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Abstract. Computer simulations using the multi-particle code PARMELA with a three-
dimensional point-by-point space charge algorithm have turned out to be very helpful in
supporting injector commissioning and operations at Thomas Jefferson National Accelera-
tor Facility (Jefferson Lab, formerly called CEBAF). However, this algorithm, which

defines a typical N? problem in CPU time scaling, is very time-consuming when N, the num-
ber of macro-particles, is large. Therefore, it is attractive to use massively parallel proces-
sors (MPPs) to speed up the simulations. Motivated by this, we modified the space charge
subroutine for using the MPPs of the Cray T3D. The techniques used to parallelize and opti-
mize the code on the T3D are discussed in this paper. The performance of the code on the
T3D is examined in comparison with a Parallel Vector Processing supercomputer of the
Cray C90 and an HP 735/125 high-end workstation.

I. INTRODUCTION

Massively Parallel Processing (MPP) is of common interest for numerically
intensive industrial and scientific calculations (1-3). It may provide a new
approach to simulating three-dimensional space-charge-dominated beam dynamics
with its larger amounts of CPU time and memory. Space charge simulation has
turned out to be very helpful in supporting injector commissioning and operations
at Thomas Jefferson National Accelerator Facility. It also is important for our
future injector design and development.

Jefferson Lab’s 4 GeV superconducting electron beam accelerator is providing
new opportunities for pursuing new knowledge of internal structures of matter. It
consists of a 45 MeV electron injector, two sections of north and south 400 MeV
linear accelerators, and five recirculation passes. The injector design is unique in
that it can deliver three CW high-intensity electron beams simultaneously to the
main accelerator, which accelerates and finally separates the three beams for injec-
tion into three nuclear physics experiment halls. The quality of the beams is deter-
mined Jargely by the front end of the machine, i.e., the injector, where space charge
is a dominating factor affecting beam generation, transport and bunching.

Space charge refers to the repulsive Coulomb interacting forces among the



charged particles that tend to blow up the beams. Its effects on the dynamics of a
beam are so complicated, both in theoretical treatment and in experimental prac-
tice, that computer simulation often is the most effective shortcut in delivering the
first and most accurate answers to the problems of concern. For example, the space
charge effects on bunching of electrons in the Jefferson Lab’s injector were clari-
fied and corrected for a bunch length setting in use through computer simulation
(4); beam transmission through this injector has been improved by a factor of two
with the help of computer simulations.

The code we have been using for space-charge-dominated beam dynamics simu-
lations is PARMELA (5) that has been maintained and modified by the author to
meet various special needs for simulating electron injectors. Its space charge sub-
routine is based on a point-by-point method (6, 7), and has been used extensively
in two contexts: designing a photoemission gun injector test stand (8—11) for high-
power industrial free electron laser applications, and supporting the Jefferson Lab
main accelerator’s injector commissioning and operations (4). The algorithm was
benchmarked (12) with the simulation results from the PIC code ISIS (13).

A longest space charge run we once had consumed a CPU time of 8 days on an
HP 735/125 workstation with 8000 macro-particles that simulated beam transport
and bunching through the entire FEL injector (11). Apparently, it is necessary to
seek for a faster approach to running space charge jobs. Motivated by this, we have
parallelized the code for using the MPPs of the Cray T3D. The techniques used to
parallelize the code on the T3D are discussed in this paper. The performance of the
code on the T3D is analyzed in detail.

II. PROCESSES IN A COMPLETE PARMELA RUN

A PARMELA input deck is composed of various elements as listed in Table 1.
The elements chopper (#6), backb (#34), alpham (#36), poisson (#37), bfield (#38), !
(#39), nbend (#40), kicker (#41) and b_eorth (#42) were added by the author for
modeling chopper systems (14), backbombardment in microwave guns (15), o-
magnets (16—18), finite-length solenoids, indexed-field bends, beam orbital correc-
tions and the earth fields. The “!” element is used for inserting comments.

TABLE 1. Elements constituting a PARMELA input deck

(drift,1) (solenoid, 2) (quad, 3) {bend, 4) (buncher, 5) | (chopper, 6)
{cell, 7) {tank, 8) (trwave, 9} {coil,10) {run,11} (input,12)
{output,13) {title, 14) ) (scheff,15) (zout,16) {adjust,17) (start,18)
(restart,19) (continue,20) (save, 21} (end, 22) {limit, 23) {errors, 24)
(change, 25) | (rotate, 26) {sbload, 27) | (cfield, 2B) (dpout, 29) {cathode, 30)
{design, 31) | (pipe, 32) (foclal, 33) {backb, 34) {wiggller, 35) | (alpham, 36}
{poisson,37) | {(bfield, 38) {1, 39) (nbend, 40) (kicker, 41) {b_earth, 42)




The processes in a complete run are threaded in Fig. 1. After initialization, an
electron beam is generated with N macro-particles. The six coordinates of the par-
ticles are stored in a two-dimensional array named cord. Then, the subroutine par-
dyn is called to initiate the processes of solving particle dynamics equations. Each
process contains two major loops, one on time steps, and the other on particles.
The space charge subroutine scheff is called once on all the particles, with the
resultant momentum increments superimposed to those from external elements to
advance each particle during the present time step. When all the processes come to
the end of a beamline successfully, the program exits the subroutine pardyn and
saves the coordinates of the particles before ending execution.

