus far [4] we have neglected these states,
but we expect them to give a small contribution of purely relativistic origin.

Neglecting the virtual states, and recalling the selection rule (6.19) leads to
the following counting rules:

j=0: (A=0)x(p==%1) x (r==%1) x (u=—1) = 4 states
i>0: PA=0)x(p=£)x{r=2e) X (u=c¢)
+A=0,1) x (p= £1) x (r = —€) x {u = —€) = 12 states

The total number of two-body states with angular momenta j < jmpaz is therefore
nz = 4+ 12jmaz.

In numerical caleulations of the three-nucleon bound state it has become
customary to truncate the partial wave series according to the maximal included
total pair angular momentum j. Table I shows how many different three-body
states exist for a given j. The pattern is simple: applying the selection rule (6.23)
for each j > 0 gives 24 possible states corresponding to 12 two-body states with
either m = 0 or 1, or 2 x 12 = 24 states. For j = 0 only m = 0 i8 allowed, and
hence there are only 4 different states. For each combination of quantum numbers
there is one particular pair isospin consistent with the Pauli principle. Since we
have used exchange symmetry to count the states, the inclusion of isospin does
not lead to any further increase in the number of channels. The total number of
states up to a given maximal value jpqy is therefore ny = 4 4+ 24jmqz-
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APPENDIX A: OPERATOR FORM OF THE TWO-BODY EQUATIONS

In this Appendix we present the operstor form of the two-body equations,
ind their subsequent reduction to partial waves. Using the notation of Sec. IIB,
he two-body equations for the scattering amplitude are

M=V VG OM, (A1)

vhere V' is the symmetrized kernel and M is the two-body scattering amplitude
lescribing the scattering of particles 1 and 2. Note that particle 1 in on-shell
n the intermediate state, in agreement with the conventions of Ref. [28] (see
iec. IIB in that reference). In the three.body language, the M in Eq. (Al) is
U3, because the “spectator” (if it were present) would be particle 3. To obtain
. closed set of equations for (Al), multiply by Qy, giving

[@1M) = [QV] - [@:1VG2Q4] [Q1 M], (A2)

vhich shows that particle 1 is on-shell throughout the interaction.

The two-body partial wave equations can be obtained from Eq. (A2) by insert-
ng & complete set of the two-body angular momentum states defined in Eq. (4.8)
with the 23 pair relabeled 12]. The completeness and generalized orthogonality
elations for the two-body states, implied by the work in Sec, 1IC, is

. ; . . oo -7
G2 V15(12)8) = 55136mmbrirrs0s OprolF) A2) 28,5—(-’35—-’1 58Py — Pig)

dp m?
1= Quadng = [ 572 Ty atP TUODN) Oyl ) GO, (A3)
jma'p
AyAzhy

rhere the shorthand notation defined in Eq. (4.45) has been used. Substituting
he completeness relation into Eq. (A2) gives

(i(12)plM lj(1'2')p') = (1(12)p|V1j(1'2)p")

k dk r M A
- ¥ [ R GUDAV I )01)Opu b )

‘\ A"

(1(1"2")p2 M|5(1'2)p'} . (A4)

The evaluation of the matrix element of VG is identical to the evaluation of
MGy carried out in Eq. (4.48). Substituting this (A4) gives

{3(12)0|M135(1'2")p") = U(12)p!V|J'(1'°')p')
;x“[kgdk (12 |V|3(1"2”)p"> E2 gp (0 k)(,?(lnzﬂ)P”|M]J(l o )P (A5)

Multiplying both sides of the equation by (27)*m?/E;Eg, and introducing the
amplitudes

2 3,,2 . — N »
(;)E—: (G(2)pMI3(V2)0)= MEEF . (5,55 Pra)
(2r)*m? ', o
E;Es (1(12)pV15(1'2)p)= Vfl'”’\,l-”aw\;(p’pl'},u)
k2
(21r)3gp(0’ k) = g°(k), (AS)

gives the equation
pp' § ~ ep' j ’,
M)u,\'f,,\,,\' (p:P’Pl')) V,\l)\r AaAg (p.7: Py3)

= T [ VER g5 ks P BMES g (5 P (A)
f Al'AJ”

This is identical to Eq. (2.88) of Ref. [28], establishing the relationship between

this paper and previous work on the two-body problem.

APPENDIX B: REDUCTION OF THE § FUNCTIONS IN P;;

In this Appendix we derive Eq. (5.14) for the delta functions
2B, 6V (K — k1)2E1, 6 (k7 — k2) (B1)

which appear in the matrix element of the permutation operator, Eq. (5.12}.



