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1. INTRODUCTION

Since its initial investigation at SLAC in the late 60's, deep inelastic lepton
scattering has provided a wonderful tool to explore perturbative QCD and to test
many features of the Standard Model. The crucial theoretical tools needed to
understand deep-inelastic scattering, namely the operator product expansion and
the renormalization group (which are now used throughout particle physics), were
developed in parallel with the data taking. Using these techniques one can often
eliminate the need to understand the detailed structure of a target in order to make a
rigorous test of QCD. Famous examples include the Adler, Gross Llewellyn Smith
and Bjorken sum-rules.

With perturbative QCD now well tested and established there are three
important frontiers in deep-inelastic scattering. Two of these, namely the behaviour
at very small values of Bjorken x (defined in Sect. 2 below) which is currently being
explored at HERA and the higher-twist corrections (again see Sect. 2), have
traditionally been the domain of high energy physicists. The third frontier, which lies
at the boundary of nuclear and particle physics, is our major concern. This is the
wealth of information that deep-inelastic scattering data contains on the non-
perturbative structure of hadrons (Tho 84a).

The idea of using deep-inelastic scattering to probe non-perturbative structure
first reached prominence in connection with the discovery of the nuclear EMC effect
(Aub+ 83). The fact that the structure function of a nucleus was not simply A4 times
the structure function of a free nucleon, even in the valence region, suggested that

the quark structure of the nucleon itself may be changed inside nuclear matter. Then

nuclear structure functions of an enhancement of the number of virtual pions per
nucleon in a nucleus - see also Berger et al. (BCW 84). This led naturally to a
renewed interest in the role of the pion cloud in the free nucleon. In particular, it was
shown by one of us (Tho 83) that one could put an upper limit on the hardness of the
pion-nucleon form factor from the excess of non-strange over strange sea quarks
seen in deep-inelastic scattering. it was also realized that the pion cloud necessarily
led to an excess of d over # quarks in the proton.

Since 1983, and particutarly since the New Muon Collaboration’s confirmation
of the excess of d over & in the proton (Ama+ 91), there has been a great deal of
theoretical and experimental activity. Much has already been learnt about nucleon
structure and an exciting program of experiments needs to be carried out in the next
few years to teach us more. Our purpose is 1o review these developments for the
community of physicists fascinated by the strong interaction, whether nuclear or
particle physicists by background.

We begin with a brief review of the notation and ideas of deep-inelastic
scattering and the general features of the data. Then we turn to the role of the long-
range, pion cloud of the nucleon required by chiral symmetry as well as by the
Heisenberg Uncertainty Principle! Having reviewed the traditional covariant
approach we explain the importance of workin.g in the infinite momentum frame. We
explain why a pion cloud leads to important predictions such as an excess of anti-
down over anti-up quarks, and look at the quantitative predictions.

Having explained the theoretical ideas we turn to the various experiments

which can be used to test or constrain them. This includes using exclusive pp

reactions to constrain meson-nucleon form factors, measurements of the Gottfried

quark degrees of freedom would play a vital role in understanding nuclear slrugtu‘reﬁ‘ VLo {7? sum-rule, Drell-Yan experiments and polarized deep inelastic scattering. We also
This is one issue which still needs further study and we refer the interested (/e‘édyr’io %’.}0 discuss semi-inclusive deep inelastic experiments.
some recent reviews (GST 95, Arn 94). ik “g\
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Realizing that virtual pion exchange plays a crucial role in nuclear binding, Llew¥lyn

Smith (Lle 83) and Ericson and Thomas (ET 84) explored the consequences for—-.



2. ELEMENTARY IDEAS OF DEEP INELASTIC SCATTERING

There are a number of fine reviews of the ideas of inclusive lepton scattering
at high energy and momentum transfer - the deep inelastic regime (Clo 79, LP 82,
Mut 87, Sac 83, Ynd 83, AT 80, Alt 82, Cra+ 83). Our intention here is simply to
explain the usual notation and summarize the essential ideas without any attempt at
a formal derivation, which would take far too long.

We consider the inclusive scattering of a high energy lepton with initial (final)
energy E(EY) and scattering angle 6 from a hadronic target of mass M and initial
four-momentum p. The spacelike four-momentum transferred to the target is
denoted ¢. For an unpolarized target the laboratory differential cross-section for

electromagnetic scattering is calculated by contracting the lepton tensor L, with the

hadronic tensor W**;

e
e = gw,+ Lo, (2.1)
with
v
gﬂv = _gyv + qq‘II , (22)
e -Blo, 23)

and the two arbitrary functions #, and ¥, contain all the information we can learn

about the target from such experiments.

After contracting the tensors and integrating over phase space we find:

2 2 20 2 r 8 F
dg'gﬂ = 4‘1"#[%52 g —Vz— +2sin’ 2 ﬁ . (2.4)

All of the information concerning the structure of the target is now contained in
the structure functions F, (= MW,) and Fz(= vW,), with v = [ - [ the photon energy
in the laboratory frame) which can depend on at most two variables. One usually
chooses those to be the Lorentz invariant quantities Q’(: -4* >0) and Bjorken
x(: ~-q*12p-q=Q°"/ 2Mv). The deep-inelastic regime corresponds to the case

where Q* and v are both very large (Q’ >2GeV?,v>1 GeV) but x lies in the range

(0,1). In the case of neutrino scattering from an unpolarized target we find a third

structure function, /-, associated with parity violation:
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There has recently been tremendous interest in polarized deep inelastic
scattering. In the case where a polarized electron (or muon) scatters from a
polarized, spin-1/2 target there are two more structure functions which can be

measured, g, and g, . Denoting beam and target helicity with arrows top and bottom

respectively we find:

do . .\ 4a’E g
- gEl

E + E'cosb)g, ~2Mxg, | (2.6)

Clearly the second term on the right of equ. (2.6) will be negligible (in the
deep inelaslic region) if g, and g, are of the same order. To determine g, one

needs to work with a longitudinally polarized beam and a transversely polarized
target. However, even then the cross-section is of order (l/Q) times that given in

equ (2.6):

) da(EY 2ug, .
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(Here an arrow up indicates that the target is polarized in the direction at right
angles to the incident beam, in the scattering plane but pointing opposite to the side
where the final lepton exits.)

In the late 1960s tremendous excitement was generated by the discovery at
SLAC that the structure functions were almost independent of (? over a very wide
range. That is, they were functions of the single variable - Bjorken x. it is very easy
to see that this is what one would expect if the nucleon contained a collection of
elementary constituents (initially called partons by Feynman but later identified with
quarks) with low mass, which do not interact strongly during the deep inelastic
collision. For simplicity it is usual to consider this problem in a so-called infinite
momentum frame - e.g. one where the nucleon has momentum P >> M in the z-
direction so that its 4-momentum is p={P;0,0,P). Under the assumptions of the
parton model, only a parton with fraction x of the momentum of the nucleon can
absorb the exchanged photon (or W-boson). Deep inelastic structure functions are
then determined by the number density of partons in the nucleon with momentum
fraction x.

It is usual to define distributions ¢™(x) which give the number density of
quarks in the target with helicity parallel or anti-paralle! to that of the target. For
example, u(x)xdx gives the fraction of momentum of u quarks in the proton with
momentum between xP and (x+dx)P in the infinite momentum frame (and with
either helicity). By charge symmetry, u also gives the distribution of d quarks in the
neutron, but we note in passing that there are reasons to doubt the accuracy of this
for the valence d -quarks in the proton at the 5% level (Sat 92, RTL 94).

The structure functions mentioned earlier are directly related to these
distribution functions. For an electromagnetic probe one finds:

Fy)= %ze;(qt(x) +q' () (2.8)

Fy(x) = 2xF;(x) (2.9)

(%) =%Ze3(q'(x)—q‘(x)) (2.10)

with e, the charge, in units of e, of the quark of flavor ¢. Equ. (2.9) is the Callan-

Gross relation and relies on the partons having spin 1/2 and no transverse

momentum (in the infinite momentum frame). In general we have

1+R
F, = 2xF,

L 1+2M x/fv (211

where R is the ratio of cross-sections for absorbing a longitudinal to that for a

transverse photon. Experimentally R is small (Das+ 88) (<01) for all x, for
Q' 25 GeV?.

For neutrino scattering from an isoscalar target one finds
O =xu+m+d+d +5+5), (2.12)

which measures the total quark content of the proton. Even more important, by

combining v and v data one can measure the combination
Fi+ =(u_,7+d_,7). (2.13)

which isolates the excess of quarks over antiquarks - i.e. the valence quark
distribution of the nucleon. Clearly we would expect the sum rule (due to Gross and

Llewellyn Smith)
1 -
[ aer=(x)=3 (2.14)

lo be obeyed. It will also be useful to define the n'th moment of a structure function

like xF,, F, or xF, as, e.g.
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2.1 Scaling violations

It is clear from the analysis of the experimental data that even in the Bjorken
region the structure functions have a weak Q*-dependence, and therefore so do the
distribution functions which we write as q{x,Q?). If one sticks to any one data set in
order to (partially) avoid systematic errors, this variation of the structure functions
(scaling violation) is essentially logarithmic. In order to understand it one must go
beyond the naive parton model to QCD.

Suppose we assume that the wavefunction of the target has no high-
momentum components (i.e. p; <<Q?). Then any Q?-dependence can only come
from the lepton-quark scattering process. Scaling resulls if the quark is treated as
point-like and the trivial Q*-dependence of the Mott cross-section is factored out. On
the other hand, in an interaction field theory, the lepton-quark scattering amplitude
will involve radiative corrections, some of which add coherently (e.g. wave function
and vertex renormalisation) while others are incoherent (e.g. bremsstrahlung). It is
well known that such radiative processes lead to corrections which vary
logarithmically with the appropriate cut-off scale - in this case Q*. This is formally
described using the operator product expansion and the renormalization group.

On the basis of the operator product expansion and the renormalization group
one can show that the moments of the structure functions can be written as the
product of a coefficient function C, (which is independent of the target) and the

matrix element of a local operator. In fact one finds that the (* variation of the

moments of the structure functions resides entirely in the coefficient functions which
can be calculated by perturbative QCD.
To leading order one finds:

M,(Q") = M.(Q:)[ :(Q:;] d:. (2.16)

and hence for fixed (] it is easily shown that

d
> 1nM_(Q?)+constant, (2.17)

(]

in M,(Q’) =

so that a log-log plot of any two moments should be a straight line whose slope is
predicted by QCD. (The power 4, is known as the anomalous dimension.)

All of the above discussion of Q* evolution applies only to the non-singlet
structure functions like F, which cannot involve gluons. The (* evolution of singlet
structure functions such as F, is more complicated because the quarks and gluon
operators mix under QCD renormalization. While the corresponding analysis is not
much more difficult (it involves a 2x2 matrix), it would divert us too much to explain it
here. Instead we refer to the previously mentioned texts - e.g., there is a summary in
Table 2 of the review by Altarelli (Alt 82).

Given an analytic continuation of a set of moments, M_(Q‘), there is a

standard method for reconstructing the corresponding function - this is the inverse
Mellin transform (IMF):

xFy(x,0?) =lmj: “dne'™ M, (0?), (2.18)

where C is chosen so thal the integral exists. If, as we explained above, the

moments of the struclure function can be written as a product of a coefficient

)

function, C,(Q*, ") with the target matrix element, (¥

M., (@)= ¢ (@ w7

o.()|N) (2.19)

the inverse Mellin transform, . is just a convolution of the IMT of C, (denoted by

C,) and (N|0,|N) (denoted 1), viz:



*Fy(x,0%) = [! %’C,(rly,Q’,y’)(yF,(y.u’)). (2.20)

This is an extremely important resuit. In particular, C, is totaily independent of
the structure of the target - a property known as factorization. Clearly if we can
evaluate the structure function of the target at any renormalization scale 4?, equ.
(2.20) allows us to calcutate it at all higher values of (. Higher order QCD
corrections do not alter this result in principle, they just make C, harder to compute.

For this reason 4* cannot be too low.

2.2 Features of Nucleon Data

Current experiments at HERA are pushing back the kinematic boundaries
within which the structure functions are known. For example, one can now reach
values of x as low as 2 - 3 x 10° at Q* ~2Gel’?, whereas fixed target experiments
can only get to x of order 8 x 10* at very low 0*(03GeV'?). Furthermore, the
perturbative evolution of the structure functions can be followed to Q? as high as 10°
- 10° GeV? at large x. For a summary of the present status of the HERA experiments
we refer to the proceedings of the recent HERA Workshop on proton, photon and
Pomeron structure (HER 96) especially the review by Badelek et al. (Bad+ 96).

Since our main concern is not with the small x behaviour, it is sufficient to
view the data on a linear scale. Fig. 2.1 summarizes an enormous amount of
experimental work carried out over the last 20 years with muon and neutrino beams
and illustrates some very important features.