Initialization “ Stop
b

i 1

input (deck input (beam)[™  start/restart save [T end
~ loop on time steps
scheff r(spéé'g_‘ 6hﬁrge) | loop on particles
] ¥ ¥ ¥ ] |} ¥ ¥ L)
drift | quad |bend] cell| poisson|nbend|kicker| ...[chopper
l

swap/output branches

last particle?

output

No

further to go?

Figure 1. Processes in a complete PARMELA run.



II1. POINT-BY-POINT SPACE CHARGE ALGORITHM

In the point-by-point space charge algorithm that we have been using (6, 7),
9
there are two major loops, the i-loop and the j-loop, to calculate the electric (£)

_>
and magnetic (B ) fields produced by a moving charge ¢
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(1)
where j denotes the particle applying electromagnetic forces to the ith particle. The
i-loop specifies the source particles, and the j-loop calculates and sums up the E
and B fields from all other particles for the ith particle. A final loop applies the
impulses obtained from the previous two loops to each particle. As is seen, the

CPU time spent executing this algorithm is proportional to N2, where N is the num-

ber of macro-particles, which defines a typical N? problem in CPU time scaling. It
becomes more and more time-consuming as N goes up rapidly.

IV. PARALLELIZATION ON THE T3D

The Cray T3D is an MPP supercomputer with 256 processing elements (PEs)
(19-21). On the T3D, four MPP programming methods (22) are available: data
sharing, work sharing, message passing, and explicit shared memory. In order to
minimize the frequency of data exchange among the PEs, the arrays that contain
the net momentum increments for each particle, dbgx, dbgy and dbgz, instead of
cord, are chosen as the shared ones. The cyclic data distribution mechanism is used
as follows

CDIRS GEOMETRY G{BLOCK(1))
real dbgx(imaa). dbgy(maa), dbgz{imaa)
CDIRS SHARED (G) :: dbgx, dbgy. dbgz

where imaa = 16384 specifies the maximum number of particles that can be loaded
in a run, which must be a power of 2 on the T3D.
Work sharing is achieved by adding the following DOSHARED directive

CDIR$ DOSHARED (i) ON dbgx(i)

prior to the i-loop. This way, the j-loop is not parallelized since it is a nested loop
inside the i-loop. The lastloop applying the impulses to all the particles is split into
two, and a SHMEM subroutine shmem_put (23) is used for the Master PE to collect
all other particles from all other PEs. Finally, the master task copies the arrays cord
and gam across to the other tasks or PEs.

The loop on particles in pardyn (see Fig. 1) has been parallelized as well. The
major problem encountered was to deal with output and particle loss/swap. This



requires extra caution for correct communication among all the nodes; otherwise,
particles would walk into wrong PEs, leading to wrong results. Output is con-
trolled using the MPP intrinsic function MY_PEQ which designates a master PE
region. When a call to output is made, the Master PE collects all other particles it
does not have in its own memory from all other PEs, and then conducts all statistic
computations. LOCKs are used to count the particles to determine whether all the
alive particles have passed the last exit and the program execution should stop.

V. PERFORMANCE

In this section, we examine the code performance on the T3D in comparison
with an HP 735/125 workstation and the Cray C90. The major hardware/software
configurations of each computing vehicle are listed in Table 2.

TABLE 2. Comparison of configurations on different machines

Configuration HP 735/125 Cray C90 Cray T3D

CPU Type PA-RISC 7150 Custom-made DEC EV4 a (21064)
Number of CPU(s) 1 16 256

Precision far real {bits) 32 64 64

Memory 64 MB 268 Mw 256 x 8 Mw

Clock Period (MHz) 125 240 150

MFLOPS/CPU 201 (SPECIp92) 960 {peak) 150 {peak})

FP Computation IEEE + sqrt - IEEE

Primary Cache 256KB1+KBD off-chip | Fast memory and 8 KB on-chip
Secondary Cache none vwe:::':c:'; igai:r:eerﬁgs) none

We choose an input, shown in Fig. 2, that does a real job of simulating beam
quality degradation due to space charge effects. This input is set up to refiect all the
aspects that parallelization must deal with. The emittance values of 7.380, 30.081,
47.710, and 62.840 in the x-direction are used to check that the same results are
obtained at the same exits despite of any changes and/or modifications to the code.

