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I. ABSTRACT

Er

The Euclidean proton and nucleon responses of *He at ¢ = 10 fm~?!, evaluated
with the Correlated Glauber Approximation using a realistic nucleon-nucleon
interaction and non-relativistic kinematics, are compared to those obtained from
the Green’s Function Monte Carlo approach. The resuits show that final state
interactions play a crucial role even at this large value of ¢, and that their effect
can be quantitatively accounted for with the Correlated Glauber Approximation.

I1. INTRODUCTION

Assessing the validity of the Plane-Wave-Impulse-Approximation (PWIA) and
the relevance of Final-State-Interactions {FSI) in inclusive electron-nucleus scat-
tering at large momentum traasfer is critical for the interpretation of the data in
the low energy-loss tail of the cross section. The basic assumption underlying the
PWIA is that, at large momentum transfer, electron-nucleus scattering reduces
to the incoherent sum of scatiering processes off single nucleons, with no FSI of
the struck particle. According to this picture, the dominant reaction mechanism
in the kinematical region corresponding to energy losses w << wge ~ ¢2/2m (m
denotes the nucleon mass and q is the momentum transfer) is the scattering off

strongly correlated nucleons with high initial momentum k. As a consequence,
if the PWIA is valid, the (e, e’) cross section at low w provides a measure of
the high momentum components of the nuclear wave function, induced by short
range nucleon-nucleon (N N) correlations [1). However, the y-scaling analysis of
the data for a variety of nuclear targets, extending up to momentum transfers
g ~ 2 GeV/c [2-5], shows that the scaling limit, where the PWIA becomes ap-
plicable, has not been reached, and significant scaling violations produced by
FSI occur [6]. A similar conclusion has been reached on the basis of theoretical
calculations of the inclusive cross section, performed within PWIA using realistic
nuciear spectral functions. This theory severely underestimates the data at low
energy loss, even for the highest values of ¢ (~ 2.3 GeV/c) [7-10].

A treatment of FSI in (e, ¢’) reactions at high momentum transfer, generally
referred to as Correlated Glauber Approximation (CGA), has been proposed in
ref. [8], and applied to the few-nucleon systems (*H, *He and 1He) [9], medium
heavy nuclei [10] and infinite nuclear matter [8]. The basic assumptions implied
by the CGA have also been widely employed to estimate the effect of FSI in deep-
inelastic scattering of neutrons by liquid helium [t1,12]. The calculations of refs.
[8-10] show that in ?H FSI effects are unimportant, and the PWIA predictions are
in fair agreement with the observed inclusive scattering cross section (ISCS). In
all other nuclei, including 3He, the ISCS obtained with the PWIA are below the
data at smallw. When FSI effects are estimated using CGA and the observed free




NN cross sections, the theoretical predictions are above the data. However, good
agreement with the data is obtained by modifying the free space NN scattering
cross section to include the effect of color transparency (CT) [13,14].

The SLAC data addressed in refs. [8-10] is at ¢ ~ 2 GeV/c. At these momen-
tum transfers, most of the eV scattering is inelastic, whereas elastic scattering,
responsible for the ISCS at small w, is rare. It is more likely to happen when the
struck nucleon is in a compact state of three valence quarks, without any virtual
mesons. The FSI of the struck nucleon can therefore be different from those of a
free nucleon during a small time interval afier the strike. The ISCS at small w is
very sensitive to FSI in this small time interval, and can probe this difference.

The possible occurrence of CT in electron-nucleus scattering has also been
investigated in the coincidence (e, 'p) experiment NE18, recently carried out at
SLAC. Although the NE18 data [15,16] shows no clear-cut evidence of the mo-
mentuin transfer dependence characteristic of CT, the effective N N cross sections
extracted from the measured nuclear transparencies assuming classical attenua-
tion of the struck nucleon, are consistently smaller than the free space cross
sections. Unlike the ISCS, the nuclear transparency is sensitive to FSI over a
rather large time scale, of the order of the nuclear size. It has been computed in
ref. [17] using the CGA and the results suggest that, in the kinematical range of
:the NE18 experiment, the change in the nuclear transparency due to CT effects
is only ~ 10%.