1. Radial § functions

First find the vectors k,° and k,° shown in Fig. 5a, and k,; ° and k,° shown in
Fig. 5b. The vectors k;° and k;° are

Ey E,
Ko = 8], k§°=(3), (B2)
\-7/ \-a/
where we anticipate that {k”} — {k} and hence use k3| = ¢ instead of [kj| = ¢”.

This agrees with the notation in Eq (5.13). The vectors k;? and k,° can be found
by boosting the vectors k° and k,° defined in the two-body rest frame:

Eﬁ’ Eﬁn
o 7 sin 8’ Ty 5 sin §"
S A R A ! (83)
7 cos§' 7" cos 6"
The boost in the z-direction for the configuration shown in Fig. 5a is
coo s
0100
zﬂ" - 001 0 L] (Bd)
S oo
where
/ 2 +2
C" - Mt - Eq' - WQ' +q S' = q, . (B5)
Wq.r qu qu

The boost for the configuration shown in Fig. 5b is obtained from (B4) by re-
placing ¢’ by ¢q. Hence

( C’Ef,f + S’ﬁ' cos é’ \

=t oo At
k'o = '-'g = P sin &
2 Zq k2 0
\ §'Ey +C'#' cos &
{ CEzn + Sp” cos 6" \
"O - 0”
ky® = Z k= ¥ Sg‘ X (B6)

\ SEz: + Cp" cos§”
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Now the vectors which appear in the delta functions (B1) are k7?, k7, k;, '1nd
ks. Thc second two of these are obtained by applying the rotation Ry to kl
and k2 , as illustrated in Fig. 5¢. Since the rotation Ry. does not change the
length of the three-vectors, the condition ky? = ks imposed by one of the radial
delta functions becomes

. . _1/2
q= {15'2 sin? 6’ + S?E% + C?p® cos®§' + 2C"S'P'Ey cos &' }
42 1/2
- {[C'E,-,, + 8’5 cos 9'] - m2} . (B7)

Requiring that | cos §'| < 1 gives the unique solution

E,—C'Ey _ WyEy ~ (M, ~ Ey)Ey
sS§ 74

The radial delta function can therefore be rewritten

(B8)

cosé’ = costly =

; - -, dk
6(ky? — ko) = 6(cos§' — cos ) 2
dcost’ cos #'=cos 56
The derivative is
dka _ S'E
dcos 6 cos §'=cos B q ’
giving finally
6(k;o - k2) 1 ' a' Wq' n o'
- = ) 0" — costy) = -8 & — cosb B9
kf S'qqu)' (COS cos (l) qq’Eqp' (COS cos 0) ' ( )

where cos §6 was defined in Eq. (B8).
T'he result for the other radial delta function follows immediately by inter-
changing primed and unprimed variables.

2. Angular § functions

Evaluation of the angular delta functions requires explicit consideration of
the rotation Ry» = Ry, s which rotates the vectors k; ° and ko° into ky and k2
as discussed in See. VA and illustrated in Fig. 5¢c. First we consider the delta
function
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8D (ky? — ky) = 6(cos B — cos83)6(ds — ¢a) (B10)

here (62, ¢2) and (6°, ¢°) are the polar and azimuthal angles of ko and ki?,
spectively. The three—veetor k7 was given in Eq. {B6), and k; is

; 0 sin x' cosa
ky =Ry pky® = Rapeg| O } =—q| siny'sina | . (B11)
—q cos x'

nce kzy = k2, = 0 and ky, = k2 > 0, the azimuthal part of Eq. (B10) becomes

8(g — 62)
he polar part of the delta function is

= b(r — a). (B12)

8(cosB,° — cosf) = § (% [S'E,—,: + C'{ cos 5’] + cos x') . (B13)

this delta function is used to eliminate the ¥/, integration, one is left with an
tegration over 7 with upper and lower limits depending on the two external
omenta and on the second integration variable. This makes numerical solutions
‘the resulting equations awkward. Because x’ is the angle between the momenta
and q', and is therefore symmetric under interchange of initial and final states,
is more convenient to retain x' as the independent variable and eliminate
stead the integration over . The limits on the x’ integration turn out to be
dependent of the other va.rlables, running over the expected range from 0 to =.
sing Eq. (B8) to replace cos &, the delta functlon becomes

