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1. INTRODUCTION

Study of effects due to finite sizes of the hadrons and incorporation of the
transverse momentum degrees of freedom is a notoriously difficult problem for
the QCD analysis of inclusive (see, e.g., [1]} and exclusive processes. Since the
advent of the parton model [2], it is taken for granted that the hadron can be
viewed as a collection of quarks and gluons, each of which carries a finite frac-
tion z; P of the large “longitudinal” momentum P of the hadron, and also some
“transverse” momentum k;; . However, a justification of such a picture from the
basic principles of QCD is not a straightforward exercise. To begin with, the
coordinate-representation version of k3 is a derivative 3, in the transverse direc-
tion. In a gauge theory, 8, always comes together with the gauge field A, in the
form of a covariant derivative 8, — Dy = 8, — igAy, i.e., the finite-size effects
are mixed with those due to extra gluons.

In the operator product expansion (OPE) approach [3], the nonperturbative
aspects of the hadron dynamics are described/parameterized by matrix elements
of local operators. In particular, the longitudinal momentum distribution is re-
lated to the lowest-twist composite operators in which all the covariant derivatives
appear in traceless-symmetric combinations {Dy, Dy, ... D, } [4-6]. To take into
account transverse-momentum effects, one may wish to consider matrix elements
of higher-twist composite operators in which some of the covariant derivatives
appear in a contracted form like D? = D,D*  Attempting to relate them to
transverse-momentum distributions (cf. {7]), one would immediately notice, how-
ever, that I? looks more like analogue of the quark virtuality k2. Furthermore,
the presence of the gluonic field A, in the covariant derivative obscures such an
interpretation as well. In particular, using the equation of motion ¥* D,q = 0, one
can convert a two-body quark-antiquark operator §{y,, Dy, . .. Dy, } D?q with ex-
tra D? into the “three-body” operator ¢{y,, Dy, . . - Dy, Ho*" G, }g with an extra
ghuonic field Gp,.. Moreover, the two contracted covariant derivatives D, ... D#
can be separated by D,,’s forming the traceless combination and, to put D,
and D* next to each other, one should perform commutations, each produc-
ing a G-field again [8]. By choosing an optimized basis, one can avoid socme of
the complications [1,9], but the observations listed above clearly show that the
OPE-inspired approach is unlikely to produce a simple and intuitively appeal-
ing basis for constructing phenomenological functions describing the transverse-
momentum degrees of freedom.

Stiil, the OPE approach has many evident bonuses. In particular, it is based
on a covartant perturbation theory in 4 dimensions and provides an explicitly
gauge-invariant and Lorentz-covariant description. In this respect, it is analo-

gous to the Bethe-Salpeter formalism for bound states. However, the well-known
problem of the Bethe-Salpeter formalism is the presence of the unphysical vari-
able of the relative time. This variable is unnecessary and, without a loss of
information, one can describe bound states in a 3-dimensional formalism. This 1s
achieved by projecting the Bethe-Salpeter amplitude on a particular (e.g., equal-
time or light-front) hyperplane.

In the light-cone approach (see, e.g., [10]), a hadron is described by a set
of light-cone wave functions {Fock components) W{™V)({z;,k.,}). For mesons,
the two-body wave function ¥(2(z, k) can be related to the Bethe-Salpeter
amplitude taken in the light-cone gauge and integrated over the minus component
of the relative momentum [11]. A bonus of the light-cone approach is that effects
due to transverse momenta are unambigously separated from those related to
higher Fock components. Hence, if the lowest Fock component gives the dominant
contribution, one can hope to construct a reasonable phenomenology based on
modelling the two-body LC wave function. On the other hand, if one should
perform a summation over all Fock components, the predictive power of the
scheme is rather limited, since constructing models for numerous higher Fock
components leaves too much freedom for the model builders. This poses a serious
problem for phenomenological applications of the standard light-cone formalism.
In particular, if one uses the popular BHL set of constraints for the pion LC
wave function [12], the gg component always contributes less than 50% to the
pion form factor value at Q% = 0, and higher Fock componenis are absolutely
needed to ensure the correct normalization Fr(@? = 0) = 1.

A possible way out is to introduce an effective two-body wave function (see,
e.g., [13]}, which includes the low-energy contribution from the higher Fock com-
ponents, so that one would get Fy(@? = 0) ~ 1 just from the overlap of these
wave functions. One can interpret such a wave function as a wave function for a
constituent quark, i.e., a quark dressed by soft gluons. However, for different pro-
cesses, the higher Fock components can appear with different process-dependent
weights, and it is not clear a priori whether the effective wave function can be
introduced in a universal way. Another point is that while absorbing information
about soft gluons into a gg wave function may be a good approximation, hard
gluons cannot be correctly taken into account in this way. Hence, even using
the effective two-body wave function, one should allow for a possibility of hav-
ing explicit multi-body wave functions. Still, the dominant role of the effective
two-body component may take place in such a scheme, sinceé each emission of
a hard gluon is suppressed by the QCD coupling constant «, /7 ~ 0.1, and the
contribution of the multi-body compeonents may be relatively small. The problem
is that it is unclear how to combine the QCD corrections with the constituent



quark picture, because the constituent quark is not a field one readily finds in
the original QCD Lagrangian.

Here, using the pion as an example, we will outline a new approach to
transverse-momentum effects in exclusive processes. It is based on QCD sum
rule ideas. On several examples, we show that results obtained using the quark-
hadron duality prescription [14] can be reformulated in terms of a universal effec-
tive wave function W2 (2, k) absorbing information about soft dynamics. The
scheme starts with diagrams of ordinary covariant perturbation theory and allows
for a systematic inclusion of the radiative corrections in a way totally consistent
with the basics of QCD.

