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ABSTRACT

Relativistic Hamiltonians are defined as the sum of relativistic one-body ki-
netic energies and many-body interactions and their boost corrections. The calcu-
lation of the latter from commutation relations of the Poincaré group is reviewed.
It is shown that the most important terms can be understood from classical rel-
ativistic mechanics. The constraints of relativistic covariance on the charge and
current densities are examined. Nuclear charge and current operators that satisfy
them up to order (1/m)? are derived.

INTRODUCTION

The relativistic dynamics of interacting composite objects, such as nucleons,
is non-trivial, and a variety of approaches have been and are presently being
developed. These include, for example, various reduction schemes of the Bethe-
Salpeter equation, such as the Blankenbecler-Sugar [1] or spectator model [2]
equations, and the light front Hamiltonian approach [3].

Many years ago, Bakamjian and Thomas [4], and Foldy and collaborators [5,6]

showed that the dynamics of a many-body system could be described in a rela-
tivistically covariant form with the Hamiltonian

Hp=Y_ (\/p,? +m? - m) + D [9 + 605 (Pyj)]

i i<j
+ Z [Vijk + 6Vije(Pij)] + ... , (1)
i<i<k

where 3;; is the two-body interaction in the rest frame of particles i and J (e,
the frame in which their total momentum P;;j = pi + p; vanishes). Similarly,
ng & is the three-body interaction in the frame in which Pijr = pi+pj+pi =0.
The 6v;;(P;;) and 6V;;x(P;;i) are called “boost interactions”and depend upon

the total momentum of the interacting particles. Obviously,

6vij(Pij = 0) = 6Vijx(Pije = 0) =0 . (2)
. ’ 1/2 . . .
Only the positive value of (p? + m?) ’* is considered in Hp.

The potentials 7;; and V;jk are determined by the fields and the internal
structure, if any, associated with the interacting particles. In many cases of
physical interest (in particular, that of interacting nucleons), however, the task
of deriving these potentials from first principles proves to be too difficult. More
simply, the ;; and V;jk are parametrized within a suitable theoretical frame-
work and fitted to observed data. Once these have been constructed, the boost
potentials §v;;(P;;) and 6§V;;x(P;;x) are related, in a model independent way, to
¥;; and ng &, Tespectively, by the requirements of relativistic covariance [6,7].

In the present talk, I will briefly review the parametrization of the nucleon-
nucleon rest frame interaction and the derivation of the associated boost correc-
tions [8-10]; succintly discuss the methods used to carry out variational calcula-
tions with the Hamiltonian (1) [8]; and report results for the binding energies of
the 3H and *He nuclei [8,10]. Finally, I will examine the constraints that rela-
tivistic covariance imposes on the nuclear charge and current densities [11], and
list charge and current operators that satisfy them up to order 1 /m? included.

THE REST FRAME INTERACTION

In the two-nucleon rest frame (P, = 0), the Hamiltonian (1) reads

He=2(VPZ+m? - m) +5 3)
with p; = —p2 = p. The interaction is written as
T2 =05+77 , (4)

where 97, is the long-range one-pion-exchange potential (OPEP). In momentum
space, it is taken as



Tig = vy + Avy (5)
01°902-q
vh=—fin 'Tz————q2 T (6)
x

m2
0} 3 2"1 y (7)
Vp24+m?\/p'24+m

where q is the momentum transfer, and p’ = p} = —p}, p} and pj being the
final nucleon momenta [9,11]. Note that p’ = p+q. The leading term is included
in all available models of nucleon-nucleon interactions. However, its correction
Av”, generating a momentum-dependent tensor force, has been neglected in most
of them, with the exception of the Bonn interactions [12].

The effects of all other subnucleonic degrees of freedom, such as those asso-
ciated with heavy mesons and nucleonic resonances or quarks and gluons, are
absorbed into vf,. This part of the interaction has a short range, and its oper-
ator structure is taken to be the same as that of non-relativistic models [13]. It
contains central, spin-spin, tensor, spin-orbit, quadratic spin-orbit and L2- com-
ponents (L being the relative orbital angular momentum). In momentum space,
it is expressed as:

L n
Avy = vy (

7= ) [V (9) + v (@)m - 1] OF, (®)
P

The strength parameters in v?(¢) and vP" (q) as well as the short range cutoff of v *
(not explicitly included in Eq.(6)) are determined by fitting the nucleon-nucleon
phase shifts up to energies of 400 MeV in the laboratory and deuteron proper-
ties with the relativistic two-body Hamiltonian (3) [8,11]. However, rather than
fitting the phase shifts obtained from the analysis of nucleon-nucleon scattering
data, I have chosen to fit the phase shifts calculated with the non-relativistic
kinetic energy and a non-relativistic interaction, corresponding to either the Ar-
gonne vi4 model [14] or the charge independent part of the more recent Argonne
v1g model [15], denoted as v{3. It is important to point out that in the published
version of 715 [8] the Av™ correction was neglected. However, the full * has
been included in the more recent 7;2 constructed so as Hg be phase-equivalent
to p?/m + vE. Kinetic and potential energy and OPEP expectation values in
deuteron obtained with this latter model are listed in Table I [11].

The contribution from Av* is about 10 % of that from v*. The results
in Table I also show that the expansion of Av* in powers of p/m and p'/m

TABLE 1. Kinetic and potential energy and OPEP contributions to the deuteron
binding energy in MeV, obtained with the non-relativistic (NR) and relativistic (R)
Hamiltonians. For the relativistic model OPEP is given by Eqs.(5-7). The contribution
obtained by expanding Av™ to lowest order in p/m and p'/m, labelled Av™|o, is also
listed. Note that the calculated binding energy is -2.242 MeV rather than the empirical
value -2.225 MeV, see text for an explanation.

NR R
t 19.88 18.88
v -22.12 -21.12
v -21.36 -21.39
Av” 2.59
Av™|o 3.48

is not accurate. The calculated deuteron binding energy is -2.242 MeV rather
than the empirical value -2.225 MeV. This ~ 1 % difference is accounted for by
electromagnetic effects not included here [15].

The effect of Av™ on the binding energy of >H and “He has not yet been
studied. The results reported in the rest of the present talk have been obtained
with the published version of 7;2, in which, as already mentioned, this correction
is ignored.

THE BOOST CORRECTIONS
Relativistic quantum mechanics

In the original paper [6], the boost interaction §v(P) was formally calculated
to all orders in (P/2m)?. In the present discussion, however, I will retain only the
leading corrections of order (P/2m)?. The methods used in [6] to calculate 6v(P)
can be succintly summarized as follows (the case of two spin one half particles is
considered.)

Among the commutation relations satisfied by the generators of the Poincaré
group, those involving the Hamiltonian H, the three components of the total
momentum P = p; + py, and the three components of the boost operator K are
relevant for the derivation of §v(P):

[Ka, P3)=iHbap , 9

K, H=iP . (10)



The generators H and K have interaction terms:

H=H0+HI ) (11)

K=K, +K; . (12)

The non-interacting terms Hy and K, can easily be shown to satisfy relations 9
and (10). Therefore it follows that:

[Kra, Pol=1H1bap , (13)

(Ko, Hf] = [Ho+ Hr, Ki] . (14)

With the focus on the lowest order corrections, it is convenient to expand H
and K in powers of 1/m. The non-interacting Hp and Kg have the well known
expressions:

i  p? 3
Ho=2m+ﬁ+-2;+0(1/m) , (15)

1
Ko=~P+2mR+ o ([rs, pI], — o1 x p1 +1=2) +0(1/m®) , (16)

where R = (r; +r3)/2. The first two terms in K are of the same order m. The
interaction Hamiltonian is also expanded as

H; =75+ 6u(P) , 17

where the terms ¥ and 6v(P) are assumed to be of order 1/m (or higher) and
1/m® (or higher), respectively. It is further assumed that ¥ is independent of P.
The commutation relation (13) is then satisfied by taking

K;=7R+w , (18)

where w is a translationally invariant vector function. It is not too hard to show
that [7,9]

p? ) . _
6v(P)=—-8—rn—2'§—l[Xo,‘U}—l[Xu,H0+v] ) (19)
1 1
X0=—1o—5(P-rP -p+hec)— (061 —02) xP-p , (20)

8m?

1 P
X”=—EL W'dP’+h.C. y (21

where the line integral in (21) is independent of the path (this fact follows fron
Vp x w =0, which can be deduced from the commutation relations satisfied by
the components of K [6,7].) The term dependent on x, has the form of a unitary
transformation of the Hamiltonian Ho+ 7% [7]. It will not contribute in first ordel
perturbation theory to the eigen-energies of Hy + 7. However, special attentior
must be paid to it when studying reactions [16].