The theoretical aspects of CT have been recently discussed by many authors
[18,19], who have studied FSI of the compact three-valence quark state of the
struck nucleon, expected to be dominant at very large momentum tranfer. The
free N NV interaction also has contributions from the meson cloud of the nucleons,
which is presumably absent in the struck nucleon. The loss of this cloud can occur
at smaller ¢, and contribute to the difference between the free NN interaction
and the FSI of the struck nucleon. In this work we will not discuss the physical
origin of this difference. Our goal is to study the accuracy of CGA, which could
be useful in extracting information on this difference from the observed ISCS and
(e, €'p) data.

The Euclidean response is defined as:

Blg,7) = 7T/ fnm dw R(q,w)e™™™. (1)

It is very sensitive to the response R(g,w) at small w, and therefore to FSI. It is
very difficult to calculate the E(g,7) of a nucleus at large g due to the presence
of relativistic eflects, and eN and NN inelastic processes. However, E(q,T)
can be computed exactly within the Green’s Function Monte Carlo {GFMC)

approach [20] for a model of *He, consisting of point nucleons interacting via a
non-relativistic Hamiltonian.

In this paper the Euclidean proton and nucleon responses of *He obtained with
CGA are compared to the GFMC results, with the aim of quantitatively testing
the validity and accuracy of CGA. Both the CGA and GIFMC calculations have
been carried out using the Argonne NN interaction [21] in the v8 form [22] and
non-relativistic kinematics. The comparison is carried out at ¢ = 10 fm~! ~ 2
GeV/c, where the analysis of the SLAC data [8-10] suggests that FSI of the
struck nucleon are weaker than indicated by the free N N interaction.

I11. CALCULATION OF THE EUCLIDEAN RESPONSES
A. GFMC

The proton (z = p) and nucleon (z = N) responses are defined as:

Relg,) = 5= 3 1 lpa(@)l0) Polw + Eo — Ey), 2)
I
where
A -
pe(a) = 3 0., (3)
=1
with

0p(3) = 31 + (i), @)

and On(i) = 1. The normalization constants are Cy = 4 and C, = 2 for *He.
The non-relativistic Euclidean responses are defined as:

Er(q,7)= “—’gzr/zm] dwR;(gq,w)e™ ™, (5)
1]

so that for a system of free particles, E-{(g,7) = 1 at all values of ¢ and 7. The
value of the Euclidean response at 7 = § is given by the sum:

S:(g) = ] " dw Ralg,w) (6)




and its slope at 7 = 0 is related to the energy-weighted sum

W (g) = ]0 " do wR(g,w). @)

In the GFMC approach the Euclidean responses are computed using the ex-
pression:
et 7/?™ | dRAR'¥}(R')pl(Q)P(R’, R; 7)p:(q) ¥o(R)
Cs S dR¥}(R)¥o(R)

Et (Q1 T) = ? (8)
where R is a 3A dimensional vector specifying the positions of all nucleons, and
Wo(R) is the ground state wave function obtained with the variational Monte
Carlo method [23]. The imaginary time propagator

P(R',R;7) = (R'je"H-Eo)"|R), (9)

H being the nuclear Hamiltonian, is evaluated by splitting it up into many small
steps A7, choosing an accurate approximation to the short-time propagator, and
using stochastic techniques to sample the propagator over many steps.
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FIG. 1. The GFMC Euclidean proton (filled circles) and nucleon (filled triangles)
responses are compared to the corresponding CGA results (solid lines). The CGA
response obtained by neglecting the real part of the optical potential (dashed line) and
the PWIA response (dash-dotted line) are also displayed.

The *He proton and nucleon responses obtained with the GFMC approach al
¢ =10 fm~! are shown in Fig. 1. The strength in ihe proton response is pushed
out to higher energies than in the nucleon response by charge exchange NN
interactions, causing Ex(q,7) to be larger than F,(g,7) at 7 > 0. Monte Carlo

calculations of the energy-weighted sums [24] also give W, wit )(q) > W( )(q) for
the same reason. The PWIA E,(g,7) and En(g,7) are 1denl,1cal in "He Hence,
the differences displayed by the corresponding GFMC results indicate that FSI
effects are sizeable even at ¢=10 fm~'.

In order to exhibit the sensitivity of E;(g,7) to the Ry(g,w), in Fig. 2 we
show the R(q,w; PWIA}, and the Ry(g,w) and R,(g,w) obtained with CGA. At
large T the E;(g, 7) is more sensitive to the R;(g,w) at small w, where R(PWIA),
Ry and R,, differ most. For example, at 7 = 3 GeV~! the contribution of the

response in the tail region (w ~ 1 GeV) to the £,.(g,7) is enhanced by a factor
e3? 25,
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FIG. 2. The nucleon {dash-dotted line) and proton (solid line) CGA responses are
compared to the PWIA predictions (dashed line).