2. HANDBAG DiAGRAM AND ¢(-SCALING

A naive idea is that, to take into account effecis due to the finite size of
the hadrons, one should just write the “parton model” formulas without ne-
glecting intrinsic transverse momentum in hard scattering amplitudes. In doing
this, however, one should explicitly specify a field-theoretic approach which is
used for such a generalization of the standard parton model. As emphasized
in the Introduction, one can choose here between at least two basically differ-
ent alternatives: standard covariant 4-dimensional formalism or 3-dimensional
approaches analogous to the old-fashioned perturbation theory. The bonus of
the 4-dimensional approach, in the form of the OPE, is a gauge-invariant and a
Lorentz-covariant description of the hadrons in terms of matrix elements of com-
posite operators. However, as argued above, interpretation of the OPE results
in terms of transverse degrees of freedom is not self-evident. Moreover, there are
some practically important amplitudes which are “protected” from the dynami-
cal (D?)"-type higher-twist corrections. The most well-known example is given
by the classic “handbag” diagram for deep inelastic scattering. As we will see
below, in a scalar toy model its contribution contains only target-mass correc-
tions, i.e., it gives no information about finite-size effects. In QCD, the handbag
contribution contains a twist-4 operator with extra D2  but no operators with
higher powers of D?.

A. Scalar model

To illustrate the effect in its cleanest form, let us consider the handbag con-
tribution in a model where all fields are scalar (Fig.1):

a) b} c)

FIG. 1. Handbag diagram. a) Momentum representation for scalar model. &) Coor-
dinate representation for scalar model. ¢} QCD modification of the quark propagator.

10n)=- [ T rew (2.1)
4,p) = k2l @ k) :
At large Q° = —¢°, one can neglect the parton virtuality 42 in (k + ¢)2 =
q* + 2(kg) + £? and expand the propagator in powers of 2(kq)/q? to obiain
=, (296" ,
T = @y L k), (2:2)
n=0
Now, the integral
/k"‘ kB Ep BYdYE = A, pM*t . pP™ + traces (2.3)

is evidently the matrix element of a local operator with n derivatives. The usual
parton density f(z) is introduced by treating the coefficients A, as its moments
[4,5]:

1
An :f z" fz)dz. (2.4)
0
As a result, the amplitude can be written as

Tan =gz [ 2[5 seas 1 ouse

! 1
= — + O(1/QY) . 2.5
| e g oy (25)



Taking its imaginary part W(q, p) ~Im T(q, p}, we get

rBf(l'B) +0(1/Q%),

(2.6)

1
Wia,p) = f F(2)6(Q7 — 22(gp)) dz + 0(1/Q%) =

Q2
where x5 = Q%/2(qp) is the standard Bjorken variable.

B. Power corrections and £-scaling

Eq.(2.6) gives the lowest-twist contribution. The power-suppressed terms
denoted by O(1/@Q?) are apparently due to the neglected k? term in the original
propagator. One can expect that supplementing the (kq)/@Q? expansion by the
k%/Q? expansion, one can take into account the effects due to nonzero virtuality
k? by introducing phenomenological functions related to matrix elements like

fk"‘ .. .k““(kE)NF(p, k)d'k = ‘IILE,N)p'“1 ...p"" +traces . (2.7)

Of course, one should be more careful now with the “traces” in this parameteriza-
tion. The best way to maintain the necessary accuracy is well-known: one should
take the traceless part {k*' .. k#~} of the original tensor k#! .. _k#».  Then, the
right-hand-side will also be a traceless tensor, constructed from the 4-vector p*.

So, if one decides to keep the k? terms, one should supplement this by a re-
expansion of the (kq)”-factors over traceless tensors. In fact, the actual problem
is simpler than it seems, becanse a straightforward expansion of the propagator
18 Just in terms of the traceless combinations:

1
(g +k)?

Z (Qz)ﬂﬂq g Lk, kL ) (2.8)

k<q

Note, that there are no {k, ...k, }(k?)¥ terms with N # 0 in this expansion:
the (k?)¥ terms from a naive expansion over powers of (kg) and k? are exactly
cancelled by (k%)" terms from the reexpansion of (gk)”-factors over traceless
tensors. In other words, the handbag diagram is insensitive to nonzero-virtuality
effects. Introducing the twist-2 distribution function via

1
/{k“‘ . kH Y F(p, k)d 'k = {p™ . p*r) jo z" flz)dz (2.9)

and performing the summation over n by inverting the expansion formula (2.8},
we gel

1 1
T(¢,p) = [ (Ol (2.10)

The essential point is that no power-suppressed terms were neglected in this
derivation. Hence, we can write (g +zp)? = —Q? + 2z(¢p) + z°p? keeping all the
terms here and calculate the imaginary part:

1
W(a.p) = / F(£)8 (~Q7 + 2e(qp) + £%%) da = = —22 f(€), (211)
o Q 1+ 4p .rB
where
f=— 2B — (2.12)
1441+ 228

Q‘J‘

is the Nachtmann-Georgi-Politzer £-variable [15], [4]. Hence, all the power-
suppressed contributions contained in the handbag diagram can be interpreted
as the target-mass corrections. In particular, the handbag contribution contains
no power corrections for a massless target.

C. Coordinate representaion

Absence of the higher twist terms as well as the possibility to easily calculate
the target-mass dependence of the handbag contribution is directly related to the
fact that the propagator of a massless particle has a simple singularity structure.
To illustrate this, let us write T'(g, p) in the coordinate representation:

diz
(0.0 = [ 5 @ 0. (213)
The first term in the z%-expansion for the matrix element

(pl#(0)(2)Ip) = Ealzp) + 2*6alzp) + (z°) Ea(zp) + ... (2.14)

corresponds to the twist-2 distribution amplitude

: (2.15)

z2=0

l V -
Y{zp)’ :f ga(r)eir(;”}d;c
z2=0 V]




while subsequent terms correspond to operators containing an increasing number
of 8%’s. It is straightforward to observe that, while the twist-2 term produces the
1/Q? contribution, the twist-4 term is accompanied by an extra z%-factor which
completely kills the 1/z2-singularity of the quark propagator, and the result of
the d*z integration is proportional in this case to 8%(q — zp), i.e., this term is
invisible for large Q. The same is evidently true for all the terms accompanied
by higher powers of z2. This means that the handbag diagram contains only one
term: it cannot generate higher powers of 1/()? which one could interpret as the
({k?)/@?)" expansion.

