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Abstract

We use local quark-hadron duality to estimate the purely nonperturbative sofi contrii
bution to the v*p — A form factors. Our resuits are in good agreement with existing
experimental data. We predict that the ratio GL(Q?)/G3(Q?) is small for all accessible
Q”, in contrast to the pQCD expectations that GE(Q%) —» -Gy ().
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L INTRODUCTION

Basically, there are two competing explanations of the experimentally ob-
served power-law behaviour of elastic hadronic form factors: hard scattering (]
and the Feynman mechanism [2]. At sufficiently large momentum transfer, the
Feynman mechanism contribution is dominated by configurations in which one of
the quarks carries almost all the momentum of the hadron. In QCD, this results in
an extra 1/Q? suppression compared to the hard scattering term generated by the
valence configurations with small transverse sizes and finite light-cone fractions of
the total hadron momentum carried by each valence quark. The hard term, which
eventually dominates, can be written in a factorized form [3], [4], [5], as a product
of the perturbatively calculable hard scattering amplitude and two distribution
amplitudes accumulating the necessary nonperturbative information. However,
this mechanism involves exchange of virtual gluons, each exchange bringing in a
suppression factor (a,/7) ~ 0.1. Hence, to describe existing data by the hard
contribution alone, one should intentionally increase the magnitude of the hard
scattering tertn by using distribution amplitudes with a peculiar “humped” profile
[6]. In this case, passive quarks carry a small fraction of the hadron momentum
and, as pointed out in ref. [7], the “hard” scattering subprocess, even at rather
large momentum transfers Q? ~ 10 GeV2, is dominated, in fact, by very small
gluon virtualities. This means that the hard scattering scenario heavily relies on
the assumption that the asymptotic pQCD expressions are accurate even for mo-
menta smaller than 300 MeV, i.e., in the region strongly affected by finite-size
effects, nonperturbative QCD vacuum fluctuations ete. Including these effects
shifts the hard contributions significantly below the data level even if one uses
the humpy distribution amplitudes and other ad hoc modifications intended to
increase the hard term (see, e.g., [8]).

Furthermore, as argued in ref. [13], the derivation of the humpy distribution
amplitudes in [6] implies a rather singular picture (infinite correlation length)
of the QCD vacuum fluctuations. Under realistic assumptions, it is impossible
to get distribution amplitudes strongly differing from the smooth “asymptotic”
forms. The latter are known to produce hard contributions which are too small to
describe the data on elastic form factors, Thus, there is an Increasing evidence in
favour of the alternative scenario, viz., that for experimentally accessible momen-
tum transfers the form factors are still dominated by the purely soft contribution
corresponding to the Feynman mechanism.

In the language of the light-cone formalism [5], the soft term is given by the
overlap of the soft parts of the hadronic wave functions, i.e., is an essentially
nonperturbative object. Among the existing approaches to the nonperturbative

effects in QCD, that which is closest to pQCD is the QCD sum rule method
{9]. QCD sum rules were originally used to calculate the soft contribution for
the pion form factor in the region of moderately large [10], [11] and then small
momentum transfers [12]. It should be emphasized that, in the whole region
0 < @*<3GeV?, the results are very close to the expertmental data: the Feynman
mechanisim alone is sufficient to explain the observed behaviour of the pion form
factor. For higher Q?, the direct QCD sum rule method fails due to increasing
contributions from higher condensates. However, a model summation of the
higher terms into nonlocal condensates [13] indicaies that the soft term dominates
up to Q* ~ 10 GeV? [14]. This conclusion is also supported by a recent caleulation
within the framework of the light-cone sum rules [15).

An important observation made in ref. [11] is that the results of the elaborate
QCD sum rule analysis are rather accurately reproduced by a simple local quark-
hadron duality prescription. The latter states that one can get an estimate for
a hadronic form factor by considering transitions between the free-quark states
produced by a local current having the proper quantum numbers, with subsequent
averaging of the invariant mass of the quark states over the appropriate duality
interval so. The duality interval has a specific value for each hadron, e.g., s m
0.7 GeV? for the pion and sy = 2.3 GeV? for the nucleon.