B. CGA

The basic assumptions underlymg CGA can be betler understood with the
nucleon response re-writlen in the form:




1
Cnw

Rn{g,w)= ~—Re [0 " dteite+ o) (Olpk (@)e =" o (q)[0). (20)

Keeping only the contributions of incoherent scattering processes, which are
known to be dominant at large ¢, eq.(10} becomes

Ralg) = 7 Re [ ateerBgg) (1)

with
A(t) = (Ole~iamig-iHiglari g (12)

where the struck nucleon has been labelled with the index 1.
The Hamiltonian of the fully interacting A-nucleon system can be separated

into two parts:

A
H=Ha+zt'u, (13)

=2
ysf__hhere the two-body interactions v); are responsible for the FSI of the struck
nucleon, whereas H; is the PWIA Hamiltonian:
2

Py
Ho=Hy_ — 14
0 A1+2m (14)

The amplitude obtained by approximating H with Hy in eq.(12) is denoted by
Ao(t). Inserting a complete set of intermediate states |k, f), where k is the
momentum of nucleon 1 and the label f specifies the state of the (A4 — 1)-nucleon
spectator system, Ag(t) can be written as:

An(t) = (Ole-iq-r;e-iﬂoieiq-r’, Iﬂ}
=3 / &Pk|{k, £10)[*e~1Es +Ueta)*/2m]t (15)
!

where Ey includes the kinetic energy of the recoiling (A4 — 1)-particle system. The
nucleon spectral function is defined as:

P(k,E) =" |(k, fIO)*6(E + Eo — Ey). (16)
!

Substitution of eq.(16} into eq.(15} yields

Ao(t) = / dkdE P(k, E)e 1B+ Eot(kta)’/2m]t (17)
and the PWIA nucleon response can finally be written as:

R(‘LW; PWIA) = %RC/ thD(t)ei(w-i-Ea]:
0

= /rﬁkdE Plk,E)b [w - E- (k—;mq—):!] : (18)

It can be easily verified that, in this approximation, the R, of an isospin T = 0
nucleus like *He also reduces to R{(PWIA).

Let us now consider the structure of A(t) for the fully interacting A-body
system. The physical process described by the matrix element of eq.(12) consists
of three steps: i) at time ¢ = 0 nucleon 1 is struck and acquires a large momentum
q; i1) the A-body system propagates for a time ¢ after the strike; i) at time ¢
nucleon 1 is given 4 momentum —q. The function A(t) is the amplitude for the
system to go back to its ground state at lime 1.

The two-body interactions v;; give rise to scatiering processes in which nu-
cleon 1 can exchange a momentum of order q with the spectator nucleons. These
processes obviously reduce the probability that the A-nucleon system be brought
back to its ground state by transferring a momentum —q to nucleon 1 after a
time ¢. Therefore, the amplitude A(t) decreases due Lo FSI.

The attenuation of A(t) is reminiscent of the loss of incident flux in the elastic
channel in pucleon-nucleus scattering. This scattering can be described in terms
of a complex optical potential, whose imaginary part produces an exponential
attenuation of the incident wave. It is therefore useful to extend the notation of
optical model to describe FSI. The real and imaginary potentials V) and Wy
are defined such that:

A(t) = (Dle-;q.n(;)e_iﬂ‘,‘e—ij:[VN(t')—iWN(t')]di'eiqr.(t:[l)lo)_ (19)

There are important differences between the optical potential introduced in
eq.(19) and the one describing nucleon-nucleus scattering. In nucleon-nucleus
collisions, the projectile particle is initially decoupled from the target, and scat-
ters off a collection of A nucleons distributed according to the nuclear density
p(r). In the case of the nuclear response, on the other hand, the struck nucleon
scatters off the (A — 1)-spectators, to which it was bound at ¢t = 0. As a conse-
quence, denoting by r;(¢ = 0) the position of the struck nucleon at time ¢ = 0,
the density of scatterers at position r is given by:

X Elr1(t = 0),1] = pa[r1(t = 0), x)/plra(t = O)}, (20)




where the two-nucleon density p2[r1{t = 0),r] gives the probability of finding two
nucleons, one at ry(¢t = 0) and the other at r in the nuclear ground state. The
short-range repulsive core of the N N interaction makes §[r1(¢ = 0), r] vanishingly
small at small jri(f = 0) — r}, leading to a strong suppression of FSI at ¢ < 1 fmn.

