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Abstract

The purely nomperturbative soft contribution to the v*p — A% transition form
factors is estimated using the local quark-hadron duality approach. Our results
show that the soft contribution is dominated by the magnetic tramsition: the ratio
GL(@%)/ G (Q%) is small for all accessible (%, in contrast to pQCD expectations that

2(Q%) — —G34(Q®). We also found that the soft contributior to the magnetic form
factor is large enough to explain the magnitude of existing experimental dala.
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I. INTRODUCTION

It s still a matter of controversy which one of the two competing mechanisms
(viz., hard scattering [1] or the Feynman mechanism {2]) is responsible for the
experimentally observed power-law behaviour of elastic hadronic form factors. A
distinctive feature of the Feynman mechanism contribution is that, at sufficiently
large momentum transfer, it is dominated by configurations in which one of the
quarks carries almost all the momentum of the hadror. On the other hand,
the hard scattering term is generated by the valence configurations with small
transverse sizes and finite light-cone fractions of the total hadron momentum
carried by each valence quark. For large Q2 in QCD, this difference results in an
extra 1/@?-suppression of the Feynman term compared to the hard scattering
one.

The hard term, which eventually dominates, can be written in a factorized
form [3], [4), [5] as a product of a perturbatively calculable hard scattering am-
plitude and two distribution amplitudes (DA’s) describing how the large longi-
tudinal momentum of the initial and final hadron is shared by its constituents.
This mechanism involves exchange of virtual gluons, each exchange bringing in a
noticeable suppression factor {a,/7} ~ 0.1. Hence, to describe existing data by
the hard contribution alone, one should increase somehow the magnitude of the
hard scattening term. This 18 usually achieved by using the DA’s with a peculiar
“humped” shape [6]. As a result, the passive quarks carry a rather small fraction
of the hadron momentum and, as pointed out in ref. [7], the “hard” scattering
subprocess, even at rather large momentum transfers Q? ~ 10GeV?, is domi-
nated by rather small gluon virtualities. This means that the hard scattering
scenario heavily relies on the assumption that the asymptotic pQCD approxi-
mations (e.g., the 1/k*-behaviour of the gluon propagator D¢(k)) are accurate
even for momenta k smaller than 300 MeV, i.e., in the region strongly affected
by finite-size effects, nonperturbative QCD vacuum fluctuations, etc. Including
these eflects decreases the magnitude of the gluon propagator D*(k) at small
spacelike k converting D°(k) into something like 1/(k* — A?) and shifts the hard
contributions significantly below the data level even if one uses the humpy DA’s
and other modifications increasing the hard term (see, e.g., [8]).

It is usually claimed that the humpy DA’s are supported by QCD sum rules
for the moments {z™) of the DA’s. However, it is worth emphasizing that ap-
plications of the QCD sum rules to nonlocal hadronic characteristics (functions),
like DA’s (z) and form factors F(Q?), are less straightforward than those for the
simpler classic cases [9] of hadronic masses and decay widths. The main prob-
lem 1s that the coefficients of the operator product expansion for the relevant

correlators depend now on the extra parameter {e.g., on the order of the ino-
ment N or momentum transfer J%), and contributions due to higher condensates
rapidly increase with the increase of N or Q?. In this situation, one 15 forced to
make (explicitly or implicitly) an assumption about the structure of the higher
condensates. As argued in ref. [10], the derivation of the humpy distribution
amplitudes in [6}, based on the lowest condensates only (which amounts to the
assumption that higher condensates are small), implies a rather singular picture
(infinite correlation length) of the QCD vacuum fluctuations. Under more realis-
tic assumptions (finite correlation length for nonlocal condensates), the QUD sum
rules produce DA’s close to smooth “asymptotic” forms (see [10]). Furthermore,
in the well-studied case of the pion, the sum rules with nonlocal condensates have
the property that the humps in the relevant correlator (corresponding to a sum
over all possible states) get more pronounced when the relative pion contribu-
tion decreases (see ref. [11]). This means that the humps of the correlator are
generated by the higher states rather than by the pion. Independent evidence in
favour of the smooth form of the pion distribution amplitude @, (x) 1s provided
by the result of ref. {12], where it was found that ¢, (1/2} = 1.2f;, to be com-
pared with 3°(1/2) = 1.3, for the asymptotic distribution amplitude [4], [5}
and @$Z(1/2) = 0 for the humpy CZ form [3]. Furthermore, the lattice calcu-
lation of ref. [13] gives a rather small value {£2) = 0.11 for the second moment
of the pion DA incompatible with the humpy form (compare with (£2)¢% = 0.43
and {£2)2* = 0.2).

The cleanest experimental test of the shape of the pion DA has been provided
by the studies of the 49* — x° transition form factor. At large Q° of the virtual
photon, this form factor is governed by the pQCD hard scattering mechanism
alone: there is no soft contribution and pQCD predicts that Q*F, .. _0(Q?)
approaches a constant value specified by the same integral of the pion DA that
appears in the hard-scattering contribution to the pion EM form factor. Ex-
perimentally [14], [15], the product Q%F, .« _,o(Q?) is essentially constant for
Q?22GeV? in the whole investigated region, i.e., till Q° =~ 8GeV” [15]. The
experimental large-Q? value of Q*F.,-_ r0(@?) is a factor of 2 smaller than the
CZ value and even somewhat smaller than that corresponding to the asymptotic
DA.