! - ’
S(cos 8y’ — coshp) = & (_623‘_:15'__,__"]1'3?_ - cos x) ) (B14)

ith the solution

M, — Eg)Eq + q¢’ cos

Ey = By =C'E; + §'qeos x = ( W,

(B15)

d, since the ki? = k; is now satisfied, wo have replaced x' by ¥, as discussed
Sec. VA. It is easy to show that Eq. (B14) implies that E5 > m for all values
X, so that the delta function {B14) places no additional restrictions on the x
tegration. Hence

S’qE B

- o
—Fo

dcos 02

dy

&(cos 62 ~ cosfa) = 8(5' — Py L8 —pp).  (B16)
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The final angular delta function Is
@ (kP — ky) = 8(cos8)° — cosd))b(¢ — B1), (B17)

where (6y,¢1) and (0'1",¢',:’) are the polar and azimuthal angles of k; and k°,
respectively. The vector k,° is given in Eq. (B2); the vector k; is

Ve
vz cos 3 vecos Bcoay + v, siny
=Rpyo| vesing | = — v 8in . (B18)
Uy v, co83sinx — v, cosx
where
ve=§" sin "
o CE L E"u
v,= SEz + Cp’ cos” = -—»—'4’=S—,—p— . (B19)
Setting k; = k'l" gives three equations

0= v, cos fcos x + v, sin x = ¢’ 8in ) cos ¢,
0= v, 8in @ = ¢' sinfy sin ¢,
g=vzcosfFsiny — vy co8x = —q' cosfy . (B20)

We will first use the left hand set of Eqs. {(BZ0) to obtain the values of 8 and
# which are fixed by the delta functions (B17), Then we will use the right hand
set to find the Jacobian of the transformation from the variables cos s, ¢2 to the
variables 5", 8.

The angle § must be 0 or 7. Allowing for either possibility, the first and third
of Egs. (B20) give

g cosy = —u,. (B21)
Substituting this result back into the third equation gives
q'sin? x = v cos Fsiny = " sin & cos Bsin x. (B22)

Since the sin of all angles under consideration s positive, this equation shows
that cos 3 is also and that therefore 8§ = 0. Finally, from Eq. (B21) we obtain
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CEy — Epn
9'S
which is the condition (B14), with q and ¢’ interchanged, showing that Ej~

satisfies (B15) (with ¢ and ¢’ interchanged). We have shown that the second
angular delta function is

8 (ky? — kr) = 8(B)6(F" — Bo) , (B24)

where 5 is § with g and ¢’ interchanged and J is the jacobian of the transfor-
nation from the variables cos 0z, ¢9 to the variables §”, 8.

We return to the right hand set of Eqs. (B20) to calculate this jacobian. Unlike
:he previous cases it is necessary to calculate a full jacobian because the variables
ire all coupled unless we go to the limit sin#, = 0, which gives singular results.
Postponing this limit until the end, we first eliminate v, from the Eqs. (B20) and
ybtain

cosx + =0 (B23)

v, sin = g’ sin &, sin ¢,
v, cos = ¢'[sin & cos ¢, cos x — cos ) sinx]. (B25)

Differentiating both of these equations with respect to cos#; and ¢, computing
:he jacobian, and then taking the limits 6, = 7,¢; =0, and 8 = 0 gives

a8 dvg
B J= 8¢' g‘;‘ = _{1:2_ cos Y (B26)
= v, N
ap’ Bcostl; Deosd, Uz

The radial delta functions have fixed cos8” in terms of 7" — $, [Eq. (B8) with
i’ — g and §' — 5 — Py|, and using this relation we find that

i, ‘W,
ke RS A Rt 9y (B27)
op qE;, sin@”
wid hence the jacobian is
- qq'Efm - Sq'Eﬁo
P—O Wq ﬁ{)
Combining Eq. (B9), its companion, Eqs. {B16), (B24) and (B28), and an-
icipating the fact that the delta functions fix the rotation so that 5” — § and
# -+ 0, we obtain our final result

J

(B28)

B, 8P ~ k)2 B, 8 (K — ka) = 4B gy 6(cx ~ m)6(8) 7 %) 97 1;;170)
0 0

x8(cos & — cos h)8(cosd — cosfg). (1B29)
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APPENDIX C: WIGNER ROTATIONS

In this Appendix the Wigner rotation angle for the standard boost (5.19) that
occurs in the matrix elements of the permutation operator is derived.