For spin-1/2 particles, the quark propagator S°(z) ~ %,z*/(z%)? has a
stronger singularity for z> = 0, which is cancelled only by the O(z*%) term in
the expansion of the matrix element {p|§(0)v,¢(z)|p). Hence, one may expect
that there is a non-vanishing twist-4 contribution corresponding to the O(z?)
term of this expansion, but no higher terms. In a gauge theory, like QCD, one
should also take into account the fact that the gluonic field A,, in a covariant
gauge, has zero twist. As a result, if the gluons have longitudinal polarization,
the configurations shown in Fig.le are not power-suppressed compared to the
original handbag contribution. The net result of such gluonic insertions into the
quark propagator is a phase factor

S§(z) — S (2)Pei® Jo MG L oy, (2.16)

where the O(G) term corresponds to insertion of physical gluons. The latter are
described by the gluonic field-strength tensor Gop and produce 1/Q%-suppressed
contributions. Thus, including the phase factor, we get the modified QCD hand-
bag contribution

; z* igz" t witz
Tp)~ [ dze it o lla@mne™ W A ON@l. 21n)
The matrix element
S z )
(PlaO)ue’®” Jo AU ) (2.18)

can be Taylor-expanded just like {p|d(0)¥.¢{z)|p}, with the only change 8, — D,
in the resulting local operators. Thus, the incorporation of gauge invariance
does not change our conclusion that the (generalized) handbag diagram can-
not generate a tower of the (1/Q%)" corrections which one could interpret as
the ({k%)/Q*)" or ({k?)/Q%)" expansion. The power corrections are produced
by the final-state interaction which is described by complicated contributions
due to the operators of §G...Gg-type. At twist 4, the §D?%¢ and §G¢ terms

q, q,
==‘:>p — p
q, q, xp
a) b)

FIG. 2. Form factor of the v*y* —» x° transition. a) General structure. &} Lead-
ing-order pQCD term.

combined together can be interpreted in terms of functions related to operators
of g4 g type [1]. However, for twist-6 and higher, the absence of the generic
g(D*)N¢ contribution stops further progress in this direction. Hence, a simple
phenomenological deseription of higher-twist corrections in terms of something
like the transverse-momentum distribution f{z, kr) is impossible.

3. EXCLUSIVE PROCESSES: v*1* — ® TRANSITION

The tranmsition 7*(q1)7*{g2) — #°(p) of two virtual photons into a neutral
pion (Fig.2a) is the cleanest exclusive process for testing QCD predictions. The
relevant form factor Fly. s 50 (g%, Q%), with ¢ = —¢%, 7 = —g3, can be defined in
terms of the pion-to-vacuum matrix element of the product of two electromagnetic
currents:

41r'/d41 E_iqw(ﬂ',; [T {Ju(z) J.(0)}[0) = "ﬁf#vq;q: Flyeyozo (‘12:@2) - (3.1

A. pQCD results

In the lowest order of perturbative QCD, the asymptotic behaviour of
Foeyep0 (g2,Q%) can be calculated from a diagram similar to the handbag di-
agram (see Fig.2b) [10]. The basic change is that one should use now the pion
distribution amplitude ¢, (z) instead of the parton density f(z):

=l



ar 1 or(2)

Fi&?ﬂ.(qz, Q%) = EA mdﬂ? + O(a,/7) + O(1/@"). (3.2)

Experimentaliy, the most important situation is when one of the photons is real:
g? = 0. In this case, pQCD predicts that [10]

FPO%P(Q?) = éz)d +O(as/7) + 0(1/@Y). (33)
The nonperturbative information is accumulated here by the integral
1
I= / a(2) ) (3.4)
s Z

Its value depends on the shape of the pion distribution amplitude @, ().
particular, using the asymptotic form [16,17,11]

$25(2) = 6fy2(1 - 2) (35)
gives the following prediction for the large-? behaviour [10]:

41rf,,

P (@) = (3.6)

B. Anomaly and BL-interpolation

Of course, the asymptotic 1/Q?-dependence cannot be the true behaviour of
Foyyexo(Q?) in the low-Q? region, since the Q% = 0 himit of F...0(Q?) is known
to be finite and normalized by the #% — 77 decay rate. In fact, incorporating
PCAC and ABJ anomaly [18], one can calculate F, . ,0(0) theoretically:

1
Tfx

In pQCD, one can imagine that the transition from the high-Q? asymptotics to
the low-Q? behaviour is reflected by higher twist corrections of (M?2/Q?)*-type,
which may sum up into something like 1/{Q*+ M?), i.e., some expression finite at
(?* = 0 and behaving like 1/Q? for large Q*. This idea was originally formulated
by Brodsky and Eepage [19] who proposed the interpolation formula

Fonero(0) = (3.7

10

1
7 fx (1+§;}—3)‘

which reproduces both the @* = 0 value (3.7} and the high-Q* behaviour (3.6)
with the normalization corresponding to the asymptotic distribution amplitude
(3.5).

The BL-interpolation formula (3.8} has a monopole form

Fyyeno(@%) ~ 1/(1+ Q*/50)

with the scale so = 47%f2 =~ (.67 GeV?, which is numerically close to the p-
meson mass squared: mz ~ 0.6 GeV?. So, the BL-interpolation suggests a form
sumilar to that based on the VMD expectation F.n.,,u(Q2) ~ 1/(1+ QQ/mg). In
the VMD-approach, the p-meson mass m, serves as a parameier determining the
pion charge radius, and one can expect that the tower of (s9/Q?%)"-corrections
suggested by the BL-interpolation formula can be attributed to the intrinsic trans-

verse momentum.

Fyyero(Q?) = (3.8)

C. Light-cone formalisin and power corrections

As noted earlier, the relative weight and interpretation of power corrections
depends on a particular formalism used for a beyond-the-leading-twist extension
of pQCD formulas. In the operator product expansion approach, the lowesi-
order (in a,) “handbag” contribution to the yy* — #® form factor again has
only pion-mass corrections:

1
handba 2 ‘Pﬂ'(x)
phandbas g2y _ 2T / Ty (3.9)

This means that, in the OPE approach, the (“sq” /Q?)¥-type corrections can
come only from the §G . .. Gq operators, for which simple phenomenology is im-
possible.