If the pion DA is narrow, the hard contribution is small compared 10 existing
form factor data. |t becomes even smaller if one includes the finite-size effects.
On the other hand, the estimates of the soft term by an overlap of model wave
functions produce soft contribution comparable in size with the dala, even in the
case when the pion wave function gives a smooth distribution amplitude and the
hard term is small [7]. Moreover, if une intends to increase the hard teem by using



wave functions providing wide or humpy DA’s, one also increases the soft term
which then marginally overshoots the data. This observation, extracted from
quark-model calculations [7], was also confirmed both within the standard QCD
sum rule analysis {16} and in the framework of light-cone QCD sum rules {17]. In
application to form factors, the QCI sum rules were first used to calculate the soft
contribution for the pion form factor in the region of moderately large [18], [19]
and then small momentum transfers [20]. In the whole region 0 < Q%<3 GeV?,
the results are very close to the experimental data: the Feynman mechanism
alone is sufficient to explain the observed magnitude of the pion form factor. For
higher QZ, the classic QCD sum rule method fails due to increasing contributions
from higher condensates. However, a model summation of the higher terms into
nonlocal condensates indicates that the soft term dominates the pion form factor
up to Q? ~ 10GeV? [21].

An important observation made in ref. [19] is that the results of the elaborate
SVZ-type QCD sum rule analysis (involving condensates, SVZ-Borel transforma-
tion, fitting the spectrum, etc.} are rather accurately reproduced by a simpler
local quark-hadron duality prescription. The latter states that one can get an
estimate for a hadronic form factor by considering transitions between the free-
quark states produced by a local current having the hadron’s quantum numbers,
with subsequent averaging of the invariant mass of the quark states over the ap-
propriate duality interval sg. The duality interval has a specific value for each
hadron, e.g., s§ & 0.7GeV? for the pion and s} & 2.3GeV? for the nucleon.

The QCD local duality ansatz [19], equivalent to fixing the form of the soft
wave function, was used to estimate the soft contribution for the proton magnetic
form factor [22]. The results agree with available data [23), [24] over a wide region,
3GeVI<Q? <20GeV?. Hence, a sizable hard term is not welcome, since the total
(soft-+hard) contribution then overshoots the data. As mentioned earlier, the
only way to make the hard contribution large is by using the CZ-type DA’s with
humps, otherwise it is very small. Since the QCD sum rules for the moments of
baryon DA’s have the same structure as those for the pion DA, there iz no doubt
that using the nonlocal condensates would produce the baryon DA’s without
pronounced humps. Another piece of evidence against the CZ-type DA's for
the nucleons is provided by a lattice calculation [25] which failed to observe any
asymmetry for the proton DA characteristic of the CZ-type amplitudes. On
the experimental side, it should be noted that the local-duality estimate [22]
of the soft term for the proton form factor correctly reproduces (without any
adjustable parameter), the observed magnitude of the helicity-nonconservation
effects for the proton form factors: FI{Q2)/FT(Q?) ~ p2/Q? with p* ~ 1 GeV'?
[24). Within the scenario based on hard scattering dominance, it is rather difficult

to understand the origin of such a large scale, since possible sources of helicity
nonconservation in pQUD include only small scales like quark masses, intrinsic
transverse momenta, etc., and one would rather expect that p* ~ 0.1V,
Thus, the study of spin-related properties may provide crucial evidence that,
for experimentally accessible momentum transfers, the hadronic form factors are
dominated by the purely soft contribution.

Especially promising in this respect are studies of the v*p — A1 transition.
Renewed attention to this process was raised by the results [26] of the analysis
of inclusive SLAC data which indicated that the effective transition form factor
drops faster than one would expect from quark counting rules [1], [27]). Within
the hard scattering scenario, this process was originally analyzed i ref. [28]. It
was observed there that the hard scattering amplitude in this case has an ex-
tra suppression due to cancellation between symmetric and antisymunetric parts
of the nucleon distribution amplitude. Hence, one can try to explain the laster
fall-off found in [26] by the dominance of some non-asymptotic contribution.
However, it was claimed [29] that, by appropriately choosing the distribution
amplitudes, one can still make the leading-twist hard term comparable in magni-
tude with the data. Furthermore, a recent reanalysis [30] of the inclusive SLAC
data has produced results which are more consistent with the quark counting
1/Q*-behaviour, and this revived the hope that the +*p — At form factor at
accessible Q? is dominated by the pQCD contribution.

One should remember, however, that the 4*p — A" transition is described by
three independent form factors, and a correct theory should not only be able to
adjust the absolute magnitude of one of them: it should also be able to explain
the relations between different form factors. In particutar, the pQCD calcula-
tion [28] predicts that the lowest-twist hard contribution always has the property
GEhor4(Q?) = —G3f° (@) This prediction is a specific example of the helic-
ity selection rules [5] inherent in the hard scattering mechanism. Experimentally,
the ratio GE{Q?)/ G (Q?) is very small [31,32], which indicates that the leading-
twist pQCD term is irrelevant in the region Q< 3GeV®. In the present paper,
we use the local quark-hadron duality approach to estimate the soft contribution
to the v*p — A transition form factors. We investigate whether the soft con-
tribution to the magnetic form factor is large enough 1o describe the daia. We
also pay special attention to the relationuship between different spin compouents
of the soft contribution in the region of moderately large momentum transfers

3SQ*<15GeV2.



II. THREE-FOINT FUNCTION AND FORM FACTORS
A. Correlator

To study the v*p — A* transition within a QCD-sum-rule-based approach,
one should consider the 3-point correlator (see Fig.1)

q

pP-q P

FIG. 1. Lowest-order perturbative contribution to the three-point correlator.