The local duality ansatz, equivalent to fixing the form of a soft wave fune-
tion, was used to estimate the soft contribution in the case of the proton mag-
netic form factor [16]. The results agree with available data over a wide region,
3GeV?<$Q* £20GeV?. Furthermore, the calculation of ref. [16] correctly re-
produces {without any adjustable parameter), the observed magnitude of the
helicity-nonconservation effects F3(Q?)/FF(Q?) ~ u?/Q? with p? ~ 1GeV2. It
is difficult to understand the origin of such a large scale within the hard scatter-
ing scenario, since possible sources of helicity nonconservation in pQCD inciude
only small scales like quark masses, intrinsic transverse momenta ete., and one
would rather expect that u? ~ 0.1 GeV?2. Thus, the study of spin-related prop-
erties provides a promising way for an unambigous discrimination between soft
and hard scenarios.

Of a particular interest there is the 7"p — A transition. A special attention to
this process was raised by the results [17] of the analysis of inclusive SLAC data
which indicated that the relevant form factor drops faster than predicted by the
quark counting rules. The relevant hard scattering contribution was origimally
considered in ref. [18], where it was observed that the hard scattering amplitude
in this case has an extra suppression due to cancellation between symmetric and
antisymmetric parts of the nucleon distribution amplitude, and it was conjec-
tured that the faster fall-off found in [17] can be explained by the dominance of



some non-asymptotic contribution. Later, it was claimed [19] that, by appropri-
ately choosing the distribution amplitudes, one can get a leading-twist hard term
comparable in magnitude with the data. Furthermore, the results of a recent
reanalysis [20] of the inclusive SLAC data are rather consistent with the 1 /Q*
behaviour, and this revived the hope that the 7*p — A form factor can be still
described by pQCD.

However, the important result of the pQCD calculation [18] is that the lowest-
twist hard contribution has the property G3*9v¢(Q?) =~ —G32r4(Q?). Exper-
imentally, the ratio G5(Q?%)/G3,(@%) is rather small [21], which indicates that
the leading-twist pQCD term is irrelevant in the region Q*<3GeV2. In the
present paper, we use the local quark-hadron duality to estimate the soft con-
tribution for the G;(Q?) and G3,(Q?) form factors of the ¥'p — A transition
to study whether the soft contribution is large enough to describe the data and
whether the relative smallness of the electric form factor persists in the region of
moderately large momentum transfers 3<Q?< 15 GeV2,

II. THREE-POINT FUNCTION AND FORM FACTORS

The starting object for a QCD sum rule analysis of the 7*p — A transition
is the 3-point correlator:

Tuwtp,0)= [ O (0)0)H0)7= 5991z 1)
of the electromagnetic current
Jy = eyl u+ egdy, d (2)
and two offe currents [22]
7= (u"Cr,u’) 7, 75d%,  mu = % (2 (uCy,d¥) u + (u*Cyyu’) d®) . (3)

We use the following parameterization for the projections of n and 5, onto
the nucleon and A-isobar states, respectively:

Olnd) = 254 (4

I
{OlninNy = @Y @

Here, v is the Dirac spinor of the nucleon while ¥, 1s the spin-3/2 Rarita-
Schwinger wave function for the A-isobar, i.c., (p— g—mlv =0, (p— M), =0,

Putu =0, 74¢¥u = 0; with 1 being the nucleon mass and M that of A. We use
the notation &@ = a,7,.

On the hadronic level, the +*p — A transition makes the following contribu-
tion to the correlator (1):

o Inla Xpua(p) W _P—gtm
pP—Aa — NiA In . 5
Hy (2#)4 pg Y FO!V(p, q)75 (p _ q)2 —m2’ ( )

where T, (p, ¢)7s i1s the 4*p — A vertex function

Lav(p, ) = G1(a®) (¢a¥e — Gar®) + G2(4%) (90 Po — Gur (qP))
+G3(f12) ((Iqu - gauqz) (6)
(P=p—¢/2)and X,,(p) the projector onto the isobar state
1 1 2 .
Xualp) = (gaa - §'T.u7'a + W(P.u“/a = PaYu) — mpupu) (p+ M) ()