As an alternative to the covariant perturbation theory and OPE, one can use
the light-cone (L.C) formalism {10}, in which effects due to the intrinsic transverse
momentum k&, are described by the light-cone wave function ¥(z, k). The LC
formula for the v3* — #° form factor looks like

(e1 x (zqL — k1))

izd®k, . 3.10
(gL — ky)? ard (3.10)

(61 X 1) Fyyeno(@?) ~ / Yz k)
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where ¢, is a two-dimensional vector in the transverse plane satisfying g2 = Q*
and €3 is a vector orthogonal to ¢, and also lying in the transverse plane [10].
In the LC formalism, quark and gluon fields are on-shell. However, the invariant
mass M of an intermediate state does not coincide with the pion mass. In
particular, for the gg-component, M? = (k% + m?2)/z(1 — z). Hence, integrating
over k, is equivalent to integrating over the mvarla.nt masses (or LC-energies) of
intermediate states, with W(z, k3 ) specifying the probability amplitude for each
particular “mass”.

Unfortunately, eq.(3.10) also has little chances of producing the series of the
{k%)/Q? corrections, because the expansion

8(|kL| < 2Q)
(zqL— kJ.)2 - _Z [ (z@?)nH! *

olkL] > zQ)] 4 gL .
(ki/x)n+1 qi qi {ki ki }

(3.11)

contains only traceless combinations {k{" ... &"}. Substituting it into eq. (3 10)
and using that the wave function ¥(z, k) depends on k, only through k%, we
obtain that all terms of this expansion (proportional to Legendre’s polynomials)
vanish after the angular integration, except for the n = 0 and n = 1 terms.
As a result, the leading 1/Q? term is corrected only by the term resulting from
integration of ¥(x, k.)/k% over the region |k} > z@Q: there is no tower of
({(k2)/Q*)N power corrections in the handbag contribution. Thus, one is forced
again to explain the (1/Q%)"-corrections by contributions from higher ¢G .. .Gq
Fock components, which unavoidably leads to a complicated phenomenology.

The last but not the least comment is that the LC formalism is based on
bound-state equations like ¥ = K ® ¥, with K being an “interaction kernel”.
However, it is not clear whether such an equation has any justification in QCD
outside perturbation theory. Moreover, it is known that QCD has a lot of nonper-
turbative effects: complicated vacuum, quark and gluon condensates, etc., which
play a dominant role in determining the properties of QCD bound states. So, it
is very desirable to develop a QCD description of hadrons in terms of functions
similar to the bound state wave functions ¥(z, k), but without assuming exis-
tence of bound state equations. Below, we outline our attempt to derive such a
description from QCD sum rules and quark-hadron duality.

12

4. BASICS OF QUARK-HADRON DUALITY
A. Outline of the QCD sum rule calculation of f,

The basic idea of the QCD sum rule approach [20] is the quark-hadron duality,
1.¢e., the possibility to describe one and the same object in terms of either quarks
or hadrons. To calculate f,, we consider the p,p,-part of the correlator of two
axial currents:

n#(p) = i/e"’”(UIT(J';L,.(I)j;,,(G))IO) d*z = pup Iz(p®) — g, Th(p%). (4.1)

TFhe dispersion relation

Oy(p®) =

o0
f p(s) 5ds + “subtractions” {4.2)
0 s

represents I13(p?) as an integral over hadronic spectrum with the spectral density
p"%97°" (5) determined by projections

{0]j5,(0)|7; P) = ifx Py, (4.3)
elc., of the axial current onto hadronic states

phadron (g) = Tf26(s —mi)+ Trfilé(s — mil) + “higher states” (1.4)
(f2*P 25 130.7 M eV in our normalization). On the other hand, when the probing
virtuality p? is negative and large, one can use the operator product expansion
2- pert 2 A B - 3
H2(p%) = I3, (p°) + F(asGG) + F“J‘I?) + .. (4.5)

where ng”(pz) = ngm‘k(pz) is the perturbative version of IIa(p®) given by a
sum of pQCD Feynman diagrams while the condensate terms (GG}, (aq), ele..
{with perturbatively calculable coefficients A, B, etc. } describe/parameterize the
nontrivial structure of the QCD vacuum.

For the quark amplitude I11***(p?), one can also write down the dispersion
relation (4.2), with p(s) substituted by its perturbative analogue p?*%7¥(s):

1 o
quark ¢ —- s L 1.6
’ () 47T (l + T + ) (1.6)

(we neglect quark masses). Hence, for large —p®, one can write

13



oG+ ... . (A7)

1 oo hadron _ pauark
1 j P (s) = p™*"(s)
0

T s —p?

A
= F(GSGG) +

This expression essentially states that the condensate terms describe the differ-
ence between the quark and hadron spectra. At this point, using the known
values of the condensates, one can try to construct a model for the hadronic
spectrum.

In the axial-current channel, one has an infinitely narrow pion peak p, =
7f26(5s—m?2), a rather wide peak at s ~ 1.7 GeV? corresponding to A; and then
“continuum” at higher energies. The simplest model is to treat A; also as a part
of the continuum, i.e., to use the model

phadron (s) ~ wff&(s _ mi) + pquark(s) 8(s > so), (4.8)

in which all the higher resonances including the A, are approximated by the quark
spectral density starting at some effective threshold sy. Neglecting the pion mass
and requiring the best agreement between the two sides of the resulting sum rule

ff 1 j-’n pquark(s) A B 2
- — = Za, .9
o) e +2 as(GGH 52 {39)° + (4.9)
in the region of large p?, we can fit the remaining parameters f; and so which
specify the model spectrum. In practice, the more convenient SVZ-borelized
version of this sum rule (multiplied by M?)

30 2 = \2
f2 — l/ pquark(s)e-—s/M ds + QJ(GG) + @ﬂ'aa(QQ)
o

T 12xM? 81 M1 to (4.10)

is used for actual fitting. Using the standard values for the condensates (GG),
(29)%, we adjust so to get an (almost) constant result for the rhs of eq.(4.10)
starting with the minimal possible value of the SVZ-Borel parameter M2, The
magnitude of fy extracted in this way, is very close to its experimental value
SEP = 130 MeV.

B. Local duality

Of course, changing the values of the condensates, one would get the best
stability for a differeni magnitude of the effective threshold sg, and the resulting
value of f; would also change. There exist an evident correlation between the
values of fy and sq since, in the M2 — oo limit, the sum rule reduces to the local
duality relation

14

2= l/ Pk (5) ds. (4.11)
0

m

Thus, the local quark-hadron duality relation states that, despite their ab-
solutely different form, the two densities p997%(5) and p"*%7*"(s) give the same
result if one integrates them over the appropriate duality interval s5. The role
of the condensates was to determine the size of the duality interval sg, but after
it was fixed, one can write down the relation (4.11) which does not involve the
condensates.