TITLE - mpp test (capP6_1.iny-

RUN /IRUN=1 /IP=1 /FREQ=1497. MHZ [20=-3.5 CM fW0= 0.511 MEV /LTYPE=1
QUIPUT &

DRIFT /L=2.1 JAPER=2.54 /IOUT=1

DRIFT fL=6.7 JAPER=2.54 /IOUT=1

DRIFT /L=6.6 JAPER=2.54 /IOUT=1

DRIFT /L=8.9 JAPER=2.54 /IOUT=]

out

INPUT 16 /NP=999100 00 0 100 00 0 31800000000 1.0
SCHEFF /BEAMI=-1025.E8 /RMESH=2.5 /ZMESH=8.0 /NR=10 /NZ=300 0. 0 1.5 0/POINT=3. /55=1.00
START fWTO=0. /DWT=7.2 /NSTEPS=99999% /NSC=1 /NOUT=40

END

Figure 2. An input deck with 108 particles for testing the performance of the code.



The quantitative approach to measuring the performance of a computer differs
from workstation to supercomputer. Workstations are benchmarked using
“SPECfp” with which the MFLOPS number is a geometric mean from a number of
application runs, while supercomputers are rated using “peak performance,” which
is sort of “the speed of light” that the manufacturers guarantee that nobody can
exceed. In this paper, we simply use the following formula to calculate the MOPS
contained in the input shown in Fig. 2

MOPS = T0xM x N2, 2)

where 70 is the total number of operations per step per particle contained in the
inner loop, M is the total time steps executed from start to finish for the job, and N
is the number of macro-particles. With the input shown in Fig. 2, M = 90, N =
1000, so it needs 6300 MOPS total. This number will be used as the same measure
in the following context to calculate MFLOPS numbers for all the platforms.

The baseline performance of the code on a single node is shown in Table 3. For
each platform, different compile flags have been tested to make sure that the FOR-
TRAN compiling optimizer built with each computer has been used to the largest
possible extent. It is seen that an optimization functionality may make a huge dif-
ference in speeding up the CPU time that this input may take. On the C90, the
inner loop is vectorized and the outer loop is autotasked (parallelized), making it
ideal for running this algorithm. The wall-clock time for this input on the C90 is
about 7 seconds only with a usage of ~ 50% of 16 CPUs.

TABLE 3. Baseline performance on a single node

{(At)epy (8) | MFLOPS (% of peak) Compile Flags
H 412 15 (7.6 of SPECfp) f77 -R8 +e +E1
P 134 47 (23 of SPECIp) f77 -V -R8 +OP -WF, -0=4 +e + E1
52 121 (12) cf77 -Zp -Wd'-du -l tmp.I" -¢
c 61 103 (10) cf77 -Wddu -/ tmp.F -c
o 148 43 (4.3) cf77 -O vectord -c
561 11 (1.1) cf77 -0 scalar0 -0 vectorQ -c
417 15 (10) cf77 “WI™Ifi" -¢
T 389 _16 (11) cf77 -Wf™o unroll” -WP-Ifi” -¢
g 388 16 (11) of77 -Wi™-0 aggress” -WIIfi* -
392 16 (11) cf77 -Wit"-o0 unrolt -0 aggress™ -WP-Ifi" -¢
390 16 (11) cf77 -Wi”-0 unroll -0 noieeedivide” -WI-Ifi" -¢
389 16 (11) cf77 -Wi™-o unrall * -WI™-lfi -D rdahead=on" -c




The difference in CPU time between default optimization and maximized opti-
mization is 1.2 on the C90, 1.1 on the T3D, and 3.1 on the HP. Aligning cache
boundaries was tried on the T3D, but seemed not very helpful, possibly because
the number of variables involved in a single loop is much larger than the cache
size, and cached data cannot be reused effectively. The single node performance is
12% of peak on the C90, and 1% of peak on the T3D. Using the single node CPU
time spent on each platform, we see that a single C90 CPU is 2.6 times faster than
the HP, the HP is 2.9 times faster than a single T3D CPU, and a single C90 CPU is
7.5 times faster than a single T3D CPU, which is close to the peak performance
ratio (6.7) of the C90 to the T3D.

The optimized performance, shown in Table 4, refers to the performance when
the code is manually optimized to take full advantage of the architectural features
of each machine. Based on the observations that pipelining and cache reuse are
effective only when as few branches as possible are contained in a loop (2), the
code has been rewritten on the C90 with the original two loops split into three
parts: one is for calculating shielding factors for each particle in advance, one is to
calculate interacting forces without image charge, and the third one includes image
charge calculations. Due to limitations on the single node memory size, the shield-
ing factors are not pre-calculated on the HP and T3D. After the algorithm has been
recoded, we found that the code is 1.6 times faster than it was on the HP, 3 times
faster on the C90, but only 1.2 times faster on the T3D.