The form factors G, Gy, Ga are related to a more convenient set, Gg. Gy, Go
by
m

2, G1(Q?%)
307 1) (((3M+m)(M +m) + @ )—"M—

HM* — m*)Go(Q%) - 2Q%G3(Q?)) (8)

m 2
@) = 307 ) ((M Pt - Q)

+HM? — m*)G2(Q%) — 2Q°G5(QY)) (9)

w(@%) =

GL(QY) = 2

1 2 3
= NMtm) (QMGl(QE) + 5(3M2 +m? + Q%G1 (Q%)

+HM? —m® — Q*)G3(Q?)) (10)

(see, e.g., [23]). One should not confuse the magnetic form factor G (Q?) given
by eq.(8) with the effective form factor mentioned in refs. (18], [24). In particular,
the form factor G7(Q*) defined by eq.(6.2) of ref. [24] can be written in terms of
G3(Q%) and G%(Q?) (defined by egs.(8),(9) above) as
2 2
* 12 3l 2 = Q Q o 2 11

where v = (M? —m® + Q?)/2m is the energy of the virtual photon in the proton
rest frame. Note that, for large @2, our G (Q?) and G7(Q?) of eq.(6.2) of ref.
[24] have the same power behaviour.

wn



L. LOCAL QUARK-HADRON DUALITY

Multiplying all the factors in eq.(5) explicitly, one ends up with a rather long
sum of different structures a:”, accompanied by the relevant invariant amplitudes
13, each of which is a combination of the three independent transition form factors
listed above. To incorporate the local quark-hadron duality, we write down the
dispersion relation for each of the invariant amplitudes:

T oo pi(s1, 82, Q%)
Toip? o2 OF :_/ d j s
i(p1, P2, Q°) = J, 51 o dsy (81 — p¥)(s2 ~ p3)

+ “subtractions” (12)

where p? = (p — q)?, p2 = p®. The perturbative contributions to the ampli-
tudes T;(p?, p2, Q%) can also be written in the form of €q.(12). Evidently, the
physical spectral densities p;(sy, s2, Q%) differ from their perturbative analogues,
the difference being most pronounced in the resonance region, i.e., for small 5
and sy values. In particular, p;(s;, 53, Q?) contains the double §-function term
corresponding to the v*p — A transition:

pi(s1,52,Q%) ~ Inla Fy(sy, 53, @%)6(s1 — m?)é(sy — M?), (13)

while the perturbative spectral densities pf*™(s;, 52, Q?) are smooth functions
of 5; and s;. The local quark-hadron duality assumes, however, that the two
spectral densities are in fact dual to each other:

9 So S0 So
/ dslj P (81,82, Q%) dsy =/ db‘l] pi(s1,52,Q%) ds;y (14)
0 0 0 0

i.e., they give the same result when integrated over the appropriate duality in-
tervals sp,Sp. The latter characterize the effective thresholds for higher states
with the nucleon or, respectively, A-isobar quantum numbers. As noted in ref.
[16], the local duality prescription can be treated as a model for the soft wave
functions:

3 k2 3 k2
Un({z} {ke}) ~0 (Z —;,— < 50) s Wa({z), (kL })~ 8 (Z :' < 50) ,

i.e., sp and Sp also set the scale for the width of the transverse momentum dis-
tribution. Using this model, we can obtain a good estimate for the overlap of
the soft wave functions only in the intermediate Q*-region where the soft con-
tribution is sensitive mainly to the & -widths of the quark distributions rather

than to their detailed forms. From experience with the proton form factor calcu-
lations, we expect that local duality will work in the region between 3 GeV'? and
20 GeV?. The low-Q* region Q2<1GeV?, in which there appear large nonper-
turbative contributions due to the long-distance propagation in the Q%-channel,
can be analized within a full-framed QCD sum rule approach supplemented by
the formalism of induced condensates [25] or bilocal operators [26].

Applying the local quark-hadron duality to the two-point correlators of 1~ or,
respectively, n,-currents, we obtain simple relations between the duality intervals
59, 5o and the residues Iy, {a of the Ioffe currenis:

2 _ s3 . 2 _ S3

i = 10 {15)
After the duality intervals are fixed (e.g., from the QCD sum rule analysis of the
relevant two-point function [27]), the local duality estimates for the form factors
do not have any free parameters.