Using the explicit lowest-order expression p“*"*(s) = 1/4x, we get

sp = 4m2 f2. (4.12)

Notice that so = 4x?f2 is exactly the combination which appeared in the
Brodsky-Lepage interpolation formula (3.8). Numerically, 472 % ~ 0.67 GeV?,
i.e., the pion duality interval is very close to the p-meson mass: m2 2 0.6 GeV'2.
In fact, in the next-to-leading order

k
PNLo (5) = 7

= ( + &) , (4.13)
T
So, using a, /7 a 0.1, one gets sp practically coinciding with mﬁ. For the form

factors, this leads to results close to the VMD expectaiions, even though no
explicit reference to the existence of the p-meson is made.

C. Local duality and pion wave function

In the lowest order, the perturbative spectral density is given by the Cutkosky-
cut quark loop integral (see Fig.3a)

3 /k_+ (1 — Ei) §(+) (k2) s+ ((p _ k)"]) dik (4.14)
+

quark

where s = p?. Introducing the light-cone variables for p and &:
p={p+=Pp =s5/PpL=0}; k={ky =zP k_ k;}

and integrating over k_, we get

2
e fefi- B o
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a) 1]

FIG. 3. Leading-order contributions for a) two-point spectral density p(s) (4.14)
and &) three-point spectral density p(s;, 52, Q%) (5.8). The narrow dashed lines indicate
Cutkosky cuts.

The delta-function here expresses the fact that, since we are working in the 4-
dimensicnal formalism, the light-cone combmatlon k% /zz coincides with s, the
square of the external momentum p.

Substituting now p®™*"*(s) into the local duality formula, we obtain

3

fg 23

d:t:/ﬂ (k3 < zzs) d?ky . {4.16)
This representation has the structure similar to the expression for fx in the light-
cone formalism [10]

! d%ky
fa =\/6/0 dx/\lﬁ(x,kl)w, (4.17)

where ¥(x, k) ) is the gg-component of the pion light-cone wave function. To cast
the local duality result (4.16) into the form of eq.(4.17), we introduce the “local
duality” wave function for the pion:

2v6

Wil(z k) = «——ﬂ(kl < xZsg) . (4.18)

The specific form dictated by the local duality implies that WX2(x, k) simply
imposes a sharp cut-off at k% 2z = 5.

It should be emphasized that in eq.(4.17) we are integrating over k) , i.e., the
combination k3 zz no longer coincides with the mass? of the external particle
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(which is 2 in our case). This is precisely the feature of 3-dimensional bound-

state formalisms: internal particles are on mass shell &% = mg but off the energy
shell: k7 zz # m2. In what follows, we show, on less trivial examples, that the
local duallty prescrlptlon allows one to get results reminiscent of 3-dimensional
formalisms, though all the actual calculations are performed in the standard 4-
dimensional perturbation theory.

5. PION ELECTROMAGNETIC FORM FACTOR
A. Sum rule

To demonstrate that the function W52 (z, &, ) really has the properties one
expects from the pion wave function, let us consider the quark-hadron duality in
a more complicated context of the pion electromagnetic form factor Fr(Q?). It
is defined by

{p2|7*(0) |1} = (PY + P5)F=(Q?), (5.1)

where Q* = —(ps — p1)?. To apply the QCD sum rule technique, we should
consider in this case the correlator [21,14]

Tis(p1,p2) = f/e"""”"””(UIT{Jb(y)J“{U)J'I(I)}Iﬂ)d“rd"y (5.2)

of two axial currents j}, j; and one electromagnetic current J#. The pion EM
form factor can be extracted from the invariant amplitude T'(p?, p3, Q%) corre-
sponding to the structure P, PgP¥, where P = (p; + p2)/2.

The obvious complication now is that we have two channels to be
“hadronized”, since the pion is present both in the initial and final states. This
necessitates the use of the double dispersion relation

T(p11p21q )— ——-/ dslf dS (SIp(sljsle”)

+ “sublractions” (5.3)
Pis2 — pi)

involving the double spectral density p(s;,s2,Q?%). Its hadronic version
phadron(s) s2. Q?) contains the term corresponding to the pion form factor

prn(s1,52,Q%) = 7 F2F2 (Q)6(s1 — m2)8(s2 — m?) (5.4)

and the contributions corresponding to transitions between the pion and higher
resonances, and also the terms refated to elastic and transition form factors of the
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higher resonances. To construct the two-dimensional analog of the “lowest state
plus continuum” ansatz, we will treat all the contributions, except for the p,,
as “continuum”, i.e., we will model ph3%°" (5, 55, Q?) by the p™ " *(s1, 52, Q%)
outside the square (0, 5p) x (0, s0):

(51,52, Q%) = par(51,52,Q%) + (1 — 8(s1 < 50)0(52 < 50)) PF*"* (51, 52, Q7).
(5.5)

The SVZ-borelized sum rule (with M = M7 = M?) for the pion form factor
then has the form {21,14]

1 {7 0 51+ s
2 2y uark 2 1 2
wa‘t(Q ) - F‘/; dSL_L d32 Pq (slls2sQ )exp (_ M2 )
a,{GG) 16 ma,{qq)> 2Q°
+ 122 M2 + 8_1 Me 13+ W (5.6)

(the pion mass was neglected as usual).