First, we note that the anti-quark distribution, which is one half of the sea of
virtual - pairs that one sees when fooking deep into any hadron, is concentrated in
the region below x = 0.3. In fact, xg(x) is typically parameterized as (1-x)7 (with
¥=7-9). Note that the sea quarks, q, with g, = ¢ - 7 - are usually defined to have the
same shape as §. On the other hand, there are suggestions that s(x) may not have

the same shape as 5(x) (St 87, JT 95, HSS 96) and this will be important to test.

Later we shali explicitly review the evidence from NMC (Ama+ 91) and NAS1 (Bal+
94) that d > i which leads to a violation of the Gottfried sum-rule. Finally we note
that neutrino induced deep-inelastic scattering to di-muon final states can be used to

check the relative strange versus non-strange sea. It seems that strangeness is

suppressed for Q° ~5-10 GeV'?, with (Baz+ 95)

= =0451005.
u+d
As the second feature of Fig. 1 we note that the valence quarks (recall equ.

(13)) dominate for x beyond 0.3. This is confirmed by the closeness of xF, and

F* for x203, after allowing for the electromagnetic charges of the quarks

(% = -;—(-3+é)) In the early days of deep inelastic scattering this provided vital

confirmation that the partons of Feynman were, in fact, quarks.

The same counting rules (Drell-Yan-West) which led one to expect the sea
quark distributions to behave like (1-x)” as x-—»1 suggest that the valence
distributions should behave as, ¢,(x) = x*(1-x)” with « = -05 (from Regge theory)
and g =3. Of course, QCD evolution implies that o and £ will also depend slowly
on (* and for recent paramelerizations we refer to Badalek et al. (Bad+ 96) and
Martin, Stirling and Roberts MSR 94). The one feature worth noting about the fits
discussed there is that they all assume d, /u, = (1-x) and hence vanishes as x —»1.
Recent re-analysis of the binding and Fermi motion corrections in the deuteron
suggest that this may not be correct (MT 96) and that, in agreement with perturbative
QCD (Bro+ 95), d/« may decrease like (1-x) for x below 0.7 but tend to a constant
as x—1. This needs further testing but one should keep this uncertainty in mind in

situations where the actual d/u ratio is important).



3. SULLIVAN PROCESSES

The virtual meson-cloud of the nucleon plays an important role in the
understanding of the nucleon-nucleon interaction (MHE 87) and the pion-cloud in
particular has always been considered as crucial in understanding the nucleon's
long-range structure. For example it was recognized even in the 1950's that the
process n— px” naturally explains the negative tail of the neutron’s charge
distribution. Furthermore, from PCAC, and the successes of chiral quark models BR
79, Tho 84b, TMT 82, AT 83) we know that the nucleon has a pion cloud.

In 1972, Sullivan (Sul 72) showed that in deep-inelastic lepton scattering from
a nucleon, the process in which the virtual photon strikes a pion from the meson
cloud, and smashes the pion into debris, scales in the Bjorken limit. The reason for
this is that, in contrast to processes such as exclusive pion-production, which are
suppressed by form factors of the order 1/Q?, here the inelastic structure function of
the pion itself is probed. The pion contribution to the structure function of the
nucleon was investigated later (Tho 83) in connection with SU(3)-symmetry breaking
in the quark sea content of the proton. Here it was also pointed out that the pion
cloud could be responsible for generating an asymmetry between the # and d
quark content, through the preferred proton dissociation into a neutron and =°.
Furthermore, DIS data on the momentum fraction carried by antiquarks were used to
obtain an upper limit on this non-perturbative pionic component and therefore on the
number of virtual pions in the nucleon (Kum 91, FMS 89).

These early analyses came lo the conclusion that the pionic component is
small, which indicates that the pion-nucieon form factor has to be rather ‘soft’. This
finding was in strong contradiction with the ‘hard’ form factors which were used in
meson-exchange potentials (MHE 87) at that time. As we will see in the following
there is not much left from this controversy. Hwang et al. (HSB 91) have pointed out
that at moderate Q° the total quark sea, including strange quarks, should be
connected with the meson cloud, which gave rise to a much harder form factor.
Moreover, Zoller (Zol 92) showed that the meson-baryon form factors which enter in
the analysis of deep-inelastic processes are probed under similar kinematical
conditions in semi-inclusive high energy proton-proton reactions. Holtmann et al.
(HSS 96) extended the corresponding analysis to include not only pseudoscalar but

also veclor mesons. The form factors deduced from such a combined analyses
turned out to be a little harder than those in the initial investigations of the sea of the
nucleons associated with pions only. On the other side it has been shown (Dei+ 91,
TH 90, JHS 94) that more sophisticated meson-exchange potentials can also
reproduce the experimental nucleon-nucleon phase shifts with pion-nucieon form
factors which are somewhat softer than those which were traditionally used in OBE
potentials and, in facl, close to those derived from DIS.

The concept of the pionic cloud may be extended by taking into account first
of all the full pseudoscalar nonet and also the vector meson nonet. These mesons
are not only crucial in meson-exchange potentials but it has been known for a long
time that they give important contributions to low energy nucleon properties, such as
the electromagnetic nucleon form factors or magnetic moments.

The one caution we should add, to which we return in sec. 6, is that it is not
established to what extend one can add incoherently the contributions from mesons
of increasing mass. In principle there is the possibility of interference between terms
where one reaches the same final state, X, from both y*MB-> X and
y*M'B—~ X. Indeed, as we shall see in sec. 3.6 and 4.7, for spin-dependent
structure funclions we require some interference between the final states reached
from y*aN' and y*xA'. We regard the resolution of this question as being
essentially empirical, while noting that apart of the p-meson the heavier mesons

play only a minor role.
3.1 The Convolution Model

The convolution model relies on the assumption that the nucleon wave
function can be written as the following sum of Fock states

IN)=VZ (W) + Tt b DB MO- 2R ) ) @)

where ¢au (y,k}) is the probability amplitude to find a physical nucleon in a state
consisting of a virtual meson M and a virtual baryon B with longitudinal momentum

fractions y and 1-y and transverse momenta , and -k, respectively. Z is the



standard wave function renormalization factor and can be interpreted as the
probability of finding the bare nucleon in the physical nucleon. In the following, we
are concerned with first order corrections to the bare nucleon only. Preliminary
calculations (Zol 92) suggest that higher order corrections are rather smali provided
that the form-factors used are not too hard. The infinite momentum frame (IMF) is
particularly useful in the study of DIS phenomena. In the infinite momentum frame

(ie. [Pl with j the nucleon momentum cf. sec. 2) the constituents of the

nucleon can be assumed to be free during the DIS reaction time (FF 72).

The basic hypothesis of the convolution approach is that there are no
interactions among the particles in a multi-particle Fock state during the interaction
with the hard photon in deep inelastic scattering. This enables one to relate the
contribution of a certain Fock state, BM, to the nucleon structure function F,, to the

structure functions of either the struck meson M or the struck baryon B (see Fig.

3.1 a, b) using
8uF ()= [y fmm(y)Fz“[f), (3:2)
80F ()= & fuae (y)f(i) (33)
or written in terms of quark distributions:
5= [ fuamm (y)q.(i)% [ (y)q,(ﬂ 2 (3.4)

The main ingredients in these formulas are the spiitting functions f,4, ()

and f,, (y) which are related to the probability amplitudes eu in the IMF via

Suan ()= [ k2 (3,477, (3.5)

Sian ()= [} b2 lguc(1- v 12)", (36)

Because the description of the nucleon as a sum of MB Fock states is
independent of the DIS process, the relation

fm/N(y)=fmm(l'}') (3.7)

must hold. It simply expresses the fact that if a meson with longitudinal momentum
fraction y is struck by the photon, the remaining part of the nucieon is a baryon with

the remaining longitudinal momentum fraction, 1- y. Moreover this relation

automatically ensures global charge conservation

(")m = (”)nu (3.8)
With (n), = [ fraw (V) and (n),, = | fasn(¥)dy, and momentum conservation
0o+ (s =D ras (3.9)

where (y)m=_fd)yf M,(y) and (y)w=_[dxy _fm(y) are the average momentum

fractions carried by meson M and the virlual baryon B, respectively. (1) and (y)

are called the first and second moments of the splitting functions.
It should be noted that, because of the probabilistic interpretation of

I¢m .k} )r, the wave function renormalization constant Z can be expressed as

Z= (1 + é(n)m) ! (3.10)

The quark distribution functions ¢, (x) of a nucleon within the Fock state

expansion are given as:




9 (x) =gy (x} + 89, (x) (3.11)

where ¢2™(x) is the quark distribution of the ,bare* nucleon (see section 4.2).

In the following, we shall explicitly evaluate the splitting functions f,, and
Jae» @nd examine the conditions under which equ. (3.7) is fulfilled. The calculation
can be performed in two different ways: (a) within the covariant perturbation theory
developed by Feynman, Schwinger and Dyson and (b) in time ordered perturbation
theory (TOPT) in the infinite momentum frame, as developed by Weinberg and Drell,
Levy and Yan (Wei 66, DLY 70). In the first case relativistic covariance is explicitly
fulfilled, but particles are not always on their mass shell. This is a severe drawback
in DIS because one is forced to make assumptions about (or to model) (MST 94) the

off-mass shell behavior of the hadron structure functions and, in addition, the basic

relation in equ. (3.7) is not fulfilled without further assumptions. In TOPT manifest

relativistic covariance is lost. However Weinberg (Wei 66) and later Drell, Levy and
Yan (DLY 70) have shown that by applying TOPT in the infinite-momentum frame
(IMF) one can ensure Lorentz invariance with substantial calculational simplifications
which make this method especially suited for DIS - as first pointed out by Bjorken.
(Bjo 69).

In his pioneering work Sullivan (Sul 72) used covariant perturbation theory
and so did everyone else until the early nineties, when new interest started in these
processes, in connection with the violation of the Gottfried sum-rule. Sullivan only
considered the process shown in Fig. 3.1 a, where the photon hits the pion. In order
to conserve momentum and charge, one must also include the contribution shown in
Fig. 3.1 b where the photon hits the recoiling baryon after the meson is emitted.
Previous treatments of this process in the covariant framework were made by
several authors (Kum 91, FMS 89, HSB 91, SS 93, MTS 91). The results, however,
were only in qualitative agreement with each other. The main reason was that
different procedures were used to fuifill the conservation laws. Moreover, the whole
approach was questioned because of the unknown off-mass-shell behaviour of the
hadron (MST 94). For all these reasons, in the more recent work (Zol 92, HSS 96)
the formalism of TOPT was used in the infinite momentum frame, where these

drawbacks do not exist. A review of the covariant formulation and its various

problems can be found in ref. (TM 93). In the following, we will concentrate on the
calculation of various splitting functions within TOPT in the IMF.

3.2 Calculation of the Probability Amplitudes ¢au in TOPT

The main virtues of this formulation are that off-mass-shell ambiguities in the
structure functions of virtual particles can be avoided, and that the meson and
baryon splitting functions satisfy equ. (3.7) exactly.

In TOPT the analogue of Fig. 3.1 a involves two diagrams, as shown in Fig.
3.2, where the meson moves forward and backward in time, respectively. The
advantage of the infinite momentum frame (IMF), where the targel nucleon is moving
fast in the z direction (with fongitudinal momentum [ =p, - «), is that only
diagrams involving forward moving mesons have to be considered. Diagrams with

backward moving particles give no contributions in the limit p, - c.

The essential ingredients in the convolution mode! are the probability
amplitudes ¢, (y.k}). In TOPT in the IMF one is able to write down explicitly the

intermediate Fock states

e iy, Mo N VpE5-F)

uue (PR = p-K)= V7. N, 2 T 4 (3.13)
) (27): (27): Ev = Es—Es

This formula gives the probability amplitude of finding a nucleon with

momentum 5 in a Fock state where the baryon B has momentum & and the meson

- - 3
M momentum k'=p-k. The factors (27): come in because we are working in

momentum representation. The factors N, (N,,) are the usual fermion wave function

normalization factors, N, =m,/E,, Ny=\m,/E,;N,, is a bosonic
normalization factor, N, =1/[2E,, . The important feature of TOPT is, in contrast

to the covariant perturbation theory, that the intermediate particles are on their

mass-shell, i.e. their energies are given by



E, =\}m:,+13’, Ey=mi+k?, E, = Jm +k" (3.14)

Therefore, one can calculate the vertex function ¥ in equ. (3.13) because
one can use on-mass shell wave functions. ¥ depends on a particular model, i.e. on
the form of the Lagrangian used. In general ¥ can be written as

V(B.k.k) =7, (5), v 2,(F)w, (), (3.15)

where summing and averaging over all possible spin-states is implicitly assumed. q,
 and y are bi-spinor and/or vector indices dependent on the representation used for
particles of a given type. x and y are the wave functions (field operators) of the
intermediate meson and baryon, respectively.

it has been shown (DLY 70) for the ¥V case, that in the infinite momentum
limit contributions of Fock states with anti-particles vanish and only contributions
with (forward moving) particles survive if appropriate form factors are introduced.
This statement is also true for the other Fock states with which we deal. In the IMF

the momenta of the particles involved can be parametrized in terms of y and k L

k=yp+k,, k -p=0, k=(1-y)p-k,. (3.16)
Thus, in the limit p = |5 — -

m:, +Ic12

2|l—y|p ’

(3.17)

my +k}
2

MP , E, =|I—y!p+

my
Ev=p+3, B =blp+

and the energy denominator becomes:

1
- 0
2)'P+O(p) Jor y<
1
E,-E,-E, =<2(l—y)p+0(;) for y>1 (3.18)
# my ~ M, (.4} ))+0(pLzJ Jor yelo],

where M}, (y,k})is the invariant mass squared of the intermediate BM Fock state

2 2 2 2
my +k| P +k|

(3.19)
y I-y

Mo .k7) =

Only states with y € {0,1] survive in the IMF-limit. In this limit the probability

amplitudes can be expressed as

)= '”Nmayw(-y'klz)
ZnJy(l—y)(m:, "M;u( "‘11))'

Fuue (. k2 (3.20)

with ¥, being the vertex-function in the IMF-limit. In the formula above an extra

factor(sp) ™ has been taken out. It would cancel when going to probability densities
by an appropriate factor of the Jacobian of the transformation (3.16).