Tt,0)= [ QI {nu(a) 20} 0)e=~0ratzaty (2.1)
of the electromagnetic current
Jy = eyt u + egdy, d (2.2)

(ew = 2/3 and eq = ~1/3 are the quark charges) and two currents 7, Ny with the
nucleon and A* quantum numbers, respectively. Following loffe [33], we take

= e (W Crut) prsd” |, mu =™ (2 (u0Chd’) uf + (uCr,a) &) . (23)

Here, C is the charge conjugation matrix; {a,b,c} refer to quark colors and
the absolutely antisymmetric tensor ¢%*¢ ensures that the loffe currents are
color singlets. Note, that the 5,-current satisfies the Rarita-Schwinger condi-
tion y,n, = 0.

To get the amplitude T, (p, q), it is convenient to caleulate the integrand of
eq.(2.1}, i.e., the matrix element

Luw{, ) = (0]T{n,(x) . (3)7(0) }0) (2.4)

directly in the coordinate representation. The quark propagator in this represen-
tation is

(O {%(=)y(y)}0) = 2—7:%—__%—4 (2.5)

and, by a purely algebraic computation, we get the amplitude I,,{z, y):

48(e, — e4) I .
IMU(;E: y) = _(21r2)4£[38(27 _dy)4y4 (4":#("" - y)‘}uy't - ’J"p‘t(‘t - y)')f,,y.r

=22 — Pyt — I E -y s (26)

Note, that y,/,,(z,y) = 0. due to the Rarita-Schwinger condition. Another
tmportant feature of I, (z, y) is that it depends on the quark charges only through
the difference (e, — e4), because the transition between the isospin-1/2 state
(nucleon ) and the isospin-3/2 state (A) involves only the isovector part of the
electromagnetic current. This means that all the results obtained in this paper
are applicable also for the neutron to A® transition: one should only interchange
u — d, i.e., the only difference is that all the ¥*n — A" form factors will have
an opposite sign compared to their v*p — A+ analogues.

To obtain T, (p,q) from 1,,(z,y), it is convenient to use the parametric
representation described in Appendix A. As a result, we get Tou(p,q) in the
following form

€y — €4 . . v) . )
T 9) = LUBT)E :“Ly(P-(I)/ filra, 11, 7p) e¥ T tPiTIHRIT
3 0
|

dTldT'_)dTg
(riTe + ey + 1y )5

(2.7)

Here, {aLV(p, ¢)} is a set of independent Lorentz structures. The dependence of
the relevant invariant amplitudes 7;(p, p, ¢%) ou p? = (p — ¢)* and ps = p* (the
virtualities in the proton and A channels, respectively) is explicitly displayed by
the parametric representation, with fi{r3. 7. m) being simple polynomials of the
T;-parameters.



B. 4"p — At contribution to correlator

Substituting complete sets of states into the correlator, one can extract the
contributions of different transitions. In particular, the +*N — A term appears
in i

{Onu ()| AN AL (w)IN H{N7(0)]0}-
To parameterize the projections of the loffe currents 7 and 7, onto the nucleon
and the A-isobar states, resp., we use the convention

(OlIN) = (Olnala) = (2%2% | (2.8)

e
Here, v is the Dirac spinor of the nucleon while v, is the spin-3/2 Rarita-
Schwinger wave function for the A-isobar. They satisfy the relations p, v, = 0,
Y =0,(p—- M)W, =0, (p—4—m)v =0, with m being the nucleon mass
and M that of the A. We use the notation a = a®y,. The (27)? factors were
introduced to make some further formulas shorter.

With these definitions, the 4+*p — A contribution to the correlator (2.1) can
be written as

Inla Xyualp) p-qtm

T8 =
(p! (I) (27(')4 p% _ M2 GV( Q) P1 _ m2

Hy

: (2.9)

where I's, (P, q)7s is the 7"p — AT vertex function written in the form used in
ref. [34]

Caulp.q) = Gi(qz) (garv — o) + GZ(‘IZ)(Qan - 9av(gP))
+G3(¢*) (9090 = 9art’) (2.10)

{P=p—q/2) and X,,(p) is the standard projector onto the isobar state

1 1 2 ) '
Xualp) = (y;.c. = 3% + 357 (PuYa — Pavu) — 3M2Pupc-) (p+M). (2.11)

As shown in ref. [34], the functions Gy, G2, Ga, conveniently parameterizing
the vertex function in terms of the Dirac matrices, are related to a more usual
set of form factors G, Gy, G (electric, magnetic and quadrupole, resp.) by

Giul@) = 3o (M + ) +-m) + @ 4T

HM? - mH)G(Q¥) - ZQ‘Ga(Q‘)] , (2.12)

2, M e ('I(Q )
CE@) = 3(M + m) [(M CoQ
+(M? - mH)G( Q%) ~ 20764 Q"}] , (2.13)
1x 2m 2 ang? u Ui ey
(@) T M tm) [2MC1(Q —(-iM +m” + Q7)GaAQ7)

HM? —m? - QHGH(Q) . (2.14)

We warn the reader that the magnetic form factor G, (Q%) given by eq.(2.12)
does not coincide with the effective form factor GG34(Q7) mentioned in refs. [28],
[35). Furthermore, the effective form factor Gr(Q?) defined by eq.(6.2) of ref.
[35) and used in the analysis of inclusive data [26], [35], [30] can be written in
terms of G3,(Q%) and G1(Q?) (given by eqs.(8),(9) above) as

2 2
¢ (1+ @ )|(:T1'-‘, (2.15)

|Gy I+ 3GEl" = Q2 + 12 (M +m)?

where v = {M? —m? + @°)/2m is the energy of the virtual photon in the proton
test frame. For large Q%, our G3,(Q%) and Gr(Q?) defined by eq.(6.2) of ref. [35]
have the same power behaviour.