B. Local duality

In the large-M? limit, this gives the local duality relation [14]

1 3q 30
PAFEPQ? = — /0 ds; /0 dsg p™° % (51, 50, Q). (6.7)

Again, the perturbative spectral density p?%%7%(s,, 52, Q%) corresponding to
the triangle diagram Fig.3b can be easily calculated using the Cutkosky rules
and light-cone variables in the frame where the initial momentum p; has no
transverse components p1 = {p{ = P,p; = s1/P,0.1}, while the momentum
transfer ¢ = p» — py has no “plus” component: p» = {P,(s2+ Q% )/P, Q. }:

1 2 2
prortonen @) = o [ de [ (- ) (s - ety
2r Jo Tz zE
(h.8)
Here, x is the fraction of the total “plus” light-cone momentum carried by the

quark absorbing the momentumn transfer from the virtual photon and k; is its
transverse momentum.
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Substituting p77% (s, , 52, @?) into the local duality relation, we get the light-
cone formula for the pion form factor

1 2

FID(QY) = / der f %;- D (e bk YWLP (2, k) + 2q), (5.9
0

where WP (2 k) is exactly the local duality (4.18) wave function introduced in

the previous section.
At @? = 0, the LC formula reduces to the integral

dr d’k,

P= 1673

1% (z, kL )? (5.10)

which can be interpret:ed as the probability to find the pion in the state de-
scribed by the wave function ¥(z, k). Using the explicit form of ¥5P(z k),
we immediately get

T 4n?fY’
which reduces to 1 if we take the lowest-order value sy = 472 f2 for the duality
interval. Hence, P(® = 1, i.e., the probability to find the pion in the state
described by WL (x, k) ) is 100%. In other words, W22 (z, k) ) may be treated as
an effective wave function absorbing the low-energy information about all Fock
components.
1t should be emphasized, however, that if one uses the next-to-leading order
value
S _ AT
o — 1 + %r_,_

for the duality interval, the probability integral P will be smaller than 1 (P} =
0.9for &, = 0.3). This is a direct manifestation that the local duality prescription
explicitly produces contributions which can be interpreted as hard parts of the
higher Fock components like g(iq, etc. (see Fig.4 and Fig.5 below). However, the
total probability to find the pion in such a higher Fock state is rather small: it
is suppressed by the factor 2= ~ 0.1 .

Though the probability integral P differs from 1 beyond the leading order,
the relation FZ2(0) = 1 holds to all orders of perturbation theory. The reason
is that, at any order, there exists the Ward identity relation between the 3-point
functlion Té‘ﬁ(p,p) and the 2-point function H,p(p): Tc’:ﬁ(p,p) = —3llap(p)/ 0Py
As a result, the 3-point spectral density p? (s, 53, @?) reduces to the 2-point
spectral density p?%97%(s):
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pquark(81,32,Q2 - 0) — 16(51 _ 32)pquark(sl)_ (5_11)

Hence, for Q? = 0, the duality integral for the pion form factor automatically
reduces to a one-dimensional integral over s; (or su), and the duality integral
(5.7) for f2Fy(0) would coincide with that for f2 (4.11), provided that the sides
of the duality square for the three-point function are exactiy equal to the duality
interval s¢ for the two-point function (the latter not necessarily being equal to
the lowest-order value s5C = 472 f2). As a result, the local duality prescription
gives FLD(0) = 1 to all orders of perturbation theory. In the lowest order, it also
gives P(O) = 1.

One should not overestimate the accuracy of the local duality results in the re-
gion of small Q*. Though FFP(Q?) dictates the values rather close in magnitude
to the VMD curve FY¥P((Q?) or any other fit to data, the LD-formula

1+ %8
FEQ)=1- —¢ (5.12)

(1+%)"

gives infinite slope at Q* = 0, and one should not use it for calculating the deriva-
tives of Fir(Q?) below @ ~ sp. As emphasized above, we obtained the correct
value for Fi({}) only because this value was protected by the Ward identity. It is
well known that the 3-point funetion in the small-Q? region has more complicated
quark-hadron duality properties which require a separate study. For the same
reason, the local duality fails to produce reasonable valence parton densities for
the pion.

6. QUARK-HADRON DUALITY FOR THE F. .. . 0 (Q2) FORM FACTOR
A. Bagics

Within the QCD sum rule approach, one can extract information about the
7*y" — a° form factor from the three-point correlation function ( [22]):

Foune(41,42) = % ] diz dy e 0TV (O {J,(2) Jy (1) Jsa(O}]0)  (6.1)

calculated in the region where all the virtualities q]2 = _q2,q§ = Q% and
p? = (q1 + ¢2)? are spacelike.
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To study the form factor F.,.z0(g?, Q7), one should consider the invariant
amplitude F (p?, g%, Q%) corresponding to the tensor structure €, g, 4,p0. The
dispersion relation for the three-point amplitude

2 1 e ) 2, 2 -
F (P“, QZ,Qz) = “/ E-E—E—?—) ds + subtractions (6.2)
s §—p
specifies the relevant spectral density p (s, ¢?, @?). Its hadronic version

Phadm" (S, Qf,qg) = "'waq-T—,,u(q2, Q%)6(s — m,zr) + “higher states” (6.3)

contains the term with the form factor we are interested in. The relevant per-
turbative spectral density p?%7%(s, g%, @%), in the lowest order, is given by the
integral representation

1 2, 2 3
pquark(s, QZ,Qz) — 2/ § (S _ 9 nr3 +@Q -’62-'03) 6(1 — Z x;) doydradrs
0

Z1k2 im1

(6.4)

in terms of the Feynman parameters for the one-loop iriangle diagram. Scaling
the integration variables: ¢, + z2 = y, z2 = zy, 1 = (1 — z)y = zy and taking
trivial integrals over x3 and y, we get

r2(zQ? + zq")?
o [szZ+ =Q? + z4%)3 dz. (6.5)

pquark(s, QZ,Qz) =9

It can be shown that the variable z here 1s the hght-cone fraction of the pion
momentum p carried by one of the quarks.

B. Local duality

Incorporating the local duality, we obtain

1 3o
/ pquark(sjq2‘ Q2)

Fﬁ?-,o(qzan) = r o
2 1 L =1 2 VAV
:—/ d:z:/ s 22"+ 20) (6.6)
7fx Jo 0

fx
[s2E+ 2Q? + 2473
Substituting the variable s {the mass? of the gg pair) by the light-cone combina-
tion k% /zz, we get Fﬁf. 20 (¢%2,@%) as an integral over the longitudinal momen-
tum fraction z and the transverse momentum kj :
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F—f’?'r“(qz! Qz) =

9 1 ., ) z(Q? + 7¢%)?
szt/[) dr /d2k.i. B(kl < IISQ)W. (67)

Finally, introducing the effective wave function ¥2(z k) given by (4.18) we
can write FL2 (Q?) in the “light-cone” form:

1/ (2Q° + 2¢°)*
FL.D. o 2 Ny . / -/ 2 LD ]
'y'yr(q :Q) TI'Q\/f_i o dz dk.L‘I’ (I"k )(IQ2+IQ2‘+I€ )3 (68)

It is instructive to analyze this expression in some particular limits.