Formula (3.20) can be used to calculate ¢w(y,k}) for all cases of interest -
see refs. (Zol 92, TM 93, HSS 93, HSS 96). Using TOPT this way has one

disadvantage in comparison with the typical calculation involving traces: one has to

calculate V,. for every spin configuration and calculate the spin average
afterwards. On the other hand this turns out to be most useful for polarized DIS, as

we will see in section 4.5.



3.3 Meson-Baryon Form Factors

The symmetry given by equ. (3.7) is automatically fulfilled for vertices
involving point-like particles. Because of the extended structure of the hadrons
involved one has to introduce phenomenological vertex form factors, which
parametrize the unknown microscopic effects. It is interesting to mention that Dreli et
al. (DLY 70) also had to introduce cut-offs in the transverse-momentum &}, when

they derived the parton model for deep inelastic electron scattering within the same

formalism. For these reasons, the vertex function, V(y,k}), should be replaced by

V'( ¥, kf) = G(y, k} )V(y k}). Equation (3.7) now imposes a severe restriction on these

form factors:

Gu(1.k2) = Ga1-3,52). (3.21)

The form factors often used in meson exchange models and convolution
models are functions of ¢ only, the four-momentum squared of the meson, and do
not satisfy equ. (3.21). In terms of the IMF variables y and &}, ¢ is given by (for

comparison we also write down u, the four-momentum squared of the intermediate

baryon)
K )(m: )
=4 _(]- -m |, (3.22)
y ( Y y N
k| my, z)
Kk _ 3.23
u iy -y my, |. (3.29)

Thus, form factors depending on ¢ only, like the dipole form factor

Glr) = (AAZ _'",“) . (3.24)

are ill-defined for the convolution models. They do not conserve basic quantities like
charge and momentum. One simple method to obtain form factors with the right
symmetry is to multiply a ¢ -dependent form factor by a u-dependent one with the

same functional form, with m,, replaced by m,

G‘y_(l,u) = G(l,mM)G(u,m,). (3.25)

The importance of using such symmetric form factors was noticed only
recently (Zol 92, HSS 93). Another possible approach, namely to fix the cut-off
parameters to assure number sum rules (global charge conservation) (see (SMM 92,

DT 92)), is somewhat arbitrary, and does not guarantee momentum conservation,

and gives rise to very different functional behavior of f,,(y) and f,,(1-y).

In recent publications dipole parametrizations (TM 93)

2
Az'+ 2
G (7.47) = [———*-Az - MZ:Z; kf)) (3.25a)

and exponential forms (Zol 92, HSS 93, HSS 96) have been used

2 ag2 2
e (.k2) = exv[f'i-i:;—‘l—(y*k—‘*)] (3.25b)

with the invariant mass, ML, , defined in equ. (3.19). Using equs. (3.22, 3.23) one

can show, that the exponential form given in equ. (3.25b) is equivalent to the

symmetrized form

t-mj, u-m)
G (t,u) = exp[ 21\2“) cxp[ 2/\1.)' (3.25¢)



3.4 Spin-Averaged Splitting Functions

Equations (3.5) and (3.20) allow one to write the spin-averaged splitting
functions as:

mymy IVWI
4n’ )'(l—y) [ - M2 k)]

Souw Ok} == (3.26)

where the vertex functions define the model. The vertex functions for the
Lagrangians listed in Appendix A are given in Appendix B. For the Nz and Arx Fock
states we find:

Swenly ,6” y—jr Hemn [——-(;,’,—)(ﬁE)T (3.27)

./A-/N()’) f .rdkzlch()' k X Iﬂ'}ym")z +kf]z[(m1\ ".V'"M)z +k12]

T 96} m} y [m:, —M:,(y,kf)]z

(3.28)
and finally for the vector mesons:

lok (.42
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As examples of the various splitting functions we show Suer Sfae @d f, in
Fig. 3.3 (Hol 95). TOPT and a cut-off deduced from high-energy scattering data have
been used with parameters given in section 4.1. The pN -splitting function peaks at
larger y compared to the aN because the heavier p-meson carries more
momentum. On the other hand the A -splitting function peaks at somewhat lower y
compared with the zV case - because the A is slightly heavier than the nucleon.

The results obtained by means of TOPT in the IMF are exactly the same as
those derived with covariant perturbation theory. However, in TOPT it is natural to
use form factors which depend on k! and therefore implicitly on ¢ and v, whereas
in covariant perturbation theory the natural choice are form factors which depend on
¢t only. This is incorrect, as mentioned before. After transforming variables
( ) )—-)(u t) (equs. 3.22, 3.23) one obtains the standard results for Nz (Sul 72,
Kurn 91, DT 92, MTS 91) and Az (Kum 91, MTS 91) contributions. This should be

the case, because TOPT is just a different way 1o calculate diagrams. There is,

however, one point which requires a separate discussion in the next section.
3.5 TOPT versus Covariant Perturbation Theory

If the vertex functions used contain a derivative of the meson field, care must
be taken or one will find differences between TOPT and covariant perturbation
theory. To illustrate this point let us consider the example of the pseudovector NzV

vertex, given by
L, =uy;y*d,nu, (3.29)
where for simplicity the coupling constant and isospin structure have been

suppressed. The standard covariant techniques lead to the splitting function of the

meson



1) = o s K alol -
(m, +mN)1[(m~(l —y)-m,) + k}] : (3.30)

[ - M2 (- y2)]

The result for the baryon is:

O T |

{m,’vm,z,(l )+ k2 (m, +m,,)' = 2m my(ym?, + k) + 0 ! 7 (ym,, +Iclz)z] (3.31)
=),

i
[m2 - Ma k)]

Here as mentioned before the two results are not related by equ. (3.7), which
leads to a violation of charge- and momentum conservation. The reason for this
puzzle is that by using a derivative coupling, an additional off-shell dependence is
introduced into the vertex function, which cannot be suppressed in the IMF-limit. A
way out is to use TOPT (Zol 92, HSS 93). Here, however, the problem arises how to
choose the meson energy in the vertex. In principle, there are two possible
prescriptions:

A) One uses in the vertex the meson four-momentum g*:@,y.r,(-)k*u, i.e. the

meson energy in the vertex is £,, {equ. 3.17). With this form of the vertex one
reproduces the baryon splilting function given by equ. (3.31). The meson
splitting function is related to this result by equ. (3.7).

B) Instead of k* one uses the difference of the baryon four-momenta
p* - k"5, (p)r,y,(~iXp-k) u,y(k), ie. the meson energy in the vertex is
E, - E,. With this prescription one gets the meson splitting function given by

equ. (3.30). Again the corresponding result for the baryon splitting function
fulfills equ. (3.7).

Thus TOPT, in contrast to a covariant calculation, is consistent with the
convolution approach. The remaining point to clarify is which one of the two
prescriptions one should use. The natural choice is prescription B, because in this
prescription the splitting functions for the pseudovector case are identical to those of
the pseudoscalar case, if the coupling constants are identified properly. Moreover, in

this prescription the structure of the vertex is due to the baryonic current only.
In Fig. 3.4 a comparison is made between the splitting functions fw(y),

calculated in covariant and time-ordered perturbation theory, respectively. While the
dependence on the functional form of the formfactor within TOPT is weak, the results
obtained with the two different formalisms deviate appreciably. Even more severe is
the violation of the basic symmetry, f.,(y)=f,.(1-), in the covariant formalism.
Whereas it is automatically fulfilied in TOPT, the two functions, shown in Fig. 3.5, do
not have this symmetry at all. All the most obvious difference being that f,,,(l - _y) is
finteat y =1.

One should bear this result in mind if one calculates semi-exclusive reactions
like deep-inelastic electroproduction of neutrons, from which one aims to measure
the pion structure function at small x. As 3-momenta are not conserved in the
splitting function, if calculated in the covariant formalism, the neutron- and pion-

momentum are not connected with each other, as discussed above.
3.6 Polarized Splitting Functions

The same approach is convenient for the extension to deep inelastic
scattering of polarized particles (Zol 93, HSS 96). Let us introduce the probability

amplitudes g2 (y,k}), which describe a nucleon with positive helicity (+1/2), being in
a Fock slate BM with baryon helicity A and meson helicity A'. To calculate
¢,,’;‘,'(y,k}), equ. (3.20) can be used with the spin-averaged vertex function V,
replaced by an appropriate helicity dependent one V% (see Appendix B). By
analogy with the spin-averaged splitting function (see equs. (3.5) and (3.6) we
introduce the polarized splitting functions f;,m(y) and /;};,N( y), which we define

as



Saan(y)= z [ H A (3.32)

Sian )= T[T akiloii (- v ). (3.33)

For simplicity, let us specialize our discussion 1o the Nrx case and use the
more suggestive notation f'(y) = /12 (y) and 7)) = £32.(y). Applying the idea
of the convolution model to the polarized quark distributions 7'(x),¢* () (the quark
distribution of quarks with flavour q and spin parallel or antiparallel to the nucleon

spin) leads to the following relations:

()= s (y)q,( )"’ [ f‘(y)q.() (3.34)

0= 0ui(2)2L o2 2. (3.35)

Taking the sum and the difference gives:

Sau(x)=|. f (,v)q,(-:;J‘—;y—. (3.36)

889, ()= [ 87(»)aq, (—;—) %y- (3.37)

with Ag(x) = ¢"(x) - ¢*(x) . Here j( y), the splitting function for the unpolarized (spin
averaged) case, is given by the sum of f T( y) and f ‘(y);/y (y) the splitting function
for the polarized case, by the difference. It is important to note, that the splitting
functions f'(y) and 1 *(v) are independent of each other (Zol 93), i.e. there are no

simple relations, like Clebsch-Gordan coefficients between them.

As an example, we show in Figure 3.6 the corresponding splitting functions for
the N» Fock component. As seen from the figure the non-spin-flip (dashed line) and
the spin-lip (dotted line) contributions are different. The spin-flip contribution
dominates at large momentum fraction of the nucleon (Zol 93). The spin-flip
contribution is totally due to the presence of perpendicular momentum in the pion-
nucleon wave function. This explains the sensitivity of the spin-flip splitting function
to the cut-off parameter of the vertex form factor. It also leads to a similar sensitivity
of the polarized splitting function Af = f" - f* (dash-dotted line). Here, if integrated
over y, the spin-flip and non-sbin-ﬂip contributions almost cancel each other. There
is no deep reason for this cancellation; it is rather the consequence of the cut-off
parameter choice. In the present calculation, the cut-off parameter (A=1.08 GeV)
has been adjusted to the neutron production data [see section 4.1]. This cancellation
has. consequences for the spin content of the nucleon as we will discuss in section
4.7.

Similar formulas can be derived analogously for other Fock states. For
particles with higher spin additional assumptions have to be made. For example, in
the Az case one has to distinguish between the q'(x) distributions in a A with

helicity 1/2 and the similar distribution (we call it ¢"(x)) ina A with helicity 3/2.

Assuming the relation ¢"(x)=3¢"(x) for the bare A, which can be easily checked
using SU(6) symmelry, it is possible to obtain an equation similar to equ. (3.27).

In the most general case, assuming that the polarized quark distribution of
different helicity states are the same (except helicity factors) one gets:

8, (<) = [, Af (y)A"'(“J Y W) Aq“( )% (3.38)

+f! Af(”,mN(y)Aflw( ) | Afu(m)(f")A"‘“(yJ
with

& (¥) = ;uf;w ) (3.39)




where the sum runs over all possible helicities of particle X .
From our experience with the calculation of axial coupling constants (c.f.
sec. 4.7), it is vital to include terms in which (e.g.) the polarized-photon- N
interaction leads to the same final states as the polarized-photon-4A interaction (ST
88, STL 90, Zol 93, HSS 96). Indeed, this is precisely the reason that perturbation
theory works so well when one carries through the renormalization program in the
cloudy bag model (Tho 84b, TMT 82) These cross terms for baryons and mesons
are, respectively, the third and fourth terms on the rhs of equ. (3.38).
The formalism outlined here has been applied to the semi-leptonic decay and

the ,missing" spin of the nucleon.