C. Local quark-hadron duality

Multiplying all the factors in eq.{2.9) explicitly, one ends up with a rather
lengthy sum of different structures aiw accompanied by the relevant invariant
amplitudes T;, each of which is a combination of the thiree independent transition
form factors listed above. To incorporate the local quark-hadron duality, we write
down the dispersion relation for each of the invariant amphtudes:

2y 1 pil31,52, Q%)
Tt p3. Q) /dslj db s1 — p})(s2 — p3)

+ “subtractions” . (2.16)

The perturbative contributions to the amplitudes 7;(pi,p3 Q%) can also be
written in the form of eq.(2.16). Evidently, the physical spectral densities
pi(81, 82, Q%) differ from their perturbative analogues, especially in the resonance
region, i.e., for small 5; and s, values. In particular, p;(s;, 52, @%) contains the
double é-function term corresponding to the 4" p — At transition:

pils1, 52,Q%) ~ Inla Fi(sy, 82, Q)a(s1 — 1 W(s - M7, (217)
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while the perturbative spectral densities pf*™(s1, 52, @7) are smooth functions of
s; and sy. The local quark-hadron duality amounts to the statement that the
two spectral densities are, nevertheless, dual to each other:

3o So 1] Su
/ dslf Pfer"(sl.sz,QQ)dS:a:/ d31j pi(s1,82,Q%) dss (2.18)
0 0 1} 0

i.e., that they give the same result when integrated over the appropriate duality
intervals sq, Sp. The latter characterize the effective thresholds for higher states
with the nucleon or, respectively, A-isobar quantum numbers. As noted in ref.
[22], the local duality prescription can be treated as a model for the soft wave
functions:

3 k2 3 k2
Un({z), {k}) ~ 0 (_E < 30) s wallz) {ki}) ~ 0 (Z > < So) .

i=1

(2.19)

In other words, so and Sy also set the scale for the width of the transverse
momentum distribution of the quarks inside the relevant hadron. Such a sharp-
cut-off model, of course, cannot be very precise, and using it we hope to obtain a
reliable estimate for the overlap of the soft wave functions only in the intermediate
Q*-region where the soft contribution is sensitive mainly to the k. -widths of the
quark distributions rather than to their detailed forms. From experience with
the proton form factor, we expect that the local duality estimates will work in
the region between 3GeV? and 20 GeV?. The low-Q? region @*<1GeV?, in
which there appear large nonperturbative contributions due to the long-distance
propagation in the @?-channel, can be analyzed within a full SVZ-type QCD
sum rule approach with condensates, supplemented by the formalism of induced
condensates {36), [37] or bilocal operators {38].

Applying local quark-hadron duality to the two-point correlators of n- or,
respectively, 5,-currents considered in refs. [33], [39], we obtain the relations
between the duality intervals sg, Sp and the residues Iy, {5 of the loffe currents:

s3 SB
== ; Bk==". .
; B=1 (2.20)
After the duality intervals are fixed (e.¢., from the QCD sum rule analysis of the
relevant two-point function [39]), the local duality estimates for the form factors
do not have any free parameters.

D. Invariant amplitudes

Choosing a particular Lorentz structure al,, one can get the local duality
estimate for the relevant combination of the form factors. However, the invariant
amplitudes are not all equally reliable. To compare the contributions related to
different structures, one should specify a reference frame. In our case, the most
natural is the infinite momentum frame where p* = pfl‘ — oo while ¢# = ¢Y
is fixed. So, a priori, the structures with the maximal nunber of the "large”
factors p* are more reliable (T, 1s more sensitive to them) than those in which
p* is replaced by the “small” parameter ¢* or by g,,. However, dealing with
the n,-current in the A-channel, we should take into account that 7, has also a
nonzero projection onto the spin-1/2 isospin-3/2 states {A*(p)}):

{OlnulA™(p)) = A" (myu — 4pu 0™ (9) (2.21)

where A* is a constant, m* is the mass of the spin-1/2 state |A"(p)) and v"(p)
the relevant Dirac spinor satisfying (p — m* }o*(p) = 0.

From eq.(2.21), it follows that any amplitude containing the p*-factor is “con-
taminated” by the transitions into the spin-1/2 states. These states lie higher
than the A-isobar and, in principle, one can treat them as a part of the contin-
uwum. Then, however, there will be strong reasons to expect that the effective
higher-states threshold Sp for the “contaminated” invariant amplitudes deviates
from that for the amplitudes containing only the spin-3/2 contributions in the
n,-channel. Another strategy (used earlier in the anlysis of the two-point correla-
tor [33], [39]) is to get rid of the amplitudes which have contributions due to the
transitions into the spin-1/2 isospin-3/2 states. To this end, it is convenient to
use the basis in which 7, is always placed at the leftmost position. Then, accord-
ing to egs.(2.9-2.11), the invariant amplitudes corresponding to the structures
with g, and g,, are free from the contributions due to the spin-1/2 isospin-3/2
states. In this basis, keeping only the terms with ¢, and g,, in eq.(2.9), we get

. Inia
TWVP_.A 1 = Pl o 3 b
A Ll ey Yoty

. 3(M+ . 2 -2
(Qtw {p.al (—#((;M (Q7)+ CE(Q)

+% (mfy,, ol + Min. (p— q)])) G1{QY)

[ £%
[
3%

—p [P, i1G2(Q%) - 4. [p.q) (Ga{Qz) - %c:-_,(c;ﬁ‘)) n ) | o
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Hence, from the invariant amplitudes related to the structures proportional
to q., we can get the local duality estimates for the form factors Gy, G4, Ga.
Similarly, extracting the structure g, [p, ], we get an expression for (G + Gg).
Counting the powers of p and ¢, we expect that results for G5 — G3/2 might be
less reliable than those for |, G and Gy + G .