C. Limits

1. Both photons are real. When both 4% and Q2 are small, we can use the
fact that

u

Gy ) o

in the u? — 0 limit, to obtain (cf. [12]) that the #° — vy decay raie is determined
by the magnitude of the pion wave function at zero transverse momentum:

1 1
LD _ Lp —
F,{..,.,o(O,U) = mV/o v (:r:, kJ_ = 0) dz. (610)
Using the explicit form of ¥£P(z, k) (4.18), we obtain
1
F‘)J’:E FD(O,O): E, (6]])

which is exactly the value (3.7) dictated by the axial anomaly.
2. pQCD limit. Assuming that both ¢? and Q7 are so large that the k2 -term
zan be neglected, we get the expression

D 2 2y 1 ! dx 2 LD
FEl@ @) = 5 [ ot [ 0 k) 1 00/QY . (5.12)

[dentifying the wave function integrated over the transverse momentum with the
plon distribution amplitude

(x) =

@ )3/\1'“’(:: ky)dky , (6.13)
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we arrive at the lowest-order pQCD formula

ch Q%) = 41.-/1 %(r) d;r+O(l/Q4) (6.14)

syl Q2% +
for the large-virtuality behaviour of the y*y* — x? transition form factor.

3. One real photon. A very simple result for p?97%(s, ¢ (*} appears when
2
g-=0:

Q2
(s +Q7)

This formula explicitly shows that if Q% also tends to zero, the speciral density
p7er5 (s, ¢ = 0, Q%) becomes narrower and higher, approaching 6(s) in the Q% —
0 limit (cf. [23]). Thus, the perturbative triangle diagram dictates that two real
photons can produce only a single massless pseudoscalar state: there are no other
states in the spectrum of final hadrons. As Q? increases, the spectral function
broadens, i.e., higher states can also be produced. Assuming the local duality,
we obtain:

pquark( 0 Q ) (()15)

1] 1
LD _ = quark 2 —
FoFER o(Q7) = ]0 0,0 b = (6.16)
For large Q?, this gives
A7 fy

Ftepo (@) = T3 4+ 001/QY. (6.17)

This result can also be obtained from the ¢ = 0 version

pQCD; A2y _ 4T [ pa() 4

F.j..r-,-n (Q ) = dz z+ O(I/Q ) (618)

30(?22

of the pQCD formula (6.14), if we will use there the asymptotic form of the pion
distribution amplitude

PrP(x) = 6 fpx(l —z) (6.19)

produced by the local duality prescription.

In other words, the local duality formula (6.16) exactly reproduces the
Brodsky-Lepage interpolation (3.8) between the Q% = 0 value 1/7f, fixed by
the ABJ anomaly and the leading large-Q* term 47 f,/Q* calculated for the
asymptotic form of the pion distribution amplitude.
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7. NORMALIZATION PROPERTIES OF THE EFFECTIVE WAVE
FUNCTION

A. Momentum representation
By construction, W2 (=, k, ) satisfies the standard constraint.

! d2k, B
]0 dr]lﬁﬂ_a'l'“)( ki) = zf (7.1

imposed on the two-body Fock component of the pion light-cone wave function
by the correspondence with the » — pv rate.
Furthermore, the z-integral of ¥+? {z, k1) at zero transverse momentum

/ dz Wil (z,k; = 0) = 2}:_ (7.2)

has the right magnitude to produce the correct value Fleyeyo(0,0) = 1/7fy
imposed by the x° — v rate. Note, that this value is by a factor of 2 larger
than the constraint imposed in [12] on the quark-antiquark component of the LC
pion wave function. The difference can be traced to the claim, made in [12], that
the gg-component of their pion wave function gives only a half of the 7% — v
decay amplitude. The other half, it was argued, should be attributed to the
dqy-component of the pion wave function. Within our approach, an analogue of
the ggy-component appears only in the first order in a,. At the leading order,
there is only one term, which, I repeat, correctly reproduces the Q? = ( value of

F'r"v‘wu(on Qz)

B. Probability integral

The integral

dr d%k
P f Tnsllq’(”’ k). (7-3)

gives the probability to find the pion in the state described by the wave func-
tion ¥(z, k). As discussed eatlier, substituting the local duality wave function
WLP (2 k) into this relation, one would get P = so/(4n2f?) = 1. At the lowest
order in oy, the local duality wave function ¥£2(x, k) ), in this sense, describes
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100% of the pion content, i.e, ¥£P(z k) can be understood as an effective wave
function dual to all Fock components of the pion light-cone wave function.

It 18 worth noting here that, in our approach, P < 1 for any wave function
W(x, k) which
a) depends only on the combination k2 /zz: W(z, k) = f(k% /z1),
b) monotonically decreases with the increase of k% /zz,
€) never becomes negative and
d) satisfies the constraints (7.1) and (7.2).
The upper Limit for P is reached when ¥(z, k1) assumes the steplike form (4.18)
dictated by the local duality. The requirement that the (generalized) valence
content of the pion should not exeeed 100% is not unreasonable. Furthermore,
I fail to see why, in a particular model, this probability cannot reach 100%.
However, if instead of our constraint (7.2) one apllies that proposed in [12], the
upper limit for P, under the same conditions a) — d), is 0.5, i.e., one should
mandatorily require that at least 50% of the pion content must always be related
to non-valence components,

C. Impact parameter representation

Defining the impact parameter b; as the variable which is Fourier-conjugate
to the transverse momentum £ :

W(z, ki) :fe*'kmfl}(z,bl)d%l, (74)
we can write down the normalization conditions for the b, -space wave function

¥(z,b.). Eq. (7.1), following from the requirement that = — uv rate is specified
by fr. gives the magnitude of WP (z, b)) at the origin:

V. 27 f,
de WE2(z b, = 0) = 222X, 7.5
j; x (z,b) ) 75 (7.5)

and eq.(7.2), following from the requirement that 7% — v rate is given by axial
anomaly, specifies its inlegral over the whole b, -plane:

f dz /lI'LD(I by )d%h, = 2{ (7.6)

There is a widespread opinion that the axial anomaly is a purely short-distance
phenomenon produced by ultraviolet divergences. However, the constraint (7.6)
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a) b) c) d)

FIG. 4. Some two-loop contrtbutions to the two-point spectral function p{s) {8.1).
a,b) Contributions corresponding te O(e,) corrections to the two-body gg effective
wave function. ¢,d) Contributions corresponding to presence of hard three-body
§Gg-components both in the initial and final states.

involving integration over all impact parameters clearly shows that the axial
anomaly is deeply related to the long-distance physics as well. In particular,
calculating the spectral density p(s, ¢?, Q?) exhibiting the anomaly behaviour in
the ¢%,Q? — 0 limit, we never faced any ultraviolet divergences (cf. [23]).