4. MESON CLOUD AND THE NON-PERTURBATIVE SEA

There exist numerous attempts to link quark models with DIS. The main idea
behind such approaches is that the QCD evolution implies a decreasing number of
sea-quarks (i.e. virtual ¢§ - pairs) as the momentum scale, °, decreases. Since
most quark models involve three valence quarks (sometimes a small g7 - admixture
is also considered), one would expect the model to relate to DIS at some low
momentum scale, Q* = 0} (LeY+ 75, PP 76). There has been considerable success
in reproducing the experimental data (STL 90, SST 91, ST 94, SHT 95). However,
two important points have to be borne in mind: (1) The evolution equation is first or
second order in the running' coupling constant and one must therefore worry about
applying it below HGeV /c)’. We note, however, that the agreement between
calculations using leading order and next to leading order evolution is very close. (lI)
In addition, many of the early calculations did not respect chiral symmetry. That is,
no quark model can be consistent with the known symmetries of QCD unless pions
are included. Since, as we have seen, pions contain a valence ¢ pair, this pion
cloud necessarily constitutes a sea of 47 pairs in the nucleon.

Thomas (Tho 83), and some years later Frankfurt et al. (FWS 89), used the
fact that this pion contribution breaks the SU(3)-flavour symmetry of the sea
distribution to put a limit on the hardness of the z¥N form factor which controls the

pion emission - see equ. (3.27). In Thomas' case the limit is such that a chiral bag
radius cannot be too smail, say R =087 £0.10 fm. In ref. (FWS 89) the zNA coupling

was also taken into account. In that case the bag radius had to be larger than 1 fin.
These authors also concluded that meson-exchange models for the NN -interaction
are ,not well justified on the microscopic level*. In both calculations only the SU(3)

#(x) +d(x)

2 -S-(x)) was attributed to the gq-

breaking part of the proton sea, i.e. r(

contribution of the pion. Hwang, Speth and Brown (HSB 91) took a different point of
view: they assumed that at moderate momentum transfer all (most) of the proton gq
sea is due to the nonperturbative meson contribution, i.e. they also included X and
K* mesons. In that case, the amount of i7,d — antiquarks which are due to mesons
can be larger, pushing the allowed cut-off towards 1 GeV. In a recent publication
Koepf, Frankfurt and Strikman (KFS 96) came to similar conclusions. (Note that they
used covariant perturbation theory which suffers from the problems discussed in
chapter 3). In the past few years, the zNN form factor used in meson-exchange
potentials has been better understood (Jan+ 93) and meson-exchange potentials
with much softer zWN form factors have been constructed (HHT 94, Jan 95).
Therefore one may conclude that there is no longer a significant disagreement
between meson-exchange models and DIS.

The Jalich group (HSS 96, Hol 95) has placed considerable importance on
using, in equs. (3.27 - 3.28a), meson-baryon vertices which are derived from other
experimental data - like semi-exclusive neutron production in high-energy proton-
proton collisions. They calculated the corresponding meson contributions to the
proton and neutron sea-quark distributions using the experimentally known pion
structure function. Moreover, it has been shown that this process can also be
reversed, if the 2NN vertex is known, one can obtain from semi-inclusive deep
inelastic scattering processes, the pion structure function down to very small x,
which will allow one to extract the sea-quark structure function of the pion (Hol+ 94).

In the following, we will discuss this point of view in more detail.



4.1 Meson-Baryon Form Factors derived from Semi-Inclusive pp-Reactions

The functional form of the form factors used in deep-inelastic scaltering is the
same as the form used in meson-exchange NN potentials: (a) monopole- and dipole
form as used in the Bonn-potential (MHE 87), (b) Gaussian form as used by the
Nijmegen-group (NRS 78). The following analyses by Holtmann et al. (HSS 96) have
been performed with a Gaussian form factor, as given in equ. (3.25b), where A is
the inverse of a radius. In some models, like the cloudy bag, the radius is connected
with the confining region of the valence quarks (Tho 84b). In other models this
connection with the confining region is not so obvious.

In order to fix the cut-off parameters, A, of the form factors, the authors of ref.
(HSS 96) used high-energy particle production data. They included in their model
the pseudoscalar and vector meson octet. A similar analysis, including the
pseudoscalar mesons only, was first been performed by Zoller (Zol 92). The neutron
and Lambda production data in the reactions pp — nX and pp-— AX seems to be
best tailored for extracting the cut-off parameters for the Nz and Np as well as for
the AKX and AK* Fock Space components. If one restricts the analysis to data with
relatively low exchanged four-momenita it is reasonable to assume that the neutron
and the Lambda are produced by a simple one-boson-exchange mechanism (OBE)
as shown in Fig. 4.1, In complete analogy to modern meson-exchange potentials

one also assumes non-Reggeized mesons. Therefore, the region y—0 and
(1-») >0 shouid not be considered. Fortunately, neither of these regions is

important for evaluating the splitting functions. In the OBE approximation the
invariant cross section for pp — BX production has the form:

Ed’a(pp—) BX)= ¥y d’c
d’p w dydk}’ (4.1)
=[bue .k, N -2 (1- )

The probability amplitudes, ¢,,,, are defined in equ. (3.20), where y is the
longitudinal momentum fraction of the baryon with respect to the momentum of the

incoming proton and the corresponding transverse momentum. Moreover ol is the

tolal meson-proton scattering cross-section. For p and Kp the total cross sections,
or and o), are known experimentally; the corresponding vector meson cross
sections are assumed to be equal to the pseudo-scalar ones. It is important to bear
in mind that the hadronic and photonuclear reactions are kinematically identical.

The results of such an analysis are shown in Fig. 4.2 (for details see Refs.
(HSS 96, Hol 95). As a criterion for the fit, it was assumed that the theoretical result
must not exceed the experimental data. This is well fulfilled in the case of the
neutron and not so well in the case of the A, where the data are not so good. For

low k} x-and X -exchange, respectively, are the dominant contributions, whereas
the vector mesons do not play a role. For higher k} p- and K *-exchange become

the dominant mechanism. It turns out that one can choose the same cut-off
parameter, A,, =108 GeV, for pseudo-scalar and vector mesons. If one considers

this parameter as universal for the meson-baryon-octet, then heavier mesons are
strongly supressed and do not play a role. A corresponding analysis has also been
performed for A" production. Here the cut-off parameter has to be chosen
somewhat small, A,, =098+005 GeV'. However this value is much less reliable

than the previous one because the data are not very convincing. For example, the
double differential cross sections vary by up to a factor of 2, depending on the
assumed background. The y-integrated spectra are more precise, with errors of
about 30%. The authors of ref. (HSS 96) also found that their results do not depend
sensitively on the analytic form of the form factors {exponential, monopole or dipole)
as long as they fulfill the basic symmetry given in equ. (3.7). If one uses
conventional form factors which only depend on ¢, a similar analysis to that shown
in Fig. 4.2 fails already for £ > 03(Gev/c)’.

Table 4.1 gives the probabilites [in %] of finding the various Fock states in the
nucieon. Note that the total probability of finding pion- and rho- configurations is
nearly 40%. This is in agreement with the results of the Adelaide group (TM 93). In
fact it is amazing how close these probabilities are to those found in the cloudy bag
model more than a decade ago (Tho 84b). On the other hand, configurations with
strange baryons and mesons are very small in the present model. Here, the strange
sea of the nucleon is mainly due to the strange sea in the mesons, as we will discuss




tater. Thus the contribution of the strange sea to the spin of the nucleon is negligibly

small in this model.
4.2 Sea-Quark Distributions of the Nucleon

In order to calculate the quark distribution function within the Fock state
expansion, see section 3.1, one needs as input the quark distribution functions of the
" mesons and the bare baryons. For the quark distribution in the pion, a recent
parameterization by Sutton et al. (Sut+ 92) has been used. By applying SU(3)
symmetry, the distributions of the other mesons were (approximately) determined.
Unfortunately, the sea quark distribution of the pion is practically unknown, and one
must therefore make assumptions about its magnitude which simultaneously
influence the assumptions about the sea of the bare nucleon. In order to determine
the valence distribution of the bare nucleon self-consistently it was parameterized in
such a way that the theoretical valence distributions calculated from equ. (3.13)
agreed with the phenomenological parameterizations. Two different scenarios have
been considered: | (Fit I) no sea in the bare nucleon, instead 40% of the momentum
of the meson is carried by sea-quarks; Il (Fit It} 20% of the meson momentum is
carried by the sea, but then one needs a small sea in the bare nucleon. An
experimental methed to test this has been proposed by Londergan et al. (Lon+ 94).
This sea is assumed to be symmetric in @ and d, whereas the strange sea is
supressed by 50%. Both fits agree within the errors with the data. The results of ref.
(Hol 95) are shown in Figs. 4.3 and 4.4. In the latter, the changes, especially in the
u -valence distribution, due to the coupling to the mesons are clearly seen. One also
recognizes the asymmetry in the @ and 4 distributions which is exclusively due to
the Fock space expansion. The model has also been compared with the CCFR-data
(Fou+ 80). As shown in Table 4.2 the agreement between theory and experiment is
satisfying.

Recently Steffens et al. (SHT 95) used quark model wave functions to
calculate the bare valence quark distribution function. As shown in Fig. 4.5 the
agreement with the phenomenological distribution is also quite good.

4.3 Gottfried Sum Rule and the @ —d Asymmetry

The Gotifried sum rule is perhaps the most famous consequence of SU(2)
flavour symmetry of the sea. Because it measures the x-integrated difference
between the proton and neutron structure functions, it is sensitive only to the non-

singlet SU(2) content of the nucleon. Let us first define the quantity
1 dx!
Soled)= [ A () - (). (4.2)

Relating the proton and neutron structure functions to the quark distributions

in the proton (i.e. using charge symmelry), we have

Sa(x,l)-.% [l (s + () - () - () (4.3)

= % [l ()~ d, () - ; [[ae'(@(x)-a(x)), (4.4)

where the valence quark distributions are defined by ¢, =q-q. Since the number of

valence quarks in a hadron does not change, we obtain the Gottfried sum rule

S, =8,01)= % [orm] (4.5)

provided we make the additional assumption _‘:dx d= de u , as would be expected

in the simple quark-parton model (QPM).
The early experimental data for S (x,l) (Bod+ 73) did, in fact, suggest a value

lower than 1/3, but with errors large enough to be consistent with it. However, armed
with the theoretical expectation of SU(2) flavour symmetry, most authors believed
that S, would tend to 1/3 as the accuracy of the data improved. To the surprise of

many, the recent, accurate determination of S by the NMC appears to support the

ideathat # =d (Ama+ 91). Neglecting nuclear effects, the NMC found



S5 (¥ omr1) = 022900157, {46)

wherex,, =0004. The present value which includes an extrapolation to x=0, is
S5 =0235£0026 (Am+ 94), but this may be lowered a further 4-10% by shadowing

(Zol 92, MT 93).
The most natural explanation for the smaller than expected value of S, is that

1
d(x) = #(x). The value quoted above would imply that I ax(d(x) - #(x))=015+006.
o

The meson-cloud mode! offers a simple, and at first sight convincing,
explanation. Indeed, as we noted earlier the model had already been used to predict
d>@ (Tho 83). As discussed above, one can relate the proton and neutron
structure function difference to the quark distribution function of the proton only. As
we have seen, the physical proton has a relatively large z* - neutron component in
the Fock space, but a much smaller #- ~ A" component (the effect of which is
further reduced by the A’-g* contribution). Therefore the Sullivan process
immediately gives a surplus of d -antiquarks. The realistic meson cloud model
explains the observed effect nearly quantitatively. This explanation indicates that the
derivation of the GSR is due to deep inelastic scattering from the (isovector) meson
cloud of the nucleon.