At high ¢ one can use the eikonal approximation, according to which the struck
particle moves along a straight-line trajectory with constant velocity v = q/m,
to obtain the position of the struck nucleon at time t as

ri{t) = ri{t = 0) + vit. (21)

The validity of the eikonal approximation at momenta ¢ > 1 GeV/c has been
recently shown in ref. [25], where the response of a non-relativistic model of *He,
obtained using the eikonal approximation, has been compared to that obtained
from the exact proton propagator calculated with the path integral Monte Carlo
method. In CGA it is assumed that the positions of the spectator nucleons do
not change over the relevant time scale.

It should also be pointed out that the attenuation of A(t) at finite ¢, induced
by FSI, does not affect the total strength Sy(g) of the nuclear response, given
by A(t = 0) = 1. Replacing Ao(t) with A(t) only leads to a redistribution of
strength as a function of w.

For any fixed momentum q, the optical potential Vy —ilWy depends upon the
" “position, spin-isospin and energy of the struck nucleon. However, its time depen-
dence is most important in evaluating A(t). Eq.(19) can be greatly simplified by
approximating Vy and Wy with average quantities Vy and W, which depend
only upon ¢t. In ref. [9) Vy and W have been calculated by approximating
the energy of the struck nucleon with Wyee, and averaging over the initial position
r1(2 = 0). In uniform nuclear matter V~ and Wy do not depend upon ri{t =0),
and there is no need to average over their values [8). With the time dependent
Vi and Wy we obtain:

Ry(g,w) = iRe /D ” dte" @B 4, (1)e=3 [ VNG -iWn(1ar’ (22)
Using the relationship
eiE°‘Au(t) = /dw e"i‘“‘R(q,w;PWIA)
= R(q,t; PWIA), (23)

one can re-write the nucleon response in the form

00 P o s : “TAF ] ]
RN(q,w):%Re / dte™ R(g, t; PWIA)e ™ Jo [ ()Wt e (2
1]

leading to the convolution expression:
Ry(q,w) = /dw' R(q,w'; PWIA)Fy(w — u') | (25)
where the folding function Fy(w) is given by
Fn(w) = LRe / " dteite L)W ae (26)
T 0 :

In absence of FSI (Vy = Wy = 0), Fn{w) = 8(w), and PWIA is recovered. In
presence of FSI, Fy(w) has a width due to the imaginary part Wy, whereas the
real part Vy produces a shift in the position of its peak, otherwise at w = 0.
These features can be easily seen in the case of time independent V = Vo and
Wy = Wo. The resulting F(w) is a lorentzian centered at w = Vp, whose width
at balf maximum is given by W,.

In previous applications of CGA [8-10), W n(t) has been computed from the
nnaginary part of the measured NN scattering amplitude [26] at incident mo-
mentum ¢ and momentum transfer P, f4(p), using the expression:

- A
Wiy = 33 S Ou(ie: + vt - x; o), (21)
i=t j£i .
where
T By
w(r) = -2; (;ng«"le'p.rfmfﬂ(n")- (28)

The inclusion of the imaginary part of the optical potential produces a substantial
increase of the (e, e’) cross section at low energy loss, with respect to PWIA
predictions.

In order to consistently compare the CGA to GFMC resulls, in the present
work we compute Wy from €qs.(27) and (28) using the imaginary part of the
amplitude calculated with non-relativistic quantum mechanics using the Argonne
v8 interaction.

The proton-proton and neutron-proton cross sections at lab momentum of 2
GeV/c are, respectively, 42.8 and 39.4 mb in this non-relativistic model. They
determine the volume integral of w(r). The range of w(r) is obtained by fitting
the calculated Imf,(p) at small p to the gaussian form

v Imfy(p) = - o expl~(8p)?] , (29)




the resulting value of § being 0.3 fm. We note that the responses are most sensi-
tive to the value of the cross section, whereas their dependence on 8 is relatively
weak. The neutron-proton and proton-proton w(r) are not very different at 2
GeV /c lab momentum, and an average is used in the calculations. In this case,
it can be easily verified that the W, appropriate in the calculation of the proton
response is identical to Wy .