Consider a spin 1/2 particle with mass m, helicity A, and three-momentum p
which lies in the xz plane {with the z-component positive, by convention). Under
the boost Z; in the +2 direction the state transforms like

Z5, N = R@Q)lp, ) = ¥ Ip, ¥ {P(8), (C1)

where Z, will by used to denote both the boost (B4) in four-dimensional space-
time, and its representation on the space of states. Hence p = Z, p. In agreement
with the notation used in Sec. IV, the magnitude |p| = ¢, and angle between p
and the +z axis is # = # — x. We will show that ) is a rotation about the y axis,
and find the rotation angle, 8, in terms of q, ¢, and x.

As previously described, the helicity states are constructed from rest states
by first boosting in the 4z direction, and then rotating through the proper angle.
For the states |p, A} and |, A), this construction gives

|5, A) = &= L |13, A)
]P, A) = e—iJ,,O Lq' Iﬁh /\) 1 (02)

where Ly was defined in Eq. (5.20} and 7 = (m, 0) is the four-momentum vector
of a particle of mass m at rest. Hence the Wigner rotation operator is given by

R@Q) = (e Ly) " Zye 0L, (C3)

Assuming that R(Q) is a pure rotation about the y-axis, the equation reduces to
the following set of equations involving 3

el L, e P = 7, ] L; (C4)

We will solve these equations using the Dirac representation for the operators.
In this representation the pure boosts in the z-direction are

Lq! = eﬂzﬂq'/z = C’ + s’az,' (05)

where tanhn, = ¢'/E,, ¢/ = cosh(n, /2), and s’ = sinh(ny /2) {these relations
were previously defined in Eq. (5.37)]. The boost Z; has a structure similar to
(C5) but with 7, — n, where



_M-E

c W,

=coshn, §= = sinhn, (Co)

2
We
18 in Eq. (B5), but with ¢’ — ¢. To simplify notation in what follows, we denote

:he hyperbolic functions of n,/2 by

e, = cosh(ng/2) 5n = ginh(ng/2). (C7)

The pure rotations about the y-axis are

e tv0 = =07 u/2 = ¢05(0/2) — isin(8/2)7 "y . (C8)
Hence Eq. (C4) becomes

[cos(8/2) - ivoy sin(8/2)] [¢’ + s'cxe] [con(B/2) — iv° oy sin(B/2)]
= {eq + 0z 5p) [cos(§/2) ~ 70y, uln(é/fl)] lep + azsy) - (C9)

Jsing {y®ay,a,} =0, Eq. (C9) becomes

{cos|(8 + B)/2] — in°ay sin[(0 + 8)/2]} ¢
+ {cos[(8 - 8)/2] - iv%ay sin[(6 ~ B)/2]} s'e.
= {cnCp + Sn8p + 0 (8nCp + CuSp)} cos(8/2)
—i {CnCp — 5n3p + Az(8nCp — n8y)} 100, 8in(/2). (C10)

Tquating the coefficients of the independent operators on each side of this equa-
ion gives four coupled equations

¢ cos{(8 + B)/2] = (¢acp + 5n3p) cos(F/2)
¢ sin[{8 + 8)/2] = (enCp — 8n3p) sin(6/2)
s’ sin[(0 — 8)/2] = (cnSp ~— Sacp) sin(8/2)
5" cos[(8 — B§)/2) = (cn%p + Snty) cos(8/2). (C11)

Chese are not all independent; squaring each of these and then adding the first
wo and subtracting the second two glves an identity (1=1). Hence only three
wre independent, and given the quantitles g, ¢', and ¥ = 7 — 8, these three
ndependent equations can be regarded as equations for the unknown quantities
!, §, and 8.

We are only interested in an equation for 8. This is obtained by multiplying
‘he first equation by the last equation, and adding it to the product of the second
:quation and the third. The result is:
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Csinhnp + S cosh 1y, cos §
sinhnf )

cosff = (C12)

To eliminate cosd, we find an equation for it by summing the squares of each of
the equations. This gives

= coshy/ -- Ccoshy,
cosf = Ssinh1,
Ey - CE;

Sp

(C13)

Note that this is identical to Eq. (B8) [with the primed and unprimed variables
exchanged], showing thet the calculations are consistent, Substituting for cosd
gives
coshn, coshyy’ — C
sinth 7, sinh 5’
_ WoE;Ey - m*(M, — Eq)_
= W,
_ __ ¢ (M, — E,) +qE, cosx
\/ q?W2 + q*EL + 29¢'Ep (M; — Eg) cos x + (gq’ cos x)?

cosf =

(C14)

This is the formula for cos [3(q,¢', X)]-
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