This, however, is difficult to understand if we go back to the original formuia
equ. (4.2). Here the cloud of =* and 7~ mesons enters symmetrically, so one
expects that their effect should drop out. As we will see in the following, a calculation
in terms of the meson cloud does give the correct result as far as the (integrated)
Gottfried sum rule is concerned. If, however, one is interested in the x-distribution
(i.e. the functional dependence of the rhs of equ. (4.2)) one has to start with equ.
(4.2). The underlying physics is slightly more, subtle than that discussed above. To
explain it, we first consider a simplified model involving only bare nucleons and
pions:

(M), =2"IN),,+ T, ,”(')) I¥,) (4.7)

bare

Within this model we obtain the following contributions for F” and F* from

the processes shown in Fig. 3.1

Fr(x)=2 ﬁ;’(x)+P'_% F,'+P"% F'+P, o F+p ” FS,  (48)
F(x)=2 13;"(.\:)+P:"y Er Py F +P Fr+p YA (4.9)

Z is the probability to find a ‘bare’ nucleon, F? and F are the structure
funttions of the ‘bare’ proton and neutron, respectively, and F;' is the pion structure

function. We also used the following shorthand notations:

P B = [ 1,0) F(,{Ly) (4.10)
P =Idy Sy (f) (4.11)

Using charge-symmetry we obtain for the difference of the proton and neutron

structure function
F,"'(x)—Fr(x)=(Z+P,,% - e,y’)(ﬁ,'(x)—ﬁ:(x)) (4.12)
=(2+p"% P, -2P, )(F ()- F(x). {4.12a3)

From equs. (4.12) one immediately realizes, that, indeed, the pion structure
function does not appear. iIf one divides equ. (4.12a) by x and integrate over x one

obtains:

j’—(/«w(x) F“"(x):% 2[ j’dy /(y ( (T};J“‘?(ﬁ)) (4.13)




where i, and d, are the valence distributions of the ‘bare’ proton. Here we have
uséd the fact that in our simplified model the probabilities of finding a bare proton, a
neutron with a #° and a neutron with a n* add up to unity, which gives the well
known factor 1/3 of the GSR. Deviations from this expected value are proportional to
the neutron-z* admixture, and the proton-z- admixture in the neutron,
respectively. Moreover, one also realizes that the difference in the x -distribution is
proportional to the valence quark distribution in the (bare) proton. As mentioned
already, as long as one is interested in the integrated value of the GSR both
formulations given here are equivalent (SS 93).

If one is interested in the x-distribution, equ. (4.13) has to be used.
Generalizations of equ. (4.13) to include A, vector mesons and strange hadrons are
straightforward. The result is that only the admixture of isovector-mesons gives rise
lo a deviation from the GSR. An additional small contribution comes from strange
baryons and mesons (HSB 91, TM 93, HSS 96). Calculations within meson models
of different stages of sophistication have been performed by many authors. Their
results essentially agree with the experimental finding. The x-distribution
F/(x)- I} (x) was calculated first by Melnitchouk et al. (TM 93), who also
considered the effect of Pauli-blocking. Their results are shown in Fig. 4.6, where
TOPT in the IMF was used with a dipole formfactor (with A = 700 MeV). P denotes
the fraction of the valence quark normalisation associated with a four-quark bag
state spectator to the hard collision (ST 89). The most noticeable consequence of
the meson cloud is a decrease in the peak value at x ~ 0.3, which indicates a
change in the usual regime of valence distributions. The same effect can be seen in
Fig. 4.3 where the results of ref. (Hol 95) are shown. There only the effects of the
meson cloud were considered. The variouslcontributions which give rise to the
violation of the Gottfried sum rule and to the asymmetry of the sea quark distribution
are given in Fig. 4.7 and Table 4.3. In both cases one notices corrections coming
from the A -configurations.

4.4 Drell-Yan-Processes and & ~ d Asymmetry

The Drell-Yan (DY) process (DY 71) involves the electromagnetic annihilation
of a quark (antiquark) from the incident hadron A with an antiquark (quark) in the
target hadron B. The resultant virtual photon materializes as a dilepton pair (£*¢7)
with muons being the pair most readily detected in experiments. This process is
schematically shown in Fig. 4.8. The cross section for the DY process can be written
as

d Al 4 2
¢:er = ;_:IITZK(’VI-xz)zf:e}[‘ﬂ("’l)‘iu[("z)*‘74/(xl )‘h{(’z)]- (4.14)

where s is the square of the center-of-mass energy and x, and x, are the
tongitudinal momentum fractions carried by the quarks of flavour /. The functions
a5(x) (¢7 ! (x,)) and ¢4(x,) ((7,’ (x,)) are the (anti-)quark distributions of the beam

and target, respectively. The factor K (x,,x,) accounts for the higher-order QCD

corrections that enter the process. Its value over the kinematic range where

experiments are carried out is typically 1.5. The values of x, and x, are extracted

from experiment via
M’ =stx, 2P, P, (1-cos0,, ) | (4.15)

where M is the mass of the dilepton pair, P. and P_ are the laboratory momenta

of the leptons, and 6.,. is the angle between their momentum vectors. The total
fongitudinal momentum of the lepton pair (P‘, +P, ):. fixes x, - x, via
oAp.+n),

xmxEr =k, (4.16)




In order to avoid spurious contributions to the DY yield from vector meson
decays, all measurements are made for M > 4 GeV, and the region 9 < M < 11
GeV is excluded to avoid the Y resonances.

The absolute value of the Drell-Yan cross section is biased by the uncertainty
in extrapolating from time-like to space-like values of O? when relating the Drell-Yan
process with deep-inelastic scattering which involves the factor X (see equ. 4.14).
In order to avoid the uncertainty it is desirable to consider ratios (Ald+ 90, SSG 94)
rather than absolute cross sections. .

Drell-Yan processes have been proposed to measure the 7#—d asymmetry
directly. In ref. (Szc+ 96) the various experimental possibilities have been
investigated to test their sensitivity. In Fig. 4.9 we show the differential cross section,

d'o
dxpdM

meson cloud model discussed in section 4.2, with an asymmetric sea. In order to test

Ml

for dilepton production in p+d collision. The full fine is the result of the

the sensitivity to the d -7 asymmetry, a symmetrized sea distribution and a

phenomenological distribution with symmetric #,d sea have been also used in the

calculation. Although there is some sensitivity to the d - & asymmetry, it can be
easily compensated by a slightly different normalization factor.

The present experimental data for the Drell-Yan processes in elementary
nucleon-nucleon collisions suffer from rather low statistics. Therefore, at present,
one is forced to compare a theoretical calculation with the proton-nucleus
experimental data. In first approximation the cross section for the production of the
dilepton pairs in proton-nucleus scattering can be expressed in terms of the
elementary pp and pn processes as

o) =20 + NooT. (4.17)
M P ~

it has been shown (Ald+ 90, SSG 94) that the ratio of the cross section for the
scattering of protons from the nucleus with N = Z # 0 to that from an isoscalar target

such as deuterium is sensitive to the J’(x)—ﬁ’(x) difference. These ratios have

been measured by the E772 Collaboration at FNAL (Ald+ 90) for carbon, calcium,

iron and tungsten targets. Neglecting nuclear effects, elementary algebra leads to

the following result for the ratio:

_20%(ped) 22 Nz 207(n)
o Ao™ (p+d)” 4 4 a”(x,,x,)+a"‘(x,,x,)’

(4.18)

where Z,N,4A are numbers of protons, neutrons and the atomic number,
respectively. In the large x, (target) limit the ratio takes a very simple form (McG+
92):

il v z ﬁ‘gw with A(x) = (x) - 7(x) (4.19)

R, (x)=1+

showing that the Dreli-Yan processes with non-isoscalar targets are relevant for the

issue of the asymmetry. Here A(x) is defined as
1 - 1
i(x) = g(x) —EA(X) and d(x) = g(x) +-2—A(x) (4.19a)

The experimental ratios are consistent with symmetric quark distributions
(Ald+ 90, McG+ 92) (see Fig. 4.10). Moreover, using asymmetric quark distribution
functions (solid and dashed lines) has a rather small effect on the ratio. This renders
those data useless for establishing the asymmelry. The ratio obtained with the
recent MSR(4) quark distributions (MSR 94} almost coincides with the result of the
meson cloud model (Hol+ 96). As seen from the figure these ratios do not provide a
sensitive enough test.

The idea of the 7 -d asymmelry is not new. It was considered a decade ago
by ito et al. (Ito 81) as a possible explanation for the slope of the rapidity distribution
of dilepton production in the proton- PT collision at Fermilab. An alternative
interpretation stimulated by the discovery of the EMC effect invoked the
enhancement of the nuclear sea in PT with respect to a collection of free nucieons
(ET 84). lto et al. suggested to analyze the logarithmic derivative of the rapidity

distribution
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where y=|n(x,/x,)/2 is the rapidity. This quantity also possesses the desired
property of being independent of the X -factor. In terms of the quark distributions the
slope can be expressed as product of valence and sea distributions. Therefore the
rapidity slope is a quantity which is sensitive not only to the #-d asymmetry but
also to valence quark distributions. In Fig. 4.11 we display the siope of the rapidity
distribution calculated with different quark distributions. The solid line is the result of
the'meson model (Szc+ 96). The dotted line is the result obtained with the Owens
parameterization (Owe 91) of the quark distributions, the dashed line was obtained

with the recent MRS(4) parameterization (MSR 94) with 7-d asymmetry and the
dash-dotted line was obtained with MRS(S",) (MSR 93) (symmetric) distribution. Fig.

4.10 clearly demonstrates that the asymmetry is not the only ingredient and a
reasonable description of the experimental data can be obtained with both flavour
symmetric and asymmetric distributions.

A quantity which can be extracted almost directly from experiment is

X )-o,.lx . x

i) - )0l ) (4.21)
o 5) 40, (51,)

which we will call Drell-Yan asymmelry. In equ. (4.21) o,, and o,, are the cross

sections for dilepton production in proton-proton and proton-neutron scattering. The

Drell-Yan asymmetry (4.21) can be expressed in terms of the quantity § and A,

introduced in equ. (4.19a)

I J_"kz xl IJq xl 5/2A ::l ] [414 d x, ]A X,
or{x1.%,) ["(x, +d (x, ISq -3/24(x ] [4u(x, +d(x, ]2q(x

(4.22)

In the case of a flavour symmetric sea (A =0) it is natural to expect that
Aoy >0, since u>d . However, the sign of 4,, can be reversed by increasing the
flavour asymmetry of the proton sea (A =0).

Two dimensional maps of the Drell-Yan asymmetry as a function of x, and x,
are shown in the form of the contour plots in Fig. 4.12. The different maps were
obtained with the Owens parameterization (OWE 91) (left-upper corner), symmetric
MRS(S',) (MSR 93) (right-upper corner), the new MRS(A4) (MRS 94) with the 7-d
asymmetry built in (leftlower corner) and the prediction of the meson cloud model
(Szc+ 96) (right-lower corner). The result obtained with the Owens (symmetric)
parameterization and symmetric MRS(S'.,) parameterization are quite similar. This

clearly demonstrates that the asymmelry Aoy is the desired quantity - insensitive to
the valence quark distributions. It is also worth noting here that 4,, is positive in the

whole range of (x,,x,). How the 7-4 asymmelry influences A,, is shown in two
lower panels. It is very promising that Ay, obtained with the asymmetric quark
distributions (lower panels) differs considerably (please note the change of sign in
the lower panels) from the result obtained with the symmetric distribution (upper
panels) and this should make an unambiguous verification of the flavour asymmelry
of the sea quarks possible. it is not random in our opinion that the result obtained
within the meson cloud model is very similar to that obtained from the
parameterization fitted to different experimental data. We stress, in this context, that
4, calculated in the meson cloud model is fairly insensitive to the quark
distributions in the bare nucleons (baryons). It is primarily sensitive to the #-d
asymmetry which is fully determined by the quark distributions in the pion (and other
isovector mesons), taken here from the pion-nucleus Drell-Yan process. In this
analysis it has been assumed that the quark distributions in other mesons are
related to those for the pion via SU(3) , Ssymmetry.

Following the suggestion of Ellis and Stirling, the NA51 Collaboration at
CERN has recently measured the Ap,, asymmetry along the x, =x, diagonal (Bal+
94). Due to low statistics, only 4, at low X =x, = x, was obtained. In Fig. 4.13 we
show their experimental result (one experimental point) together with the resuits

obtained with different quark distributions. The meaning of the lines here is the same




as in Fig. 4.10. The result denoted as MCM, obtained within the meson cloud model
(Hol 95, Hol+ 96) essentially without free parameters, nicely agrees with the
experimental data point. In order to better understand the result, and the relation to
the 7-d asymmetry, let us express the cross sections in equ. (4.21) in terms of the
quark distributions. Assuming proton-neutron isospin symmetry and taking

x, = x, = x, as for the NA51 experiment, one gets in terms of the quark distributions

in the proton

_ S(u—d)(ﬁ-—¢7)+3(uﬁ—dz7)
or Su+ad)(T+d)+ 3(u:7—dz7)+4(s§ +4c?)