For reference purposes, we also give the impact-parameter version of the for-
mula for the pion electromagnetic form factor:

P@) =g [ e [ @@ b i, (7.7)

and the b, -space form of our effective wave function:

VP (2 b)) = ;}‘/—21-\/3550 J1(bLv/TZsp), (7.8)

where Jy(z} is the Bessel function.

8. HIGHER-ORDER CORRECTIONS

Calculating the spectral densities p7%%7* (s, ..} to higher orders in a,, we can
study effects due to gluon radiation. Depending on the position of Cutkosky
cuts, one can interpret, e.g., the nexi-to-leading order contributions either as
corrections to the two-body g effective wave function (Fig.4a,b) or as three-
body ¢GG¢ Fock components (Fig.4e¢, d) .
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In practice, even the lowest O{a,) correction requires a two-loop calculation,
which is rather involved, especially for three-point functions. For the two-point
function, the correction is known [20]:

P?\lf‘f:)k( ) = pquark(s) + pquark(s) — % (1 + E’,) . (81)
T T
According to the Ward identity (5.11), this result can be used to get the Q? = (
value of the O(«,) contribution to the spectral density p9*97*% (s, 5,, Q?) related
to the pion electromagnetic form factor. As a result, the O(a,)-correction to the
pion form factor for Q2 = 0 is given by
() 2 _ Q,(SQ) ‘
SEN@=0)= ——. (8.2)
The duality interval sq, in this case, is a natural (and the only possible) scale for
the running coupling constant.

Another important piece of information can be obiained for large Q% In
this limit, in contrast to the one-loop term pguark(sl,.'sz,QQ), which decreases
like 1/Q*, the two-loop contribution pI"*™*(s,, 55, Q?) contains a term (Fig.5c)
which behaves like 1/Q%:

87ra, quark

P (51,82, Q7) = 57 A (= )P (52) + O(1/QY), (8.3)

where p3"""*(s1) and pf“*"¥(s;) are the lowest-order two-point function spectral

densities (see eq.(8.1}). This behaviour agrees with the pQCD factorization the-
otem [16,10] and quark counting rules. Substituting the asymptotic expression
for pi**" k(51,32,Q2) into the local duality relation (5.7), we get the large-Q?

behaviour of 5F,£a')(Q2):
(I_,(S()) (QE) (8 4)

T Q2

This result corresponds to the pQCD formula for the one-gluon-exchange contri-
bution to the pion form factor [6,16,11]

S N@?) =

8w,
9ryQ?”’

if one uses the “asymptotic” distribution amplitude ©%°(z) = 6 f,z(1—=z) dictated
by the local duality. Now, by analogy with the Brodsky-Lepage interpolation,

1 1
PRCD 2y _ | dy o (2) o0 _'
Fracp(Q?) ]d] Y () ox(y) (8.5)
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a) b) <}

FIG. 5. Some two-loop contributions for the spectral function p(s), sz, Q). a) Cor-
rection to the eleciromagnetic vertex. b) Contribution corresponding to the three-body
§Gg-component in the initial state and two-body §¢-component in the final state. c)
Term producing the O(1/Q?) contribution.

we can construct a model for 6F,(ra')(Q2) based on the simplest interpolation
between its @2 = 0 value and large-Q? asymptotics:

1
SFEeOQY) = () ——.
L (Q) (TI')1+Q2/230
Combining the O(1) and O(a,) terms, we get the next-to-leading order LD-model
for the pion form factor

(8.6)

ErPONQ2) 4 61L0(Q?)

FLD 2:
£2(g?) £

. (8.7)

where F¥ D(D)(QQ) is the lowest-order result given by eq.(5.12). For a,/7 one
can take a constant value o, /7 = o (sp)/m = 0.1 though, for truly asymptotic
@?, the scale of oy should have a Q*-dependent component. The curve based on
eq.(8.7) is in good agreement with existing data.

9. CONCLUSIONS

Our main goal here was to demonstrate that the results of the approach based
on local quark-hadron duality and QCD sum rules can be reformulated in terms
of the effective wave function W£2 (i, k) describing both longitudinal and trans-
verse momentum distribution of quarks inside the pion. This approach has the
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following features:

1) It is directly related to the QCD Lagrangian, and all the calculations are based
on Feynman diagrams of standard 4-dimensional perturbation theory.

2) As a result, the approach is fully compatible with high-@? pQCD calculations
and other QCD constraints, e.g., those imposed by the axial anomaly.

3) Radiative (higher-order in a,) corrections can be added in a regular way,
through a well-defined procedure.

4) There is no need for a special procedure separating soft vs. hard terms. In a
sense, they are separated automatically by the duality mterval parameter sp. The
“hard” terms have a natural subasymptotic modification in the low-Q* region.
5) The bulk (soft) part of the higher-twist effects is described by an effective 2-
body wave function ¥¥P(z, k, ) rather than by increasingly complex wave func-
tions of higher Fock components.

6) In this approach, the contributions which can be interpreted as effective wave
functions for the higher Fock components are small because they are suppressed
by powers of a,(sg)/7. Hence, the effective valence component dominates and,
in this respect, this approach resembles the constituent quark model. However,
there is no need to introduce constituent quark masses. The scale responsible for
the IR cut-offs is set by the duality interval sq.

7) The effective wave functions are introduced in this approach without any ap-
peal to the existence of bound state equations.

Local quark-hadron duality was also applied to nucleon form factors [24] and
toyp — A transition form factors [25]. The results of these studies can be used to
develop a similar formalism for the baryons. Another possible development is to
substitute the steplike effective wave functions W2 (xz, k) by smooth functions,
but without violating the constraints (7.1), (7.2) and P(® = 1.
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