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Abstract. In this paper we describe a comparative study performed to evaluate various
beam steering algorithms for CEBAF lattice. The first approach that was evaluated used a
Singular Value Decomposition (SVD) based algorithm to determine the corrector magnet
setting for various regions of the CEBAF lattice. The second studied algorithm is known as
PROSAC (Projective RMS Orbit Subtraction And Correction). This algorithm was devel-
oped at TINAF to support the commissioning activity. The third set of algorithms tested are
known as COCU (CERN Orbit Correction Utility) which is a production steering package
used at CERN. A program sirmulating a variety of errors such as misalignment, BPM offset,
elc. was used to generate test inputs for these three sets of algorithms. Conclusions of this
study are presented in this paper.

INTRODUCTION

The CEBAF accelerator consists of a 45 MeV injector, two side-by-side super-
conducting linacs, and 9 recirculation arcs that recirculate the beam through the
linacs up to 5 times for 4 GeV total energy. Beams of different energies are sepa-
rated at the first spreader and are transported through isochronous arcs to the recom-
biner at entrance of second Linac. At the exit of second Linac, the beams of
different energies are separated again to be sent to either Experimental Halls or
through the recirculation arcs. An orbit correction system is required at CEBAF to
increase the machine aperture and to steer the beam through any portion of the ac-
celerator for a desired beam delivery objective. A variety of beam steering algo-
rithms of varying characteristics and complexity are available. In this study we have
compared three such algorithms.

SVD Based Algorithm

Consider there are M beam position monitors and N corrector magnets available
to the beam steering algorithm. Changes in corrector strength A8 (vector of length
N) will reduce the closed orbit error Ax (vector of length M). These two vectors are
linearly related through a response matrix R;; as indicated by

N
Ax; = ERU.-AGJ. (1)
j=1
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The response matrix can be written in terms of betatron amplitude, phase ad-
vance and the tune of the machine as
Rij = BiBjsm(\Pi"‘l’j) (2)
where Bi’ Bj are the betatron amplitudes at i th BPM and j th corrector. The
response matrix can be experimentally determined by changing the strength of j th
corrector by unit excitation and measuring the resulting beam motion at all BPMs
while rest of correctors are set to 0. Orbit correction using SVD is inverse of this
process of experimental determination of response matrix. Singular Value Decom-
position of R;; can be written as
T
R=U-W-V (3)
where U is M x M unitary matrix, W is M x N diagonal matrix that contains all
the singular values, and V is an N x N unitary matrix. The inverse of matrix R;; can
be obtained from
Rl =v.ow ot (4)
where W/ can be constructed by inverting the singular values and then taking
a transpose of the matrix. If any of the singular values are zero, then this singularity
can be removed by setting the inverse of that singular value to be zero rather than a
large number in the inverse matrix. Including all non-zero singular values to deter-
mine the inverse will result in most accurate correction of the closed orbit error.
However, if the R;; matrix is nearly singular then, this correction might require un-
reasonably large corrector settings on a few correctors. This condition can be avoid-
ed by eliminating the smallest singular values from the inverse calculation until the
corrector settings requirement enters a more reasonable range. The first step in the
orbit correction process is obtaining the difference orbitAx , which is the difference
between the orbit measured by BPMs and the desired reference orbit. Next, the cor-
rector settings are computed using
-1
AD = R - Ax (5)
If the corrector settings turn out to be over the saturation limit of power supplies,
then the R™! is recalculated by eliminating the lowest singular value from inverse
calculation. Once satisfactory corrector settings are obtained, they could be applied
to reduce the closed orbit error. See reference (1) for an implementation of this al-
gorithm at Advanced Photon Source at Argonne National Lab.



PROSAC algorithm

This algorithm (2) utilizes the projection of j th corrector on the closed orbit as
a parameter for selecting the best corrector and iteratively determining its settings
to progressively reduce the closed orbit error. That corrector magnet, in N dimen-
sional space of all available magnets, which has the largest projection on the vector
for closed orbit error is considered best. The projection V; of j th corrector effect on
orbit is given by

V.=C. Ax
i= € (6)

where Ax is the closed orbit error and C; is the unit response on M- BPMs by
the j th corrector. Now the setting for this corrector is calculated using

AB. = W. Ax
j j (7)

where W; is the j th column in the response matrix K.

This algorithm has a variety of options available for implementing orbit correc-
tion scheme. The first option in this algorithm allows for either using the projection
V; or the normalized projection V;/1C;l for selecting the best corrector. The second
set of options allows for three different starting conditions for iterations. First con-
dition is to start with all correctors set as-is and then incremental corrections are ap-
plied to reduce the closed orbit error. Second condition requires that all correctors
are set to zero and then incremental corrections are applied to reach the desired ref-
erence orbit. Third condition starts with performing a simple least squares fit for the
current settings of BPMs and correctors and then either one of the above mentioned
conditions in the first option could be applied to reach the reference orbit.

The iterative process of reducing the closed orbit error continues with selecting
the best corrector and applying the correction until the closed RMS orbit error is re-
duced to 20% or a user defined fraction of the initial value.