The number of independent amplitudes can be diminished by taking some
explicit projection of the original correlator 7., (p, q). In particular, if one multi-
plies Ty, by p,, the invariant amplitude corresponding to the structure ¢,[¢, #] in
the resulting expression is proportional to the quadrupole form factor G5(Q?):

TP "% (p,q)
_ Inla {EM +m
(2rYi(p? — m?)(ps — M?)

00, FIGHQD) + . } e

Another possibility is to take the trace of T, "P=4(p, q). The result is propor-
tional to the magnetic form factor G3,(Q?):

Inla (4‘55#.,0;:190?’3) M+m
(2m)*(p? —~ m®)(pi — M2} 2m

Tr {Tu(p @)} = G;M'(Qg) . (2.24)
However, the trace of T, is not free from contributions due to spin-1/2 isospin-
3/2 states.

III. ESTIMATES FOR THE 1*P — At FORM FACTORS

To apply the local duality prescription we should know the relevant pertur-
bative spectral densities p;(s1.52,Q%). A very convenient method of obtaining
£4(s1, 52, Q%) from a parametric representation of the type shown in eq.(2.7) 1s
described in Appendix B.

A. Gy(QY)

Though the invariant amplitude related to the trace of T}, is contaminated
by transitions into spin-1/2 isospin-3/2 states, we consider it also, because it has
the simplest perturbative spectral density:

2

S (51,92, = (e

™ — (5 +52+QE))2(2N+51 +52+Q2) , (3.1)

12

where & = /(51 + 52 + Q2)2 — 4552 .
Imposing the local duality prescription, we get

a2y 2m /,0 ) /Su 1 rrr 2
hI(Q )— IN’A(M'{'m) 0 db] ﬂ'2 ( I "'!Q)
6m

—-1 . S, 39
O +m) (50,50, Q%) (3.2)
with F(sg, S, Q%) being a universal function
. 343
F(s0,5,Q) = 2020 (3.3)

Nnla(@%+ 50+ 502 (1 =30+ (1 —o)/T - 40)

and ¢ = §050/(Q% + sp + 50)%. As we will see, the results for other invariant
amplitudes can be conveniently expressed through F(sq, Sy, Q%).

B. G1{Q?)

The function F(sq, Sp, Q?) depends on the duality intervals sq and S,. We
fix the nucleon duality interval sy at the standard value sy = 2.3 ¢el’? extracted
from the analysis of the two-point function [39]} and used earlier in the nucleon
form factor calculations [22). The results of the existing two-point function anal-
ysis for the A-isobar [39] are compatible with the A duality interval Sp in the
range 3.2 to 4.0GeV?2. To fine-tune the Sy value, we consider two mdependent
duality relations for the G; form factor

2 s,
MG{(Q®) = _Qﬂ(an)/ F(sg, 52, Q%) dso (3.4)
and
mGr(Q") =2 (34 35 ) Flsu. 50,0

a\ [ )
—20Q° (()Q) / Fsg, 52, QY dsy (3.5)

extracted from the invariant amplitudes corresponding to the structures
qufyv.(p — q)] and gu[7..p]. respectively (recall that p — 4 15 the proton’s nio-
mentum and p is that of A). Taking the ratio of these two relations, we can

13
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Fi1G. 2. Isobar to proton mass ratio from the duality relations (3.4),(3.5}).

investigate their mutual consistency and test the reliability of the quark-hadron
duality estimates. Indeed, on the “hadronic” side, we have the ratio M/m of the
isobar and nucleon masses, while on the “quark” side we have the ratio of two
explicit and non-trivially related functions. The consistency requires, first, that
the ratio of these functions must be close to a constant and, second, that this
constant must be close to the experimental value for the ratio of the isobar and
nucleon masses: (M/m)®*? a 1.32. On Fig.2, we plot the Q?-dependence for the
ratio of the r.h.s. of eqs.(3.4) and (3.5) for the standard value s, = 2.3 GeV?
of the nucleon duality interval and three different values of the A duality in-
terval Sg. One can see that one should not rely on the local duality estimates
below Q2 ~ 3GeV?. However, in the region above Q% ~ 3 Gel’?, the ratio varies
slowly for all three values of Sp, and is rather close to 1.3, as expected. The best
agreement is reached for 55 = 3.5 GeV?, and we will use this value as the basic
A-isobar duality interval in further calculations. In particular, the {5 parameter
will be fixed by I3 = 31—0-(3.5 GeV2)? (cf. eq.(2.20)).
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C. GR(QH)/Cy(Q%) and G14{(Q°) from GG?) and G Q)

From eqs.(2.12) and (2.13), it follows that G} is proportional to the diflerence
of the magnetic G}, and electric G% transition form factors:

2m

-) 2y — o 2y e 2y — | ¥ 2 2 M 2 .
G'HQ") = G30(Q7) — GHQY) = Ty (B +m)* + @) (@)
(3.6)