(4.23)

Let us consider first the case #=d . For a crude estimate one may neglect
sea-sea terms (important at smallx only) and assume u_(x) = 2d,,(x), which leads
o Ay, = 1/11>0. The same crude estimate in the case of an asymmetric sea in

conjunction with the decomposition equ. (4.19a) yields

_-194+67
or T _9A+667

(4.24)

This demonstrates a strong sensitivity to both the d - asymmetry and to the
absolute normalization of the sea. The lack of dependence on the valence quark
distributions in the approximate expression equ. (4.24) suggests a weak
dependence in the exact formula, equ. (4.23). The negative value obtained by the
NA'51 experiment, 4,, =-0.09+002+0025, automatically implies d >& - at least
for the measured x=018 (provided that the proton-neutron isospin symmetry
violation is small(!)) (ST 96). The data point of the NA51 group is so far the most
direct evidence for the flavour asymmetry of the sea quarks, which is explicitly shown
in Fig. 4.14. There 4,, has been translated into the ratio #(x)/d(x). The x
dependence of the asymmetry is awaiting further experiments. it is expected that the
hew experiment planned at Fermilab (Gar+ 92) will be very useful in this respect and
will provide the x dependence of the 7-d asymmetry up to x=04. It should

therefore shed new light on the microscopic structure of the nucleon. The meson-

cloud model gives definite predictions for the asymmetry awaiting future

experimental verification.
4.5. Polarized Semi-Inclusive Deep-Inelastic Scattering

Despite the various phenomenological successes of the meson cloud model
discussed so far, it is important to look for further experimental evidence pointing
unambigously to the existence of a pion and kaon cloud in high energy reactions.
Melnitchouk and Thomas (MT 95) have focussed on the semi-inclusive production of
polarized A’* baryons from a polarized proton, ¢p > ¢'A** X and of a polarized A
from a polarized proton ep— e'A X. They suggested experiments at CEBAF and
HERMES which could distinguish between the meson-exchange mechanism and
parton fragmentation. In Fig. 4.15 the polarization asymmetry (o' —0‘)/0“ is

shown for CEBAF and HERMES kinematics. The two curves represent extreme
cases, in which A's are produced entirely via pion emission or diquark
fragmentation. In reality, the ratio of polarization cross sections will be some average
of the curves in Fig. 4.15. The amount of deviation from the parton model curve will
indicate the extent to which the pion-exchange process contributes.

In a similar way, leptoproduction of polarized A hyperons from polarized
protons can be used to test the relevance of a kaon cloud in the nucleon. The
advantage of detecting A's in the final state, as compared with A baryons, lies in
the fact that the A is self-analyzing. It has also been suggested (MT 95) that
measurement of the polarization of the A in the target fragmentation region could
discriminate between models of the spin content of the nucleon in which a large
fraction of the spin is carried either by (negative polarized) strange quarks or
(positively polarized) gluons. The latter would imply a positive correlation of the
target proton and A spins, while the spin projection of the A along the target
polarization axis should be negative in the former model. (Similar effects would also
be seen in the reaction fp —» AA (Hai+ 92, AEK 95). The present data on semi-
inclusive, nonpolarized A’s, however, ind‘icale that the A and I hyperon
admixtures in the proton wave function might be small (see the discussions in sects.

4.1 and 4.2). The polarization asymmetry for A -production is shown in Fig. 4.16. In



first approximation the probability of forming a A' and A' is equal in the parton
fragmentation process and the asymmetry is zero. Therefore the observation of a
large polarization asymmetry in the large -¢ region of target fragmentation wilt be

evidence for a kaon-exchange fragmentation mechanism.
4.6 Exclusive Electroproduction of Pions

it has been suggested that the spin averaged splitting functions discussed
above may be directly measurable in exclusive electroproduction of pions above the
resonance region. This claim is based on the observation (SZ 95) that, for the
photon virtuality 0 greatly exceeding the meson and baryon virtualities &2, the
differential cross section for the reaction ep - eMB is dominated by the nucleon -

pion pole diagram which factorizes
do 2 (2
g~ S Fa(@?). (4.25)

Here, F,

,(,,,(Q’) is the on-mass-shell eleciromagnetic form factor of the struck
pion (nucleon).

In (SZ 95) the splitting functions are interpreted as the densities of (non-
perturbative) partons (mesons and baryons) of the physical nucleon and it is
suggested that one could study them like parton densities in inclusive DIS. Indeed,
from eq. (4.25) it follows that in exclusive one-pion electroproduction the photon of
high virtuality, Q?, probes the density of mesons and/or baryons in the proton at the
value of the light-cone Sudakov variable equal to the Bjorken variable x.
Factorization implies a possibility of separate analysis of the light-cone meson-
baryon density functions and the electromagnetic form factors of mesons and
baryons.

More accurately, the decomposition of the differential cross section of the
exclusive reaction ep—ex'n in terms of the longitudinal and transverse cross

sections reads (SZ 95).

d i T 1 E Al 2
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(4.26)

where X, and X, in (4.26) are the kinematical factors.

In eq. (4.26) £,(Q?) is the on-shell charge form factor of the pion. It is worth
recalling that in the light-cone parton model the condition Q* >> k? guarantees the
on-shellness of partons (SZ 95). The second (transverse) term in (4.26) arises from
the p* - x* radiative transition which is under the control of the form factor F. (Q’)‘
This is a magnetic dipole (M1) transition - hence the enhancement factor, @7, in the
corresponding term in the electroproduction cross section (4.26).

The density of the transversely polarized p-mesons in the proton, f1, can
easily be obtained (SZ 95). It is worth noticing that the p-pole dominated transverse
cross seclion is expected to be an increasing function of k} at small k, . This effect

is due to the strong &, -dependence of the tensor term

#Va..,w(ﬁ"p' -p")
in the pNN interaction, which generates terms proportional to k} and k{ in £},
Observation of this phenomenon is crucial for understanding the mechanism of
exclusive electroproduction.

The possibility to detect neutral mesons makes the reaction ep—>en’p
particularly interesting as it is free of the pion-pole term and at high Q? the baryon
pole term is suppressed by extra powers of 1/ Q. Then the differential cross section

reads

.
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There are two main reasons for the @ -pole dominance. First of all the wny
coupling constant, absorbed in the radiative transition form factor, F_’,(Q’), is

numerically large. The extra enhancement is due to the factor, Q?, typical of the
magnetic dipole interaction (SZ 95).

This observation makes the idea of the precision measurement of the Q-
dependence of the cross section of the reaction p(e,e';r")p especially appealing,
since it provides us with opportunity of direct measurement of the vector meson
cloud of the nucleon. Furthermore, as has been emphasized in (SZ 95), the early
onsel of the parton model regime enables one to study the helicity non-conserving

form factors £,,(0?), 7., (0*) in the substantially non-perturbative region and, what

is more important, to retrace the onset of the pQCD regime at a very high Q* as
well.

In a recent detailed analysis (PP 92), it has been also suggested that
measurements of fast pions in the final state, in coincidence with the final electron,
could be sensitive to a pionic component of the nucleon. Extending the exclusive
analysis of Gittner et al. (Gat+ 84) in the IMF, Pirner and Povh (PP 92) work within a
constituent quark picture in which the probability to find a pion in the nucieon is
expressed in terms of the pion distribution function inside a constituent quark.

The differential pion-production cross section for the leading pion* (integrated

over fransverse momenta) is written as

f‘% « A(x,y,z)+B(x,y,z)F,(Q’)

+Cxp2)F2 (@),

(4.28)

where z = E, /v is the fraction of the photon’s energy carried by the pion, and where

the 4 and B terms describe soft and hard fragmentation, respectively. The function
C reflects coherent scattering from the pion cloud of the constituent quark. Each

term in equ. (4.28) gives a characteristic ©’ -dependence, namely log 0, 1/Q* and

1104, respectively. To isolate the coherent scattering from the pion one therefore

has to restrict oneself to the region of not too high 0%, where the form factor
suppression has not yet eliminated the pion signal.

A useful observation in this analysis is that each of the three processes has a
quite distinct z-dependence. The hard-fragmentation process gives a differential
cross section which is constant in z, and is important in the intermediate z region
(06<2<08). The soft fragmentation mechanism is dominant at small 72,2506, but
dies out rather rapidly at larger z. This fact may enable one to detect the pion-
exchange process, which dominates the region 08sz<1, where it predicts a
conlribution that is several times larger than the constant-z, hard fragmentation
mechanism. The conclusion that the pion-exchange process is dominant is
consistent with our previous resuilts,

The authors argue, however, that what they suggest is the measurement of
the meson cloud of the constituent quark and not the meson cloud of the nucleon. In
their view the meson cloud of the nucleon has already been determined from the
pion-electroproduction data on the proton where only a 3% admixture of nz* in the
bare proton was found (Gat+ 84). This should be compared with the corresponding
valug in Table 4.1, where the 1'n admixture is 12% (and 6% is #°p). This crucial
difference in the concept of the meson cloud will be decided very soon

experimentally by the ZEUS collaboralion at HERA, which is installing a forward
neutron calorimeter,

4.7 Meson-Cloud Effects on the Spin-dependent Properties of the Nucleon

The spin structure functions (equ. 2.10) of the proton and neutron are related
by the Bjorken sum rule, which is a rigorous prediction of QCD

[lsr()-g1)=1g,,. (426)

It was first derived using current algebra {Bjo 66) where one can show that the

integrated value of £ (x) is given (in the Bjorken limit) by the matrix-element
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Using the relation
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where the 1's are the usual Gell-Mann malrices, one obtains what for the proton is
called the Ellis-Jaffe Sum Rule (EJ 74).

r,= %[10 +1,+1,) (4.29)

In terms of the standard SU(3) amplitudes, F* and D, for the baryon semi-
leptonic decays, the two flavor octet amplitudes are given as

L= %(PTIWr,n%"’IP T) = %(F +D), (4.30)

and

1 - 1
I = E(P Ny, 4P 1) = 2(F-D). (4.31)

The flavor singlet amplitude is given as

I,= ‘E(Pﬂ%,m,wip 1) (4.32)

and can be deduced from the experimentally known I, from equ. (4.29) if one takes

F and D from the analysis of the semi-leptonic decays of the baryon octet.
Usually one expresses the Ellis-Jaffe sum rule in terms of the polarized quark
distributions

Ag= jdx[q'(x) ' () +7' () - q‘(x)], (4.33)

t 1(4 1 1
r = g’(x)dr:—(—Au+—Ad+“As). (4.34)
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Correspondingly one expresses the semileptonic decay of the baryon octet
in the Cabbibo model, where one assumes that the axial currents responsible for the
semi-leptonic decays belong to an SU(3) octet. The diagonal matrix elements of
these axial currents in this specific model give the well-known connection to the
Ellis-Jaffe sum rule. Note, that in equ. (4.34) the polarization of quarks and
antiquarks enter, whereas the Cabbibo model considers only the three valence

quarks.

28y =Au-Ad=F+D (4.35)
238 = Au+ Ad-2AS =3F-D (4.36)
£ =Au+Ad + As. (4.37)

If one assumes that there is no polarized strangeness contribution, i.e. As=0
as Ellis and Jaffe assumed, g3 is given by equ. (4.36), and one obtains the result of
ref. (EJ 74)

o 8l 1, 3HFID)-1

s (x)dx-ﬁ[n; (F/D)HJ. (4.38)
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The recent interest in these sum rules originates from the measurements of the

spin struclure functions of the proton and neutron by the EMC-(Ash+ 89), SMC-



(Ada+ 94) and SLAC-(Ant+ 93) collaborations. The first measured value of the
proton structure function by EMC caused great excitement because it deviated
appreciably from the original Ellis-Jaffe prediction and indicated that only a small
fraction of the proton spin is carried by quarks. The latest analysis of the newer data

by Ellis and Karliner (EK 95) gives (at 0? =10 Gel?).

g¥ =031£007,

This is commenly interpreted as meaning that only 1/3 of the spin of the
proton comes from the spin of the quarks. While it is not our primary concern here,
we stress that such an interpretation is, of course, quite incorrect. Because of the
axial anormatly in the flavor singlet channel, g bears no formal relationship to the
spin of the proton (BT 94).

In view of the importance of the meson cloud for the Gottfried sum rule
violation, one might expect that it could also play an important role for the nucleon
spin. Indeed, an early estimate within the one pion exchange model seemd to
indicate that meson cloud effects may play a role in resolving the ‘spin crisis’ (ST
88). Because of the close connection of the Ellis-Jaffe sum rule with semileptonic
decays of the octet baryons we will first review the consequences of the meson
cloud for these properties. Modifications of the axial-vector coupling constants due
to the meson cloud can be quite important, since the corresponding axial-currents
are not protected against renormalization due to the meson cloud (BR 79, TMT 82,
Kub 85).

A. Semileptonic Decays

According to our present understanding, the weak semileptonic decays of the
octet baryons can be classified into two groups: either a o -quark is transformed into
a u-quark, or an s-quark is transformed into a u-quark. The matrix elements of the
current operators ‘responsible’ for the semileptonic decays of the baryons belonging

to the octet can be parameterized in terms of q* -dependent form factors.

2 2
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The factor C here is the Cabibbo factor (sin Q) or (cose,). At low momentum
transfer only two terms, f, (vector) and g, (axial vector), are important. It is
customary to extract from experiments the ratio g, / g, = g,(0)/ £,(0).

Mesonic corrections lead to the renormalization of the axial-vector coupling
constants. The vector coupling constants are protected against renormalization by
vector current conservation. Mesonic corrections to the axial-vector coupling
constants have been taken into account by calculating the loop corrections to the
tree level approximation according to

(Maiv) + > 8 (B 4218
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My M,B

(4.41)

The polarized splitting functions Af were defined in section 3.6 and A; are

the axial current operators. The corresponding diagrams are shown in Fig. 4.17

The formalism outlined in section 3 has been recently applied by two groups
lo the semileptonic decay of the oclet baryons. Zoller (Zol 93) considered
corrections due to the admixture of the pseudoscalar octet and the baryon decuplet,
whereas Holtmann et al. (HSS 96) included, in addition, the vector meson nonet.