IV. INVARIANT AMPLITUDES

Now, choosing a particular Lorentz structure aiw, one can get the local duality
estimate for the relevant combination of the form factors. One should remember,
however, that not all the invariant amplitudes are equally reliable. To compare
the contributions related to different structures, one should specify a reference
frame. In our case, the most relevant is the infinite momentum frame where
pF = pﬁ — oo while ¢¥ = ¢/ is fixed. So, a priori, the structures with the
maximal number of the “large” factors p# are more reliable than those in which
p* 1s substituted by the “small” parameter ¢* or by §uv- However, dealing with
the n,-current in the A-channel, one should realize that 7, has also a nonzero
projection onto the spin-1/2 isospin-3/2 states |A*(p)):

{Olnx]A™(P)) = A (v, — 4pu)v™ () (16)

where A™ is a constant, m* is the mass of the spin-1/2 state |A*(p)} and v*(p)
the relevant Dirac spinor satisfying (p — m™ Jv*(p) = 0.

From eq.(16), it follows that any amplitude containing the p”-factor, is “con-
taminated” by the transitions into the spin-1/2 states. These states lie higher
than the A-isobar and, in principle, one can treat them as a part of the con-
timuum. Then, however, there will be strong reasons to expect that the duality
interval Sp for the “contaminated” invariant amplitudes deviates from that for



the amplitudes containing only the spin-3 /2 contributions in the 7,-channel. An-
other possibility is to project out the amplitudes which have contributions due to
the transitions into spin-1/2 isospin-3/2 states. To achieve this, it is convenient
to use the basis in which Y 18 always placed at the leftmost position. Then,
according to eqs.(5-7), the invariant amplitudes corresponding to the structures
with g, and g, are free from the contributions due to the spin-1/2 isospin-3/2
states. In this basis, keeping only the terms with qu and gy, in eq.(5), we get

*p—A _ Inla
)= G =
(a1l 2™ 0% 4 G007

+2 (ml, 81+ M, (5 — D)) Gu(@)

P 06Q") - 4l (03(@) - 162(@9) +..) (7)

Hence, from the invariant amplitudes related to the structures proportional
to gu, we can get the local duality estimates for the form factors 1, Gy, Gs.
Similarly, extracting the structure Guv(B, 4], we get an expression for (Gy +G3).
Counting the powers of ¢, we expect that resulis for Gy are less reliable than
those for ¢; and iy + G, while results for (73 are less reliable than those for
Ga.

The number of independent amplitudes can be diminished by taking some
explicit projection of the original amplitude T, we(P,¢). In particular, if one mul-
tiplies 7y, by p,, the invariant amplitude corresponding to the structure g,[g, o]
18 praportional to the quadrupole form factor Go(Q?):

pTrT.‘p_'A(p q)— INIA {3M+m
v pu ] -

BT A 8 e wle G @)+ ) (9
Another possibility is to take the trace of TH,: P4 The result is proportional
to the magnetic form factor G, (Q2):

Inila M+m

Tx(7,,) = @m)i(p? — m?)(pl — M?) 2om

(46" P 4ops) G31(Q%).  (19)

However, one should remember that the trace of T,y is not free from contributions
due to spin-1/2 isospin-3/2 states.

V. ESTIMATES FOR THE 7'P — A FORM FACTORS

Though the invariant amplitude related to the trace of T, 1s contaminated
by the transitions into spin-1/2 isospin-3/2 states, it makes sense 10 consider this
amplitude because it has the simplest perturbative spectral density:

I per 5 2 9
Fpﬂ} “s1,52,Q%) = %5("5 —(s1+ 524 Q) (2x + 51 + 524 Q7) {20)
where
&= \/(81 + 82 + Q%) —ds) 5. (21)
Imposing the local duality prescription, we get
2m o So et (51, 89 Q%)
* 2 = d M 17 d
Cu@) = g ) 0 [ Ay,
6m
= —F 2 2
M +m) (50,50, Q7) (22)
where F(sg, Sy, Q?) is a universal function
33
F(s0, S0, Q%) 565 (23)

= 91NlA(Q2+30 +S())3 (1 —30’+(1 - 0')\/1 —46)

and ¢ = 5p8,/(Q* + so + So)?. As we will see, the results for other invariant
amplitudes can be conveniently expressed through F(se, Sy, Q).