According to eq.(2.22), the sum GH(Q?) = Gy (Q*) + G3(Q%) of these
form factors can be obtained from the invariant amplitude corresponding to the
structure g,,[p, §]. Applying the local duality prescription, we obtain

Bm

F(s9,S Q?)——Q—z(i 2f"F(s So, Q% )ds (3.1
M¥m 0r 20 12\2q*/) J, L=t oo

Now, having expressions both for G(1)(Q?) and G{=)(Q?), we can calculate
G (@) and Gx{Q?). The results for the combination Q*G},(Q?) and the ratio
G (Q%)/G34(Q?) are shown on Figs.3 and 4, respectively. Note, that the local
duality results are fairly consistent with the 1/@Q*-behaviour in the wide range
5CGeV2<Qr<20GeV? despite the fact that F(so,Su, Q%) has the 1/Q° asymp-
totics for large Q7 (see eq.(3.3)).

An important observation is that G3(Q?) is predicted to be much smaller
than G3,(Q?) (see Fig.4). It should be emphasized that when the y"p — At
transition form factors are calculated in a purely pQCD approach (in which only
the O({(a,/7)?) double-gluon-exchange diagrams are taken into account), the
sum of electric and magnetic form factors G, (Q?) + G5(Q?) is suppressed for
asymptotically large Q7 by an extra power of 1/Q? [28]. This is because the
matrix element

G(-H(Q?) —

(3/2IT[1, ~1/2) ~ (G} + C) (3.8)

violates the helicity conservation requirement for the hard subprocess amplitude.
In other words, the pQCD prediction is that ({73, + G'E) behaves asymplotically
like 1/Q°%, while each of G}, and G% behaves like 1/Q*. As a result, asymptoti-
cally G ~ —G3. However, we consider here only the soft contribution generated
by the Feynman mechanism for which the helicity conservation arguments are not
applicable, and asymptotically all soft terms fall like 1/Q° or faster. Thus, for
the soft term, there are no a priert grounds to expect that G ~ -5y The
smallness of G3(@%)/G(Q7), dictated by the local duality calculation, strongly
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contrasts with the pQCD-based expectation that GE(Q?) ~ —~G3,(Q?), and this
allows for an experimental discrimination between the two competing mecha-
nisms. It should be noted, however, that G%(Q?) is obtained in our calculation
as a small difference between two large combinations G(*)(Q?) and G(-YQ?),
both dominated by G34(Q?). Hence, even a relatively small uncertainty in either
of these combinations (which is always there, since the local duality gives only
approximate estimates) can produce a rather large relative uncertainty in the
values of };.

Experimental points for G},(Q?) shown in Fig.3 were taken from the results
for the Gr(Q?) form factor obtained from the analyses of inclusive data [26],
[30]. Since the local duality gives a very small value for the ratio (G5/G3)%,
calculating the data points for G3,(Q?} from Gr(Q?), we neglected the (7}, term
in €q.{(2.15). One can see that, in the @?23 GeV? region, the local duality pre-
dictions G34(Q?) are close in magnitude to the results of the recent analysis [30].
Our main conclusion is thus that the soft term is sufficiently large to play the
domminant role at accessible energies.
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FIG. 4. Ratio of fortu factors GE(Q?) and G}4(Q?). FExperimental data were taken
from ref.{31] and the point at 3.2 GeV? from ref.[32).

The magnetic form factor G},(Q*) can also be obtained from the “contam-
inated” duality relation (3.2). If one takes the basic duality interval 55 =
3.5GeV?, the resulting values of G3,(Q?) (Fig.3) are somewhat smaller than
those obtained by combining the results for G'*(@?) and G'7)(Q?). Since the
spin-1/2 states also contribute to the trace of 7)., the duality interval in this case
can be different from the basic value. In fact, taking 55 = 3.7 GeV'? in eq.(3.2),
we get a curve for G3,(Q” (Fig.3) essentially coinciding with those obtained from
the sum of G't)(Q?) and G'-)(Q?).

D. G2(Q%) and (3(0Q%)

Using eq.(2.22) and applying the local duality prescription to the invariant
aplitudes related to the structures g.p.[p, ¢]1s and y.q.[p, ¢]7s. we gt the fol-
lowing expressions for the (i4(()%) and (G3(Q*) form factors:

I7



6@ = (1- @' ) JoF 0,500 (39)
1 d \? %
Gs(Q%) - EGz(Qz) =@? (d_z) F(sq,52,Q%)ds3. (3.10)
Q 0

As noted earlier, the second of these refations may be not very accurate. Still,
using the explicit expressions (2.12-2.14) for Gg. Gy, GE in terms of G, Ge, Gy
and combining eqs.(3.9),(3.10) with the results for G1(Q?) obtained previously,
we get an alternative way of calculating G3(@?%) and GL(Q?). The results are
shown on Figs.3 and 4. One can see that the G3,(Q?) form factor obtained in
this way is a factor 1.5 smaller than that given by combining the results for
G_(Q?%) and G4(Q?). The deviation from previous results is even more drastjc
for GL(@%). In this case, the new curve for GE(Q%)/G3(Q?) has the sign op-
posite to that of the curves based on (7_ (@*) and G+(Q?%). However, as pointed
out above, G3(Q?) is obtained in our calculation as a smali net result of can-
cellations between large contributions dominated by G},(Q?), and the errors for
a small form factor extracted in this way may be larger than its values. Still,
the new curve is consistent with the old ones o the sense that the predicted
ratio |G;_,'.(Q2)/G'M(Q2)| is small again In s situation, we restrict ourselves to
a conservative statement that the focal quark hadron duabity indicates that the
electne fonn factor (3 16Q%) 15 minall compared to (G, (Q%) 1 the whole experi-
tientally acoessible region. without tisisting on a speafic curve (or even sign) for

GHQY)

E. Gc(Q)

The quadrupole (Coulomb) form factor G&(Q?) can be calculated from the
expression (2.23) for the contracted amplitude p, 7T}, :

. 2y 8m a [ a
Ge(@QF) = m [—W/; F(s0,52,Q%) dsy
QZ 8 2,3 )
_T(TQf) fD F(s1,50,Q%) ds,
170\ a\ [ 5o
2 (o) (+age) [(on [ F“h”m”’sz]- (10
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FIG. 5. Ratio GL(Q?)/G3,(Q?).