Relativistic classical mechanics
By evaluating the commutators in Eq.(19), the boost corrections év to 2
central interaction 7 are found to be:

P.rP.Vi(r) 4 (01— 02) x P-Vi(r)
8m? 8m? ’

P2

Sv(P,r) = —S—Tﬁii(r) + (22)
where the choice w = 0 has been made, exploiting the unitary equivalence.
The three terms above can be obtained in relativistic classical mechanics, and
are attributed to the relativistic energy-momentum relation, Lorentz contraction
and Thomas precession, respectively [7-9].

In classical relativistic mechanics, the energy of two particles at rest with
interparticle distance rq is given by '

Eo =2m+7(ro) . (23)

Consider a frame in which the two particles are moving with velocity 8. In this
frame the particles have momenta p, = p; = P/2, energy Ep = (P2 + E'(:,Z)I/2
and § = P/Ep. If the distance in the moving frame is denoted with 7, then the

energy Ep can also be expressed as

Ep =2/P2[4+ m? + v(P,r) , (24)

where v(P,r) being the interparticle potential in the moving frame,

w(P,r) = \/2m + 5(ro)? + P? — 2/ FTA T T . (25)

Since the primary interest is in momenta P/2m << 1, the square roots above
can be safely expanded in powers of P/2m. Furthermore, as shown in the next



section, almost all contribution to §v comes from the region r20.7 fm, in which
v/2m<5 %. Therefore,

P2
v(P,r) = 9(ro) — gmzo(ro) - (26)
The relation between ry and r is given by

ro=r+ —(’Bﬂ—;)ﬁ- [(1 - ﬂz)—lfz _ 1]

- (P-r)P
mrte—— (27)
and hence to lowest order in P/2m it is found that
_ p? _ P.-rP-Vi(r)
D(P,l‘) bt v(r) = —-8—,n—2 (1’) + T . (28)

The two terms above coincide with the first two in Eq.(22).
The last term in Eq.(22) has its origin in the Thomas precession [7,9]. The
precession in a frame moving with velocity 8 ~ P/2m is given to lowest order by

(d,B/d2t) x g _ _Vﬁirzl: P . (29)

Thus, the Thomas precession potential for the first particle is given by
Vi(r) x P oy
4m? 2
Both particles have the same velocity due to their center of mass motion, but their

accelerations due to ¥ are equal but opposite. Therefore the Thomas precession
potential for the second particle is

(30)

Vi(r)x P ¢
__—4(13;2 —23 (31)

The sum of the two makes up the last term in Eq.(22).

VMC CALCULATION OF *H AND *HE BINDING ENERGIES

The Hamiltonian in Eq.(1) is written as

Hr=Hgp+) §u(P;) . (32)
i<j

Three-body boost interactions are neglected, as their contribution is expected
to be very small [8]. The variational Monte Carlo calculations with Hp are
analogous to those carried out with non-relativistic quantum mechanics. The
variational wave functions are of the form

b= |S[[Fil¢ . (33)

i<y

having a symmetrized product of correlation operators operating on an anti-
symmetric uncorrelated wave function. The pair correlation operator has the
structure

Fij = 3 [f7(rij) + 77 (rij)mi - 5] OF; (34)
b4

Only central, spin-spin and tensor correlations are included in the sum above. The
correlation functions fP and fP” are obtained from solutions of the relativistic
two-body equation:

[2\/1)2 +m?2 —2m + 7, + 1\12] Fio=0 (35)

in the 'Sg, 35,-3Dy, !P; and 3P,-3F, channels [8]. The X’s represent the modifica-
tion of the bare interaction due to the presence of the other particles, and depend
upon a set of parameters which are determined by minimizing the Hamiltonian
Hpg.

The calculations are carried out in coordinate space. Contrary to naive ex-
pectations, it is rather simple to evaluate the expectation value of square-root
kinetic energy operators in coordinate space with the Monte Carlo method. In
ref. [8] it is shown that '

w12 (\/P.-z +m? - m) ¥} = (m?/2x?) / dR} / dr
X [W1(R) - ¥R+ )] o Ka(mrlJy(R) (36)

where R is the 3A-dimensional vector ry, ..., ra denoting the positions of all the
nucleons in the nucleus, and K is the modified Bessel function of order 2. The



TABLE II. Kinetic and potential energy contributions in MeV to the *H and *He
binding energies obtained with non-relativistic (NR) and relativistic (R) Hamiltonians.
The Coulomb potential contribution is not included in the *He results.