The function F(s0, 50, Q%) depends on the duality intervals sy and S;. We
fix the nucleon duality interval sy at the standard value sp = 2.3 GeV? extracted
from the analysis of the two-point function and used earlier in the nucleon form
factor calculations. The results of the existing two-point function analysis for the
A-isobar [27] are compatible with the A duality interval Sy in the range 3.2 to
4.0 GeV?. To fine-tune the So value, we consider two independent sum rules for
the G, form factor

d
d6)?

d 2 Sg "
k2Q2 (@) / F(so,s3,Q7) ds,,
0

mGy(@?) = 2 (3+Q2 ) F(so, 50, Q%)
(24)

and
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FIG. 1. Isobar to proton mass ratio from the sum rules (24),(25).

MG(Q%) = S (4N [ F d 2
1(QF) = EQ (rqg) A (80, 52, Q%) ds (25)
extracted from the invariant amplitudes corresponding to the structures qulve, Pl
and q,[7., (5 - §)), respectively (recall that p— ¢ is the proton’s momentum and
pis that of A). Taking the ratio of these two relations, one can investigate their
mutual consistency and test the overall reliability of the quark-hadron duality
estimates.

Indeed, on the “hadronic” side, we have the ratio M/m of the isobar and
nucleon masses, while on the “quark” side we have the ratio of two explicit and
non-trivially related functions. The consistency requires, first, that the ratio of
these functions must be close to a constant and, second, that this constant must
be close to the experimental value for the ratio of the isobar and nucleon masses:
(M/m)**® =~ 132 On Fig.1, we plot the Q2 dependence for the ratio of the
right hand sides of €qs.(24) and (25) for the standard value sg = 2.3GeV? of
the nucleon duality interval and three different values of S;. One can see that
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one should not rely on local duality estimates below Q? ~ 3GeV2, However,
above Q% ~ 3GeV2, the ratio is pretty constant for all three values of Sp, and
rather close to 1.3. The best agreement is reached for S, = 3.5 GeV?, and we
will use this value as the basic isobar duality interval in further calculations. In
particular, the l5 parameter will be fixed by i3 = i5(3.5GeV2)3 (cf. eq.(15)).

From egs.(8) and (9), it follows that ¢, is proportional to the difference of
the magnetic Gy and electric G, transition form factors:

GNQ = 6@ - GQ@) = g7 (M4 m) +. Q%) Gr @Y. (20

According to €q.(17), the sum GH(Q?) = Gy (@) + G (Q?) of these form
factors can be obtained from the invariant amplitude corresponding to the strue-
ture g,,[p, §]. Applying the local duality prescription, we obtain

o

2 < L1
m h%&m%QCLDAFm%Qwﬁ.m)

8
()02 —
¢ @)—M+m 12\ d?

Now, having expressions both for GH(Q?) and GNQ?), we can caleu-
late G3,(Q?) and G%(Q?%). The results for the combinations Q*G34(Q%) and
GE(@Q%)/G3(Q?) are shown on Figs.2 and 3, respectively. It should be noted
that, though F(s0, 50, Q%) has the 1/Q° asymptotics for large Q? (see eq.(23),
the local duality results are fairly consistent with the 1 /@*-behaviour in the wide
range 5 GeV2<Q?<20 GeV2.

An important observation is that GE(Q?%) is predicted to be much smaller
than G}, (Q?) (see Fig.3). It should be noted that if the TP — A transition form
factors are calculated in a purely pQCD approach (in which only the Ol(a, /7)?)
double-glhion-exchange diagrams are taken into account), the sum of electric and
magnetic form factors Gy (@%) + G1(Q?) is suppressed for asymptotically large
Q* by a power of 1 /Q* [18]. This is because the matrix element

(3/2IT11,-1/2) ~ (G}, + G}) (28)

violates the helicity conservation requirement for the hard subprocess amplitude.
In other words, the pQCD prediction is that (Gy + G%) should behave asymp-
totically like 1/Q¢, while each of Gy and G, behaves like 1/Q*. As a result,
asymptotically G}, ~ —Gyr- However, we consider here only the soft contribution
generated by the Feynman mechanism Tor which the helicity conservation argu-
menis are not applicable. Thus, for the soft term, there are no a prior: grounds

to expect that G} ~ -Gy

11
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FIG. 2. Form factor Gi(Q%).