Again, G5(Q?) is essentially smaller than Gr(Q?) (see Fig.5). Furtherniore,
eq.(3.11) predicts that, for large Q2. the quadrupole form factor G AQ%) has an
extra 1/Q? suppression compared to Gy, (Q°). In fact, if the duality mtervals
were equal, sy = S, the suppression would be even stronger, natnely, by two
powers of 1/Q?,

The curve for G%(Q?) obtained from the expressions for (7|, G2, Gy gives
somewhat larger (and opposite in sign) values for the ratio GE‘(QQ)/G’:"(QQ), but
the difference between the two results can be attributed again to the uncertainty
in the values of large form factors Gy, GGa, (3.

IV. CONCLUSIONS

In this paper, we used the local quark-hadron duality approach to cst).
mate the purely nonperturbative soft contribution to the 47y — A+ (ransi-
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tion form factors. Our results can be also applied to the v"n — A® transition:

11';3.“(9 (Q%) = —GL";C‘? (@?), i.e. the only difference is the sign of the rele-
vant form factors. The lau-ge—Q2 behaviour of the soft contribution is governed
by the Feynman mechanism which formally has an extra 1/Q? suppression n the
region of asymptotically large Q*. However, our estimates for the effective form
factor Gr(Q?) are close to those obtained from a recent analysis of inclusive data
(30]. This means that the data can be described without a sizable contribution
from the hard-scattering mechanism. We picked out several Lorentz structures
which appear in the decomposition of the basic three-point amplitude and ob-
served a satisfactory agreement between the results obtained from different in-
variant amplitudes. All our estimates indicate that the transition is dominated by
the magnetic form factor G, (Q?), with electric G5(Q?) and quadrupole G (Q?)
form factors being smail compared to G},(Q?) for all experimentally accessible
momentum transfers. This opens a possibility for a direct experimental verifica-
tion of the soft contribution dominance in future exclusive measurements of the
T*N — A transition form factors at CEBAF.
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APPENDIX A: PARAMETRIC REPRESENTATION

To transform the amplitude I, (r, y) (see eq.(2.4)) into the momentun rep-
resentation, it is convenient to use the formula

_ ipT—1qy d4$d4y

pra (z — y)Hytmzon
_ (mhHmint /‘” o (ap% + 83+t | doldgmdy"
B ( (

min! Yaf+ By +7a) ) (ad + By + ya)?

I+m¥+n+1 o . . { m 7
- (~1)l+mtn+ / riptrapiaTeg’ dridri'dr; (A
gltmtn—4 iyl (T172 + Toms + 37 )1 Hmn-2
derived in ref. [37].
The numerator factors like z,, y, can be incorporated via
d .8
Ty — —ie— Yy — I . (A.2)
# dpy # Ay
Now, using egs.(A.1,A.2), we get
(eu = 4) Z (P9 ( 3)
PV(p ‘I) 16 q uv p q} Nn.7T2,73
e‘r:.IJ-‘1‘+‘J‘2_D;-+73§|2 dTldT'_)dTg (A.'j)

(T2 + Tema+ 1371y )°
where
Za:.w(ps Q)f‘.(TI:TZJ T3) = gﬂ”[pl 9] (3Tl T'-’TSQ(TIT’ T TTa 4 TSTI) ~— N7y 73)
i
= 3qu[yo qlriTaTs
+2q,0.[p, qlriT3 T3 4 2000, [poqlrimeTi+ L (AA)

+gufre. Pl (4T1Tq1’3 (m+1m)— Tl 1'-;'r3

and only the structures containing g, or g, are displayed explicitly.
For the projection p,I,.(p,q) used in the calculation of the G7(Q%) form
factor, we have:

redun(p.g) :pyfe"’r_"qyll,w(.r,y)dqxdqy = i/ ApTryy ,)d Lo (e, ndedty,
ar

1

(A.D)



where

a 6(ey — . i6 16
e85 o e )

L 2z —ypyt 20z -y)ly? 2z - )ty

.. 1 4 5 8
TYu® (—rﬁ(a: — it - o8(z — y)iy? + =8z - y)2y? + s10(z — y)2y2)

. 2 7 7
Tl (rs(r O T ¥z gy Pz y)zy")

4 4 4 )
e (_IS(I DY By | Bz vyt

4y, y&
) =

-12 12
T (‘:B(r 0 T y)?y*) -

In the momentum representation, this gives

. €u —€
pl(pg) = %[‘]:P]Wll_d/"'l (11~ r2 )2 + 73)733
dridrdry

eT1P HTaPi+Tag?
(rir2 + myms + 131 )5

(A7)

where only the term related to G (Q?) was retained. For the amplitude Tr{{,, },
we have:

B(ew — eq) (dic* Py, xz)