COCU

COCU (Closed Orbit Correction Utilities) is a comprehensive collection of or-
bit correction algorithms unified under a standard user interface. It has been a major
orbit correction tool used at CERN and several other accelerators. The repertoire of
algorithms include MICADO, a minimum corrector number routine, MINIMO, an
algorithm looking for absolute best corrector combinations, SIMPLEX, a minimi-
zation program capable of inequality corrector constraints, and a number of other
algorithms. It also performs harmonic analysis in the case of closed orbit in circular
machines and conditioning of the input beamline layout to avoid near-degenerate
configurations. A detailed description of COCU can be found in reference (3) and



references therein. We have linked the majority of the core COCU program with a
graphical user interface to facilitate the data transfer between simulation and orbit
correction algorithms.

SIMULATION PROGRAM FOR TEST INPUTS

To compare the performance of the various orbit correction algorithms, simula-
tion program was developed with the CEBAF accelerator as a test bed. Approxi-
mately 100 simulation files were generated mimicking all conceivable errors in the
machine. These include isolated and distributed optics errors, isolated and distrib-
uted misalignment errors in all coordinates, isolated and distributed monitor errors,
injection errors in all coordinates, initial corrector kicks and errors, and earth field
effects. The use of simulation data helps provide a measure of how each algorithm
has performed everywhere against the uncorrected orbit, including areas inaccessi-
ble to orbit monitors in the real machine. It also allows creation of special cases
where the near-degeneracy of the orbit correction system and corrector magnitude
limits are put to test.

RESULTS AND CONCLUSIONS

We have tested over 100 simulation files against the various orbit correction al-
gorithms mentioned above. In most cases all the algorithms produced similar results
in terms of the final orbit and overall corrector strengths. We will briefly describe
cases where performance of these algorithms differ:

(a). With its inclination to find the minimal set of correctors to control the orbit,
in a few cases the MICADO line of algorithms tend to concentrate too much
strength into a small number of correctors, as shown in Figure 1.

mrad arc?_sin wb] wica € Y-CORR. mm
H i

arc?_sin_wh3 mica ¢ v-POS,

85

0.5

=
=
b
~
=
~
o

uET2A01V
BT ZADZY
BT ZRO3V
MBTZADEY
METZA0V
MBTZ2R09Y
WBET2R10V
et 2Rlzv
MBTZA13V
BT ZA15%
nBTZA1 7V
HBTZA19V
MBT2R20V
MBT2ZAZ2V
MBTZAZAT
MPTEM2EV
MBTZR27V
MRTZAZSV
HMDT2ARI0V
MBT ZAB2ZV
HBRTZAR3V
HBTZAISV
HMET2A37V
MBTZAISV
HET2R40V

Figure 1. Corrector strengths MICADO
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Figure 2. Orbit correction by MICADO



Figure 2 shows the orbit before (dotted line} and after (solid line) correction.
Corresponding cases using an SVD based algorithm is shown in Figures 3 and 4,
which are similar to results from PROSAC.
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Figure 3. Corrector strengths SVD Figure 4. Otbit correction by SVD

(b). All algorithms appear to produce large “fighting” correctors due to near-de-
generacy of the monitor-cotrector response matrix, although PROSAC appears to
be the least vulnerable. Figures 5 and 6 show the correction result of an SVD based
algorithm where no singular value has been excluded, meaning virtually no con-
straint on corrector strengths. It can be seen that some correctors conspire to create
large local orbit bumps without detection by BPMs (BPM readings are indicated by
solid circles). If one proceeds to eliminate singular values such that corrector limits
of 1 mrad is imposed, no correction can be successfully accomplished. The MICA-
DO line of algorithms produced resuits more close to those from SVD algorithms.
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Figure 5. Corrector strengths SVD Figure 6. Orbit correction by SVD



In this particular case the algorithm PROSAC succeed in reducing the orbit sig-
nificantly within the corrector limits, without inducing orbit bumps. We are aware
of similar problems with PROSAC, but the occurrence is less frequent.

(c). We also compared the behavior of the various algorithms in a region with
insufficient monitors such that the information derived from these monitors is inad-
equate for orbit reconstruction on the order of 5-10 mm. This can be equivalent to
evaluating the error handling ability of these algorithms when some monitors are
not working. Our conclusion is that all algorithms tested can easily produce unde-
tectable after-correction orbit errors on the same order as the uncertainty in orbit re-
construction by any method. In such cases algorithmic ingenuity apparently can not
compensate for fundamental lack of information. Figure 7 shows such a case by
SIMPLEX, a COCU algorithm, where a missing BPM towards the end of the line
caused undetectable orbit excursion of about 7 mm. Such problems can be rectified
only by more BPMs or drastically changed optics.

In summary, we have tested various orbit correction algorithms against simulated
orbits. The relative pros and cons are discussed above which may help accelerator
controllers in choosing the optimal method to use. Keeping a wide variety of algo-
rithmic options and careful conditioning of the monitor-corrector system to avoid
near-degeneracies appear to be the best policy when it comes to orbit correction.
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Figure 7. Uncorrectable orbit due to BPM deficiency
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