To perform numerical calculations within this model requires the knowledge of
the axial coupling constants for the bare octet and decuplet baryons, vector mesons
and the transitions octet «» decuplet. The transitions within the baryonic octet are
traditionally parameterized by the so-called anti-symmetric F and symmetric D

coupling constants. The axial coupling constant for the transition within the decuplet

(H) can be fixed by the relation 2<A”|A3|A">= H-2ms,. In analogy one defines



the coupling constant for the interference diagram octet « decuplet (1) as
2</)|A:]A°>=2<A°|A,’,|p)=l -2fmym,S,. The matrix elements of the axial-vector

current between pseudoscalar mesons vanish. They are, however, finite for vector
mesons. Here the structure is analogous to that of the baryonic octet. The
corresponding constants are denoted as ¥ and DV . Due to parity-conservation
the axial coupling constant FV vanishes. The vector meson <« pseudoscalar
meson interference terms have an octet structure analogous to the other cases, with
coupling constants called £/ and DI .

In the SU(6) model, i.e. in the model in which all particles are described by
their SU(6) wave functions (Clo 79), the axial coupling constants can easily be
calculated

2
F=3, D=1, H=, 1=4g, FV=0, DV =1\, Fl=1, DI=0  (4.42)

In Table 4.4 various theoretical results obtained with different model-
assumption for all possible semileptonic decays are compared with the available
data (PDG 02). In the column named ‘MC, SU(6)' the g,'s are shown calculated
within the model of Holtmann et al., using the unrenormalized SU(6) axial-vector
coupling constants (equ. 4.42). In the column labeled ‘MC, SU(3)" the corresponding
results are given with F and D fitted to the measured values of the axial-vector
coupling constants (the remaining parameters H, /, DV and FI were take at their
SU(8) values). For comparison the tree-level (no mesonic corrections) SU(6) model
and SU(3) model (F and D fitted to the experimental data) are also included. The
latter is the ‘Cabbibo’-modei.

The x* values presented in the last row for each model give an idea of the fit
quality. It is well known that the naive SU(6) model gives a very poor description of
the experimental semileptonic decay data. On the other hand, when fitling the F
and D parameters an extremely good description of the existing (5!) data can be
achieved. It is commonly believed that any correction to the SU(3) model may only
destroy this nice agreement. In fact, the inclusion of mesonic corrections with SU(6)

axial coupling constant improves the description of the data dramatically

(X%V =4369 - X%v = 8,5). An additional variation of the /* and I parameters can

improve the results slightly. As pointed out by Zoller (Zol 93), the agreement with the
data of the MCM-model plus SU(6) coupling parameters is comparable with the
Cabbibo model. Whereas the latter has two parameters to fit the 5 experimental
data, the SU(6)-MCM is completely parameter free, because everything is fixed by
previous investigations. On the other hand, it is also clear that the axial coupling
parameters derived from the nonrelativistic constituent quark model have to be
modified duse to the fact that in relativistic quark models an appreciable amount of
the proton spin arises from the orbital motion of the 3 quarks (Bog 63, HI 82).

B. The Ellis-Jaffe Sum Rule

In order to calculate the sum rule within the MCM one has to calculate the
three matrix elements /,,7,,/, given in equations 4.30-4.32. The /, and I, are
directly connected with the semileptonic decag} of the octet baryons. If one assumes
that the polarization of the strange sea can be neglected (as done by Ellis and Jaffe
(EJ 74)) then g5 =2\/§gj and therefore /, is aiso connected with the leptonic
decay. The same two versions of the MCM discussed in the previous section have
also be applied to the ‘spin-problem’ of the nucleon. Zofler (Zol 93) considered the
baryon and pseudoscalar meson octet and the baryon decouplet. He used SU(6)
axial coupling parameters. The polarization of the strange quarks is very smail
(As = 0,005), and the fraction of the spin (helicity) carried by the quarks is about 80%.

In his model the three major Fock space components are:

[N}y, = 0S68INY,.. +0238]2N) +0.125 xA) (4.43)

If one used this decomposition in a static model the matrix element of the spin

operator S‘, between proton states with S, = 1/2 reads:

. -1 s
(.), ~0s68*1/2+0238 *(—6—) +0125%2 =035



This value should be compared with %. The depolarization effect is due to the
spin-flip of the - component, whereas the A term tends to retain the proton
polarization. In the actual, relativistic case, the spin-flip and non-spin-flip terms
nearly cancel each other (see section 3.6) and this results in a vanishing

contribution of the mv component to (.§,)'. For that reason the corresponding value

in the full model is even larger ((S‘,)’ = 0.4). The results of Holtmann et al. (Hol+ 96)

are summarized in Table 4.5, which includes the Ellis-Jaffe sum rule for the proton

§¢ and the neutron, S3,, the Bjorken sum rule S, , the polarization of the strange

sea As and g, (which corresponds 2'(5‘,)). In the ,SU(6)" model the axial coupling

constants are given by equ (4.42); in the ,SU(3)" model the amplitudes F and D
also are fitted to the semileptonic decay data. The wave function includes (a) tree
level, (b) tree level plus octet baryons and pseudoscalar mesons (oct, ps) (c) as in
(b) but also including the decuplet baryons (oct, dec, ps) (d) denoted by full®
includes, in addition, the vector meson octet.

On the tree level in SU(6) all the spin of the proton is due to the spin of the
quarks. If one considers the mesonic admixture, 15% of the proton spin arises from
the orbital momentum of mesons and bare baryons. In the SU(3) case, q, is already
reduced to 0.5 on the tree level because of the effective F and D amplitudes.
Mesonic corrections do not further reduce that value (note: the F and D
parameters are refitted). It is important to realize that in the MCM with Su(6)
parameters one implicitly assumes that the spin of the ,bare* nucleon, deita and
admixed mesons is 100% quark spin. This, however is not true in relativistic model
where nearly 50% of the nucleon is due to orbital momenta of the quarks (small
components of the Dirac wave function). Calculations which include this effect have
not yet been done.

The results of the MCM using effective F and D amplitudes resemble very
much earlier calculations within the cloudy bag model (ST 88). Also here the
depolarization due to the =N -admixture is essentially compensated by the zA
admixture, so that the originally MIT-bag value of SE, =018 is only slightly reduced.

The comparison of the two models also shed some light on the model-

dependence of the Ellis-Jaffe sum rule which relies completely on the Cabbibo-

model of semileptonic decays. Whereas these decays can be equally well described
in the parameter free MCM-SU(6) model and the 2 parameter SU(3) (Cabbibo)
model, the sum rule and the spin content Aq, are very different. In particular one

knows that the U (1) -anomaly (PP 76, BT 94, Fri 89, SV 90) may play an important

role.

6. MESONS IN THE PROTON AS TARGETS FOR DEEP-INELASTIC
SCATTERING

The experimental determination of the quark structure function of the pion is
of crucial importance for our understanding of hadron physics. From chiral symmetry
one expects that the pion, as a Goldstone mode, might have a quite different
structure compared with other mesons and baryons. Actually, quark-models predict
that the pion should be a highly collective object and that this might show up in the
structure function - as is the case for collective states in nuclear physics.

Up to now the only feasible method to extract the pion structure function has
been the »N Drell-Yan production. The disadvantages of this method are that the
attainable luminosity is low and that only the valence part of the pion structure
function at rather large x(>02) can be studied. An extension of our knowledge of
the pion structure function is possible by using the virtua!l pions of the meson cloud
around the prolon as targets in deep inelastic scattering. (Hol+ 94). As we have
discussed before, these pions arise naturally as a consequence of the pion-nucleocn
coupling and the interaction of high-energy projectiles like nucieons, pions or leptons
with the virtual pion of the =N Fock state of the proton. It is a typical stripping
reaction, in which the momentum distribution of the spectator nucleon reflects the
momentum distribution in the NV (meson-baryon) Fock state.

In Fig. 5.1 a, we show again the pp-reaction which has been used in section

4.1 to determine the »* and p* Fock states in the proton. it is important to realize

that this reaction is in the same kinematic region as the deep-inelastic electron

scattering, shown in Figs. 5.1 b and 5.1 c. Therefore once the fluxes (splitting

functions) f".%(z,pf) and /A.../’(z,p}) are known, one can reverse the ,Sullivan



processes” and determine the pion and rho structure functions from the semi-

inclusive production of neutrons. As in the pp-reaction we expect that the semi-

inclusive reactions
() ep—enx (b)) ep-oeax, (5.1)

in the properly chosen kinematical domain, will also be dominated by the pion
exchange (MHE 87) mechanism of Fig. 5.1. If this is the case, then the
straightforward generalization of equ. (4.1) to semi-inclusive deep inelastic electron

scattering is

da(ep - e'nX) _2 2
ddQdzay 37 wy(Eo02) (5.2)

x K(x,Qz)F,"(x,,Qz).

where F,’,'(x,,Q’) is the structure function of the pion; x, = x/(1-z) is the Bjorken
variable in the electron-pion deep inelastic scattering, with the obvious kinematical

restriction 0<x <1-z, and K(x,Q’) is the standard kinematical factor

2 1 2
e L (53)

K(x.0%)=

assuming for the sake of simplicity 2xF*(x) = F*(x). Knowing all kinematical

variables, and trusting the theoretical prediction for /., y(z, p}), one can invert equ.
14

(5.2) and determine the pion structure function from the experimentally measured
semi-inclusive cross section. In the HERA experiments, one can go down to the
region of very small x_ (210). This will be an enormous expansion of the
kinematical region studied compared with the 2N Drell-Yan experiments, which
cannot go much below x, ~ 0.1 (Sut+ 92). Furthermore, such a determination of the

pion structure function at HERA would allow one to study the scaling violations in the

pion structure function in a broad range of (x_,Q‘), which is hardly possible in the
Drell-Yan experiments.

From the purely experimental point of view, the semi-inclusive reaction
ep — e'nX is being studied already by the ZEUS collaboration, which has installed a
test forward neutron calorimeter (FNC) to complement its leading proton
spectrometer (Bha+ 95). This FNC was tested with neutrons from inclusive proton
beam-gas interactions, and an excellent agreement between the measured spectra
and the pion-exchange predictions was found.

The principal task is to find the kinematical domain in which the semi-inclusive
reaction ep—enX is dominated by the pion-exchange contribution. The semi-
inclusive production of neutrons with z ~ 0.8 turns out to be the optimal kinematical
domain, and it also corresponds to the domain in which the semi-inclusive cross
section is largest. The fluxes for the charge-exchange reactions, p—n and
p— A", as well as the reaction p— p. are shown in Fig. 5.2. The expected

counting rates can be judged by the total number of virtual pions in the nucleon as

given in Table 4.1, n, (xV)= 018, n, (7A)=~006, which shows that deep inelastic

scattering on pions, accompanied by p —n,A fragmentation, will have a statistical
weighting only one order of magnitude lower than that for ep scattering.

The background to the pure pion exchange comes from interaction with Fock
states which contain heavier mesons M =K, p,w.... Evidently, in such states the
heavy mesons M will carry a larger fraction of the momentum of the MN state, and
the heavy meson exchange will contribute to the spectrum of neutrons at smaller z
in comparison with the pion exchange (we do not discuss here the region of
1-2<<1, where the Reggeization of mesons becomes important). In Fig 5.2 the
effect of the p-meson is shown as a dolted curve. Evidently, choosing the region
z~07-08, one can eliminate much of the p-exchange background. A still better
separation of the 7 and p exchange can be achieved if one compares the I
distributions for the two mechanisms. As shown in Fig. 6.3 the best way of

discriminating between the » and p contribution is to select only events with



pl< O.I(Ge ’%)1 Then the relative contribution of the pion exchange is significantly
enhanced.

In the suggested mechanism for semi-inclusive neutron production, the
differential cross section (5.2) is a product of the universal flux factor, which only
depends on z, and the structure function F,‘(x,,Q’) which is a function of
x, =x/(1-2). This factorization property allows an important cross check of the
model: binning the semi-inclusive cross section data as a function of z should not
depend on x,. Furthermore this z-dependence should be identical to the z-
dependence of the inclusive spectra of neutrons from the hadronic PN interactions.
Remarkably, the FNC of the ZEUS collaboration enables the latter cross check to be
performed in situ, directly comparing the spectra of neutrons from inclusive beam-
gas interactions and from deep inelastic ep scattering. Such a comparison of the two
spectra will allow one to verify that the background contribution to z ~ 0.7 - 08, from
deep inelastic scattering off the baryonic core, is as small as in hadronic reactions.
Reversing the argument, one can determine the x, dependence of the pion
structure function by changing x at fixed values of z and verifying that the x,
dependence comes out the same at all values of z.