Te{luw(z, 9} = - T (A.8)
or, in the momentum representation:
T Luu(p, )} = ~ L0 €) (gt ) i " ryrd enptraptnee®
’ dridrdrs (A9)

(e + moma + T3 )4

APPENDIX B: CALCULATION OF SPECTRAL DENSITIES

To find the spectral densities corresponding to invariant amplitudes
Ti(pi, p3, Q?), it is convenient to start with the SVZ-transform of the double
dispersion relation (2.16)

[
B

B(pi — M)B(p3 — M3)Ti(p?, 0}, Q%) = &, (M2, MZ,QY)
1 oo -, 2 i
=— pilsy, 53, Q%) e M= a2lMy gy gy (B.1)
T Jo

where B(p? — M?) is the SVZ-operation [9] defined by

L s =M (B.2)

B(p* — M?)
§—p

Explicit expressions for the SVZ-transforms ©;(ME, MI, Q%) can be easily ob-
tained by applying the B-operation to the parametric representation (A.l) using
the formula [22)

B(p? — M*) e = §(x — 1/M?). (B.3)
Let us consider first the basic integral

oo
4 2 2 2 dT]dT‘_)dT;;
Jé )(pflpg,qg) = TIT2T§ eTtPitTapa+7ag - (B'-U
0 (rim2 + 7213 + 137,)

corresponding to the spectral density py(sy, sq, Q?) of the amplitude {A.9) given
by the trace of T,,. Applying the double SVZ-transforimation (B.1), we obtain
the equation

ISV, Q%) 5/
0

oG
pols1, 82, Q%) e~ Ta%a gy s,

T1T2‘i"32
1 £
(nme + rems + 7a7y)

—Q gy (B.5)

nZ
where, according to eq.(B.3), 11, 7 are now related to the SVZ-Borel parameters:

7= 1/ME and 7 = 1/ M2
This spectral density has been calculated in refs. [22], (37]:

2
2443

(K= (31 4+ 52+ Q) (2% + 51 + 50 + QF)

2 9 09
= gQ‘.sIs

i
FPO(SMSZ;QZ) =

28+ 5 + 50 + QF
w3k + (s, + 52 +Q¥))2

(LX)

(B.6)

where k = /(5) + 52 + Q%)7 — 45,54
The most economic way to calculate Lhe spectral densities of other mnpht udes
15 Lo express them in terns of the fundamental density py(s1. 54, @Y). Tu do this,
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one should rejate the relevant integrals to the basic integral (B.4). According to
eqs. (A.4), (AT}, all these inlegrals have the form

dTldfngs
(nma+ nr3+mn)s

(B.7)

(e o]
2 .2 2y 3 rpFrapiireq?
Jj(plsPQ:q ) = / gj(Tl,Tz)Ta)‘ra e WPy FTap+7ag
0

h ' i impl | ials: 72 2 2.2

where g;(m1, 72, 73) in our case are some simple polynomials: ¥r, n73, 772,
TiT2T3 and T12T3.

After the double SVZ transformation, we have the equation

jOO gj(rl, 1.2)1-3)1-:'?
0

(e + mor3 + 13718

e‘”qur_q

1 O
= F/ p; (81,82, Q%) e~ 171" "%, ds, (B.8)
0

where p;(51,52,Q?) is the relevant density and, again, 1, = 1/M?, 7 = 1/M2.
Further progress is based on the formula

2,23

(5) o T T4 T 2
I 1 QF E/ 123 e~ T3 dr
i Q) o (miTe+ mTs+ man)® 4
= Q_gfm nryy e~ ™9 dry (B.9)
4 Jo (nm+rm+nn)t l -

The last integral looks very much like the basic integral Jéq)(‘rl,rz;Qz) except
for the two extra powers of 3 in the numerator. However, an extra 73 can be
easily obtained by differentiating Jy(ry, m2; @?) with respect to Q2. Hence,

1 o= @8 Y @ 2
n (@7 = 5 agz) Do (Mm@, (B.10)
or, in terms of densities
2 9 2
pr1(s1,52; Q%) = % (562_) pols1, 52, Q). (B.11)

The notation JE?) implies that, compared to the basic integral J[g4'](T1,T2;Q2),
the integral Jq,(ry, 72; Q%) has one extra power of 1y, one extra power of 79 In
the numerator of its integrand and the 5th power of (7172 + T2Ta + T3711) in the
denominator. Since 7 and 5 do not participate in the r3-integration, eq.(B 10)
also gives
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, 29
Jo (r, mi Q%) = 9 (W

Y ) ;J{‘)“(H,TQ;Q?’) (B.12)

for the mntegral Jé?) with g(r,, 72, 13) = 1y75. Nole now, that the 1/7; factor can
be easily cancelled by performing integration by parts with respect to s; in the
basic integral J({,ﬂ(n T @Y):

[ev]
J[()4)(T1,T2;Q2)Ef Po(s1, 52, Q%) e~ T T s dsy
)

— Tl/ E——Tan—f;!zd‘sldsz/ Pu(S,S;g.Qg)db' . (B]3)
0 ]
In terms of densities, this gives
2 a 2 LR " ]
P01(51,52§Q2) = QT (5@) A po(s, 52, Q7 )ds. (B.14)

These and similar tricks can be applied to integrals with other forms of g(7), 74, 73)
as well: each extra power of 73 would produce an extra differentiation of
pa(s1, 52, Q%) with respect to @*, while each missing power of 7, or 7 in the nu-
merator (compared to 7773) would result in an extra integration of pulsy, 50, Q%)
over sj OT sy, respectively.