5H ‘He
NR R NR R

t 48.7 (2) 48.7 (2) 105.2 (7) 105.0 (6)

v -56.0 (2) -55.9 (2) -128.5 (7) -127.4 (5)
14 -1.12 (2) -1.21 (2) -5.43 (15) -5.89 (10)
Hr -8.41 (2) -28.38 (10)
bv 0.34 (2) 1.76 (3)
H -8.42 (2) -8.07 (3) -28.73 (8) -26.62 (8)

two-body boost interaction contributions are evaluated in first order perturbation
theory after the energy has been minimized with Hpg.

The results obtained with Hg are compared with those of non-relativistic
calculations for the Argonne v, 4 interaction in Table II [8,10]. The Urbana model-
VII three-nucleon interaction model [17] is included in both Hr and Hyg. The
difference (Hg) ~ (HnR) is found to be 0.35 (2.11) MeV in 3H (*He), and is
mostly due to the boost interaction contributions.

The individual contributions to v are listed in Table III, where dvgg denotes
the first term in Eq.(19), while dv.c and Svrp denote those associated with xq,
Eq.(20). The leading correction is that due to the —P?5/8m? term. As expected,
the contribution of évrp is much smaller than those of vgrg and §vpc. In fact,
this contribution would vanish if there were no two-nucleon P-waves in these
nuclei.

TABLE III. Contributions to §v in MeV.

°H ‘He
SvRE 0.23 (2) 1.17 (3)
Svrc 0.10 (1) 0.53 (l)
Svrp 0.012 (3) 0.060 (6)

It is interesting to calculate the expectation values

Z—mvu ) (37)

i<j

and

ZS 5 Pij - 1ij0(rm — ri;)Pij - Vi (38)
i<j

as functions of the cutoff distance r,,,. Their values for r,,, = 0.5,0.7,1 and 2 fm
are shown in Fig. 1. They indicate that most of the §v contribution comes from
the region rjj = 1 — 2 fm, in which ¥;; << 2m, thus justifying a posteriori the
validity of the expansion in powers of 7/2m used in the derivation of év in the
previous section.

014 T
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FIG. 1. Contributions of the cutoff interactions given by Egs. (37) (circles) and (38)
(squares) as function of the radius r,,. The dashed lines joining the data are purely for
convenience.

Stadler and Gross [18] have estimated the boost corrections for 3H within the
spectator model approach, and have obtained similar results. However, Rupp
and Tjon [19,20] have reported 3H calculations based on the Bethe—Salpeter (BS)
equation, which indicate that relativistic effects contribute about 300 keV at-
traction to the triton binding energy, quite different from the 350 keV repulsion
found in the present work. There are two major differences between the BS and
present approach. The free particle propagator used in the BS equation allows
the propagation with both positive and negative energies. In contrast, the free



particle propagator of the present relativistic Hamiltonian has propagation with
only positive energies. Secondly, the methods used to make the interaction co-
variant are different. The approach discussed here may prove to be useful if the
compositeness of nucleons plays an important role in suppressing the antinucleon
degrees of freedom, and if classical relativistic corrections dominate.

ELECTROMAGNETIC CURRENTS AND RELATIVISTIC
COVARIANCE

Relativistic covariance requires that the Fourier transforms of the charge and
current densities p(q) and j(q) obey the commutation relations [21,22):

[K(0), p(@)] =ij(a) —iV[H, p(a)] , (39)

[Ka(0), jp(@)] =i6ap =iV lH , jp(q)] , (40)

where K(0) = K(t = 0). In addition to these relations, p and j must also satisfy
the continuity equation:

[H, p(a)] = a-i(a) - _ (41)

In a relativistic theory, the interactions modify both generators H and K, and
therefore the relativistic covariance relations (39) and (40) as well as the conti-
nuity equation (41) imply the presence of interaction terms in both p and j:

p(a) = po(a) + p1(q) , (42)

i(a) =Jo(a) +ir(a) . (43)

where the subscripts denote the interaction-independent (0) and interaction-
dependent (I) terms. Only the long-range pion-exchange contribution is included
in pr and js in the following discussion.