The above discussion is fully applicable to the semi-inclusive production of
A’ . The longitudinal momentum distribution of A** is shown in Fig. 2¢c. As in the
P —n case, the contributions from the » and p exchange mechanism are fairly well
separated, with the x-exchange contribution dominating at large z. Measuring the
A’ production at HERA will require good experimental resolution of both the proton
and x* resulting from the A** decay, which requires multitrack identification of the
leading proton specirometer. The ZEUS collaboration has such a device operating at
HERA (ZEU 93). The Mmeasurements of A'* production are important for the direct
evaluation of the contribution of the two-step process P—> A nx to the spectrum
of neutrons. The A decay background to the spectrum of neutrons is small - isospin
symmetry considerations imply that the relative contamination of the neutron spectra

n,(mA)/ (311. (mV)) ~0Ql.

It is important to realize that in order to relate x, . the Bjorken variable in the

electron-pion deep inelastic scattering and z, the longitudinal momentum fraction
carried by the neutron, the basic symmetry for the splitting function (equ. 3.7) has to
be fulfilled. As discussed in section 3 this puts stringent restrictions on the form
factors in the vertex function which are not fulfilled by the conventional form-factors

which depend only on the momentum variable ¢ .

6. CONCLUSION

For general grounds the meson cloud must play an important role in the
structure of the nucleon. In particular » -nucleon, r-delta and p -nucleon Fock
Space components constitute nearly 40% of the nucleon wave function. We have
explored the phenomenological consequences of the cloud in a variety of
experiments and we have shown that it gives large effects in the nonperturbative
regime of QCD. The investigations range from semi-inclusive nucleon-nucleon
scattering to polarized and unpolarized DIS, semi-inclusive DIS, exclusive
electroproduction of mesons, Drell-Yan experiments and semi-leptonic decays of
baryons.

The model so far has several outstanding successes:

. "The initial prediction of the asymmetry of the quark sea d># has been
confirmed some years later by NMC.

. After determining the =¥ and PN form factors from semi-inclusive pp data,
fecent calculations reproduce (parameter free) quantitatively the measured

d-i asymmelry. Also the calculated shape of '7(")/2(-) seems to be well

described.

lil. Deep-inelastic scattering off the meson cloud explains the major part of the
experimental sea-quark structure functions of the nucleon for Q? <5GeV? and
x>107

IV. Without any free parameter the meson cloud model reproduces the 5
experimentally known data of the semi-leptonic decay of the baryon octet equally
well as the 2 parameter fit of the Cabbibo model.




V. Valence quark structure functions deduced from a model which combines bag-
and meson cloud model agree surprisingly well with the phenomenological ones.
Moreover the model makes some definite predictions which may be tested in

near future:

(i) The polarization of the strange quark sea in the nucleon is very small. Therefore
strange quarks carry a neglectibly small fraction of the spin of the nucleon.

(i) The fraction of the spin of the nucleon whiich arises from the orbital momentum
between mesons and baryons is only 15%.

(iii) Using the meson cloud model, a method has been suggested to measure the
pion structure function down to x =10, by exploiting the non-perturbative zV
and 7 A in Fock components of the nucleon which dominate the fragmentation
of protons into fast neutrons and A's.

From all what has been reviewed here it becomes obvious that the meson
cloud model represents an important link between classical nuclear physics and
high-energy particle physics. In the first case mesons and baryons are the relevant
degrees of freedom where as the latter is dominated by quarks and gluons. The
model which we have presented here extends the meson-baryon dynamics into the
non-perturbative regime of QCD and represents therefore an important tool to help
to explore it.
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APPENDIX A: LAGRANGIANS

Here we present the interaction Lagrangians we employ in our calculations.

They are usually used in meson exchange models (MHE 87). ¢ denotes a spin-1/2
field(N), ¢ a spin-3/2 field (A) of Rarita-Schwinger form; with = pseudoscalar

fields are denoted, with @ veclor fields (p,m):

L =g -ifyxs, (A1)
Ly=f-§d,6y* +he., (A2)
Ly =g-¢7,6"¢+f-§o,.4(0°0" - 56"), (A3)
Ly =/f-ifrgy v (0#6-36") +he. (A4)

)
The anti-symmetric tensor ¢,, here is defined as o, = 5[7"’ y,].

APPENDIX B: VERTEX FUNCTIONS

Here we list results (Hol 95) for helicity dependent vertex functions

V% (y.42). y here denotes the longitudinal momentum fraction of the baryon in the

nucleon; , = (k L cos@,k, sinq:) the transverse momentum of the baryon with respect
to the nucleon momentum. The contributions are listed according to particle helicities

(1725 2,4, with 2 and &' being the baryon and meson helicities respectively.

a) Transitions for L,(Nx, Nn, 2K, AK)
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TABLE 4.1

Largest meson admixtures in the nucleon [in %]

bare N-n N-p A-rn A-p
58 18 13 6 2
TABLE 4.2

Comparison of measured ratios of quarkmomenta (CCFR-data (Fou+ 90)) with
theoretical results obtained with MCM (Hol 95).

Exp Fitl Fitl
2(xs)
= T 04 +0.09+0.07 . .
(xﬁ) + (xd) 4501 002 046 054
= 2<XA') +0.01040.007
™= Ty + {xd) 00575 0002 0.069 0081
{xi7) + (xd) + (x5)
e = (m)+(xd_—)+(n) 0153+ 0034 0.176 0182
TABLE 4.3

Gottfried sum-rule with different meson contributions (S;" =0.235+ 0.026). In

each line the contribution of the given Fock-states are added (HSS 96).

Z (ﬁ - (7) sa
bare nucleon 1 0 0.333
+aN 0.755 -0.141 0.239
+n4 0.697 -0.106 0.263

all 0.580 -0.142 0.238

TABLE 4.4

A list of all possible semileptonic decays of baryons within the nucleon octet. The

axial couplings g, has been calculated at the tree-level in the SU(6) model

(F=2/3 and D=1) and in the SU(3) model F and D (F =044,D=082) fittet.

Moreover, the results of the same models are shown with inclusion of the meson

cloud. For the SU(3) case we find F =053 and D =115.

Decay Su(6) SuU(3) MC, MC, Ga €xp
Su(6) SU(3)

n - p 1.67 1.257 1.241 1.257 1.2573+0.0028
T - A 0.82 0.67 0.66 0.74
T - z° 0.94 0.62 0.77 0.64
by - A 0.82 0.67 0.65 0.75 0.60 + 0.03
z - £° -0.94 -0.62 -0.77 -0.64
o > = 0.33 0.38 0.27 0.49
A - P -0.87 -0.96 -0.89 -0.857 + 0.018
2° - P 0.24 0.27 0.19 0.31
T - n 0.33 0.38 0.27 0.49 0.34+0.05
=° > T 167 1.26 1.37 1.39
= > A 0.41 0.20 0.35 0.16 0.31+0.06
= = z° 1.18 0.89 0.97 0.98

x2/N 4369 20 8.5 6.5




TABLE 4.5

The Ellis-Jaffe sum rule for proton and neutron, the Bjorken sum rule and
the axial flavour singlet coupling constant obtained with inclusion of
different Fock states: octet baryons with pseudoscalar mesons (oct, ps),
octed and decuplet baryons with pseudoscalar mesons (oct, decu, ps) and
with vector mesons in addition (all). The axial coupling constants for the
SU(3) case are: F=053, D=115 for (oct, ps) and F =048, D=091 for
(oct, decu, ps) and F =053, D = 115 (all).

SU(6) tree 0.278 0 0.278 1 0
oct, ps 0.212 0.004 0.208 0.779 0.004
oct, decu, ps 0.233 -0.010 0.243 0.804 0.002
all 0.220 0.011 0.209 0.846 0.017

SU(3) tree 0.173 -0.037 0.210 0.489 0
oct, ps 0.154 -0.056 0.210 0.356 0.003
oct, decu, ps 0.169 -0.041 0.210 0.461 0.001
all 0.179 -0.031 0.210 0.541 0.018
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DIS from the virtual (a) meson and (b) baryon components of a physical
nucleon.

Time-ordered diagrams moving (a) forwards and (b) backwards in time.
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Various splitting functions obtained by means of TOPT in the infinite
momentum frame (Hol 95).

Splitting functions £, (y) evaluated using covariant and time-ordered
perturbation theory. The covariant function is as in Fig. 3.5. The cut-offs
in the form factors are chosen to give the same value for (1), =0235
(TM 93).

Splitting functions £, ( y) and jm(l - y) with dipole form factors and cut-
offs chosen to give (n),, ={n),, = 0235 (TM 93).

The splitting functions y} (solid), A y) (dash-dotted),
A A

0,
P

f""%(y) (dashed) and j""’o}’(y) (dotted) with a cul-off parameter of

A =108 GeV, (HSS 93).
One-Boson-Exchange diagrams for n and A production.
Differential cross sections for pp - nX and pp — AX (FM 76, Blo+ 78).

Shown are the OBE contributions: pseudoscalar meson (dashed), vector
mesons (dotted) and their sum (solid) (HSS 96).
Fit to the experimental data to determine the quark distributions of the

‘bare’ nucleon, at 0? =4 GeV? (Amn+ 94, Leu+ 93). The thick and thin
dashed curves are the ‘bare’ distributions of fit | and fit I, respectively.
The thick and thin full line represent the results of the corresponding

meson-cloud model calculation (Hol 95). The scale of the g(x)
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experimental data (Mis+ 92) is 0% =3 Gel* (circles) and Q? =5 Gepy?
(squares).

Quark distribution functions of the bare (dashed) and the physical
nucleon (Hol 95). Differences between fit | and fit Il (thin and thick line)
can hardly been seen.

Total valence distribution (SHT 95) in the bag-model and in the bag
dressed with mesons compared with the MRS parametrization (MSR 93)
of the data. The quark distributions are evolved in next-to-leading order
QCD.

Effect of the Pauli exclusion principle on the proton-neutron structure
function difference, as a function of X (TM 83). The dotted (without
meson corrections) and solid (with meson corrections) curves are for
P =0 (largest curves) 0.05, 0.1 and 0.15 (smallest curves).

Different contributions to the asymmetry of the sea quark distributions in
the model of ref. (HSS 96, Hol 95).

Drell-Yan process: An antiquark (quark) from a beam proton (A)
annihilates with a quark (antiquark) from the target proton (B) and create
a lepton pair.

Cross section for the production of the dilepton pairs in proton-deuteron
collisions. Shown is the fit of the X -factor for various quark distributions
to the experimental data (Szc+ 96).

Drell-Yan ratio for iron/deuterium and tungsten/deuterium. The solid line
is the result of MCM , the dashed line the asymmeltric MSR(A) and the

dash-dotted line the symmetric MSR(S,;) parameltrization (Szc+ 96).

Data are taken from ref. (Ald+ 90).

The slope of the rapidity distribution. The full and dashed result is
calculated with asymmetric sea quark distributions, the dotted and dash-
dotted with symmetric ones (Szc+ 96).

A two-dimensional map of the Drell-Yan asymmetry as a functions of «,

and x, (Szc+ 96). Shown are results obtained with the Owens

paramelrization (Owe 91) (teft-upper corner), symmetric MS‘R(S[,) (right-
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upper corner), new MRS(A) with the 7 -d -asymmelry built in (left-lower
corner) and prediction of the meson cloud model (HSS 96, Hol 95) (right-
lower corner). Note the change of the sign in the iower panels.

Drell-Yan asymmetry along the x, = x, diagonal (Szc+ 96). The meaning
of the lines here is the same as in Fig. 4.11. The data point is taken from
the NAS1 Collaboration at CERN (Bal+ 94).

The #(x)/d(x) ratio as obtained from the meson cloud mode! (Hol+ 96)
and the MSK(A) parametrization (dashed line) compared with the
experimental resuilt of the NA51 Collaboration (Bal+ 94).

Polarization asymmetry for the #-exchange (upper curves) and parton
fragmentation (lower curve) models. The solid and dashed lines are for
CEBAF and HERMES kinematics, respectively.

Polarization asymmetry for the K -exchange (solid) model of A
production, compared with a leading fragmentation approximation
estimate for the parton fragmentation process (dashed).

Corrections to an axial current in the meson cloud model.

The pion (rho) exchange contributions to the inclusive neutron

production (a) in pp-scattering and (b) neutron and (¢} A production

in deep-inelastic scattering. Diagram (d) shows the diffractive production
of N*'s by pomeron exchange.

Longiludinal momentum distribution of (a) neutrons, (b) protons and

(c) A . The contributions of the x and p exchange mechanisms are
shown by the dashed and dotted line, respectively. The contribution from
the pomeron exchange mechanism to the p —> p fragmentation is shown
by the dash-dotted line (Hol+ 94).

Longitudinal momentum distribution of neutrons (see Fig. 2 a.) with the
extra condition p} <0.{GeV /c)® (lower curves) compared to the
unconsltrained one (upper curves, see Fig. 2 a)). The x» exchange
contributions are shown by dashed lines; the p exchange contributions

by the dotted lines.
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