The smallness of GE(Q*) /G (Q?) dictated by local duality, strongly con-
trasts with the pQCD-based expectation that GL(Q?) ~ —G3(@%), and this
allows for an experimental discrimination between the two competing mecha-
nisms. One should realize, however, that G5(Q?) is obtained in our calculation
as a small difference between two large combinations GHHQ?) and G (QY),
both dominated by Gy (Q?). Hence, even a relatively small uncertainty in either
of these combinations (which is always there, since the local duality gives only
approximate estimates) can produce a rather large relative uncertainty in the
values of G%. In this situation, we restrict ourselves to a conservative statement
that the electric form factor GE(Q?) is small compared to G3,(Q?) in the whole
experimentally accessible region without insisting on a specific curve for GE(Q%).

Experimental points for Gy shown in Fig.2 were taken from the results for the
Gr(Q*} form factor obtained from analysis of inclusive data [17], [20]. Since our
results give a very small value for the ratio (GE/Gy)?, the G% term in eq.(11)
can be neglected. One can see that, in the Q?>3 GeV'? region, the local duality

12

1.0 r
— G'pand G'y from eqs.(25.26) and G,
...... G'pand Gy from 24s.(24.26) and G,
0.5
O Experimental data
N .
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i1}
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-L0 —
G 5 10 15
2 2
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FIG. 3. Ratio of form factors GE(Q%) and G,(Q?) as calculated from eqs. (24)-(27).

Experimental data were taken from ref,[21].

predictions G3,(Q?) are close to the results of the recent analysis [20].

The magnetic form factor G(Q%) can also be obtained from eq.(22). If one
takes the basic duality interval So = 3.5GeV?, the resulting values of G (QY)
(Fig.2) are somewhat smaller than those obtained by combining the results for

GH(Q?) and GENQY). As emphasized earlier,

the spin-1/2 states also con-

tribute to the trace of Ty, and the duality interval in this case can be different
from the basic value. In fact, taking Sp = 3.7GeV? in €q.(22), we get a curve

for G3,(Q* (Fig.2) essentially coinciding with those

GH)(Q?) and G Q).

obtained from the sum of

The quadrupole (Coulomb) form factor G&(Q?) can caleulated from the ex-

pression (18) for the contracted amplitude p, T, :

m

GL@) = —

13

d S §
m [—W-/U F(SD:521Q )dSp_
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FIG. 4. Ratio GE{Q%)/ G (Q?) as calculated from eqgs. (24)-(27) and (30).

2 2 So
— (%) /0 F(s1, S0, Q%) ds,

1 d 2 d 30 5o i
43 (a) (rae) [ [ "‘"‘“’”’Qz)“’”] )

Again, GL.(Q?) is essentially smaller than G (Q?) (see Fig.4). Furthermore,
€q.(29) predicts that, for large )2, the quadrupole form factor GE(Q?) has an
extra 1/Q? suppression compared to Gy, (Q?). In fact, if the duality intervals are
equal, so = Sp, the suppression is even stronger, namely, by two powers of 1 /0.

VI. CONCLUSIONS

We applied the local quark-hadron duality prescription to estimate the soft
contribution to the y"p — A transition form factors. We observed a reason-
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able agreement between the results obtained from different invariant amphitudes.
We found that the transition is dominated by the magnetic form factor G (0%
while electric G%(Q?) and quadrupole G7.(Q?) form factors are small compared
to G (Q?) for all experimentally accessible momentum transfers. Numerically,
our estimates for Gr(Q?) are close to those obtained from a recent analysis of
inclusive data {20]. Hence, there is no need for a sizable hard-scattering contri-
bution to describe the data. Furthermore, if future exclusive measurements at
CEBAF would show that the ratio GE(Q%)/G34(Q?) is small above Q2 ~ 3 Gel2,
this would give an unambigous experimental proof of the dominance of the soft
contribution.
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