To lowest and next to lowest order in 1/m, py and jo have the standard
expressions in coordinate space for a Dirac nucleon:

@ = A7) + ) | (44)

. 147,
p§7(a) = exp(iq-r) —5= +1=2 , (45)

........... ———

FIG. 2. Feynman amplitudes for virtual pion photo-production. Nucleons, pions and
photons are denoted by solid, long-dashed and short-dashed lines, respectively.

2
@)y _ . _ .9 _-Q'(lepl) 147, N
po () = exp (iq rl)[ R ] S+ 1=2,  (46)
and
jo(a) ~ 3 (a) , (47)

[p1, exp (iq-r1)],
2m

+1=22, (48)

—iexp(iq-ry)

. xoy| 147,
i = | axe) L.

2m 2

where the superscript denotes the order in 1/m. These operators satisfy relations
(39-41) with the non-interacting terms Ho and Ky given in Egs.(15-16).

The pion-exchange contributions to p; and j; can be obtained from a non-
relativistic reduction of the virtual pion photo-production amplitudes given in
Fig. 2. Assuming pseudo-vector pion-nucleon coupling, I find in coordinate
space:

(@) = i2(@) + #(@) + #3(a) (49)



@) =i (f2/2m) (11 - 72+ 72.) exp (iq - 11) (01 - @) (02 - V) ha(r)
+1=2 (50)

P'3(Q) = (F2/4m) (11 x 12), exp (iq-x1) (01 - V) (02 - V) [p2, “Tha(r)],
+1=2 (51)

p(@) = = (£2/2m) (ry x 1), (01 - V1) (02 - V)

Vi [pl, JELS O hw(lx—rzl)] t1=2, (59
+
and
i@ =M@+ | (53)
i) = f2(n x 1), exp (ig-11) 01 (02 - V) he(r) + 1222, (54)

@) = =2 £2 (01 V1) (02 Vz)V/dx €9%hy(|x ~ r1]) hx(lx — ra]) , (55)

where hx(r) = exp(—myr)/47. It can be easily shown that the operators above
satisfy relations (39-41) with H; = vT, and

2
Wi, = f2—'T1 ‘Tao1(02-V)he(r) +1=2 . (67)

The charge and current seagull operators pgzg and ]9% as well as the “pion

in flight” current operator jglg have been commonly included in calculations of

the elastic form factors of the A=2-4 nuclei, and deuteron electrodisintegration
at threshold [23-27]. The charge operator pg":% arises from taking into account,
in the non-relativistic reduction of the Born amplitudes c) and d) of Fig. 2,
the energy dependence of the pion propagator, while the “pion in flight” charge
operator p(,?g is due to the direct coupling of the photon to the exchanged pion,
diagram b) of Fig. 2. The effect of these operators on the isovector charge form
factor of the trinucleons has not yet been studied.

The expressions for pgz) in Eqs.(50-52) are in agreement with those de-
rived by Friar and collaborators [16,28)], if the “equivalence-transformation.
fixing” parameters 4 and v in their expressions are set equal to -1 and 1, respec-
tively. Note that pgz)(q = 0) = 0, as it should because of charge conservation.
and that the w-term in the interaction-dependent boost K; is required if Eq.(39)
is to satisfied.

The wave function of a nucleus with total momentum P is given to order
1/m? by [6,7)

[P>=[1-ixo—ix.][0,P> , (58)

[0,P>=exp (iP - R)[0> (59)

where |0> is the wave function in the rest frame of the nucleus. Neglecting the
x-terms the usual non-relativistic result is recovered. The yq terms produce the
Lorentz contraction of the internal wave function and the Thomas precession of
the spins of the moving system. The origin of the interaction-dependent terms
Xv is less obvious [7].

It is now a simple matter to write down matrix elements of operators connect-
ing states with initial and final momenta P; and P 1, respectively. For example,
the charge form factor of a nucleus in the Breit frame is obtained as:

<a/2lp(a)] — 4/2>=<0, a/2|p{"(a) + £$(a) + 2 (a) +
i [Xo + Xv pﬁo)(q)] 0,~q/2> . (60)

These 1/m? boost corrections need to be studied. Of course, the recent cal-
culations of the deuteron elastic [29,30] and inelastic [29] form factors based on
quasi-potential reductions of the Bethe-Salpeter equation do include boost effects
to all orders. Indeed, it will be interesting to see whether these are accurately
represented in the present theory, which satisfies the requirements of relativistic
covariance to order 1/m?. Such studies are being vigorously pursued.
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