TABLE 4. Optimized performance on a single node

{At)epu (8) | MFLOPS (% of peak) Compile Flags
H 345 18 (9 of SPECIp) {77 -R8 +e +E1
P 85 74 (37 of SPECfp) 77 -V -R8 +OP -WP, -0=4 +e + E1
22 286 (29) ef77 -Zp -Wd"-du - tmp.I” ¢
C 23 274 (27) cf77 -Wd"du -l tmp.I* -¢
g 164 38 (3.8) ¢f77 -O vector0 -
589 11 (1.1) cf?77 -O scalar® -O vectorD -¢
319 20(13) cf77 -WI™-Ifi" -c
T 318 20 (13} cf77 -Wi"-o unroll” -WI-Ifi” -¢
g 342 18 (12) cf77 -Wf™-o aggress” -WI-Ifi" -c
326 19 (13) cf77 -Wi*-o0 unroll -0 aggress” -WP-Ifi" -c
321 20 (13) cf77 -Wi™-o0 unroll -o noieeedivide” -WI-Ifi" -c
318 20(13) cf?77 -Wf-o unroll * -WP-Ifi -D rdahead=on" -¢

It is noticed that functional calculations of sqrt are significantly slower on the
T3D than on the C90 and on the HP. On the T3D/T3E the standard “liom” “sartQ” is



implemented in Alpha assembly language, and the routine has about two dozen
floating point adds/multiplies; the latest sqrtQ on the T3D takes about 129 clock
periods, and on the T3E about 67 clock periods (24). The C90 vector sart function
requires 21 floating point operations, 8 mulitiplies, 10 adds, and 3 reciprocal
approximations plus some overhead to set up the vectors; for vectorized code with
arrays on the order of 1 million elements, sgrt achieves around 700 MFLOPS,
roughly 1 sart result per each 7.2 clock ticks (25). It is noticed that the DEC’s
Alpha architecture CPUs have no sqrt FP computation, unlike MIPS, PA-RISC,
PowerPC and SPARC (26).

Table 5 shows the partition of CPU time among different parts of the program
executed with one PE and 32 PEs respectively, based on apprentice analysis on the
T3D (27). The measured elapsed time was 748 seconds with 1 PE and 35.5 sec-
onds with 32 PEs in contrast with 318 seconds with | PE and 20 seconds with 32
PEs when compiled with no apprentice. Therefore, the program was slowed down
by a factor of 1,78 with 1 PE, and a factor of 2.35 with 32 PEs by apprentice. The
MFLOPS numbers are 8.7 for program and 14.7 for scheff2 with 1 PE, and 137 for
program and 384 for scheff2 with 32 PEs, according to apprentice. However, these
MFLOPS numbers from apprentice are less accurate, since sqrt has not been instru-
mented in counting MOPS, but its time is counted in calculating MFLOPS.

TABLE 5. Partition of CPU time among different parts of the program on the T3D

Parts At in seconds
NPES =1 NPES = 32
program/parmela/pardyn 368/0.04/3.21 755/26.9/19.5
scheft2/_sqri/drift 218/145/0.668 268/145/0.677
shmem_broadcast/_barrier 0.008/0.003 294/79.7
shmem_put/set_lock/clear_lock 0.200/0/0006/0.0006 1.14/1.82/0.06

It is seen from Table 5 that sgrt is responsible for 39% of the CPU time in the
case of one CPU run. According to Amdahl’s law, the program is slowed down by
a factor 1.5 with the assumption that 24/70 = 34% of MOPS attributable to sgrt and
that it is (24x129x240)/(21x7.2x150) = 33 times slower than on the C90. In addi-
tion, overhead resulting from communications among muitiple PEs has increased
significantly from the case of 1 PE to the case of 32 PEs, as indicated by large
amounts of CPU time with 32 PEs from shmem_broadcast and _barmier shown in the
table.

The performance of the code vs. the number of nodes on the T3D is shown in
Table 6, with space charge on and off. It is seen that the performance is linearly
scalable for time-consuming space charge runs. The T3D starts to outperform the
C90 at 32 processors. In the near future, optimization and use of the code for our
space-charge-dominated beam dynamics simulations will be switched to the
NERSC’s Cray T3E which is about six times faster than the T3D.



TABLE 6. Performance vs. number of nodes on the T3D

Number Space charge on Space charge off
of nodes
(At)epy () MFLOPS {A)cpy (8) (Np=1000) | (At)epy (S) (Np = 16384)
1 318 20 3.95 63.3
2 162 39 3.36 38.0
4 84 75 3.30 21.2
8 46 137 3.78 13.2
16 28 225 4.56 985
32 20 318 5.50 9.07
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