In ref. [8], the nuclear matter Vy has been assumed to be independent of ¢.
The non-relativistic nucleon optical potential evaluated in ref. [27] has been used
for nucleon momenta up to 3.5 fm—!, whereas the results of the phenomenoclogical
Dirac modei analysis of proton-nucleus scattering data [28] have been employed
at larger momenta. The shift produced by ¥V in the (e,e’) cross section for
nuclear matter is small (~ 20 MeV) on the energy loss scale relevant at g ~ 2
GeV/c, and does not affect significantly the comparison to data. For this reason,
the effect of the real part of the optical potential has been disregarded in the
applications to the few-nucleon systems [9]. In this paper we will discuss the real
part of the optical potential in a more detailed fashion, to point out its effects on
the Euclidean responses.

In the ground state of “He the spins and isospins of the four nucleons are
arranged to gain maximum atiraction from nuclear forces. This spin-isospin
arrangement is not disturbed by the nucieon probe e'9™:, and therefore V n(t)
is Targe and negative at small ¢. In contrast, the proton probe O,(i)e'™ partly
converts the total isospin T' = 0 ground state to a T = 1 four nucleon state, in
which the nuclear forces are not as attractive. Hence, the real part V(1) has to
be calculated separately for + = N and p, and is responsibie for the difference
between Ry and R, in CGA.

In the Born approximation, the real part V.(¢) is given by:

A
VIO = g 3 T 000 (oI + v~ x50 ()0}, (30)
T i=1 jgi

where v;; is the bare NN interaction. The above expectation value has large
contributions for 2 > 0, from the repulsive core in the N NV interaction, whenever
the struck particle closely approaches one of the spectators. On the other hand,
these processes will lead to large momentum transfers between the interacting
nucleons, and therefore their contributions are expected to be strongly suppressed
by the imaginary part. In order to approximately include this suppression we

modify the definition of V() in the following way:

A
Vi =g S Y [l

Taslg# [

Je(rij)

xvij(Iri + vt — r;|)0.(3) H!C(I“f:r(:)_r"l) [0) . (31)

j#i

Here, fc(r) is the central correlation function in the ground state wave function,
whose main effect is to suppress the wave function al short interparticle distances.
The Vf(t) and Vf(t) obtained from eqs.(30) and (31) are displayed in Fig. 3.
Note that these two estimates of V; coincide at ¢ = 0. The response is most
sensitive to V, at small ¢, and is not too different for Vf(i) and Vf(t) (Fig. 4).
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FIG. 3. The real part of the proton and nucleon optical potentials obiained from
€q.(30) (filled and open triangles, respectively) are compared to the corresponding quan-
tities obtained from eq.(31) (filled and open circles).

The energy-weighted sums of the proton and nucleon CGA responses can be
easily shown to satisfy

[ 00 [Ry(a,4:06A) - Ra(a,0:CGAY = Ty(t = 0) - V(= 0) , (32
where the quantity in the rhs is a constant independent of ¢ (with the Argonne

v8 interaction V,{t = 0)— Vn(t = 0) = 51.1 MeV). It should be pointed out that
the exact calculation of the energy-weighted sums Wél)(q) and W,(,.,])(q) from




WEe) = 5o= O L. 14, .]] 10 )

gives W,gl) - WS]:‘!Q.B MeV at ¢=10 fm~!, providing further evidence for the
applicability of CGA in this kinematical regime.
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FIG. 4. The CGA Euclidean nucleon responses obtained with the real part of the op-
tical potential evaluated from eqs.(30) (filled circles) and (31) (solid line) are compared.

IV. RESULTS

The results reported in the present work have been obtained using the Ar-
gonne v8 NN interaction [22]. The details of the GFMC calculation of the
Euclidean responses can be found in ref. [20). The PWIA response of ‘He has
been calculated with the spectral function of ref. [9], where P(k, E) has been
estimated using the momentum distributions of nucleons, deuterons, 3H and 3He
in *He, available from variational Monte Carlo calculations {29).

The folding function has been computed according to eq.(26). The integra-
tions invoived in eqs.(27), (30), and (31) have been carried out with the Monte
Carlo method, from configurations distributed with probablity | ¥o(R)I2 [29].

In Fig. 1 the CGA Euclidean responses are compared to the PWIA (dashed-
dotted) and GFMC results. The curve labelled CGA(V=0) (dashed) has been

obtained by setting to zero the real part of the optical potential. We note that
E,[CGA(V = 0)] = EN[CGA(V = 0)]. The full CGA calculations (solid curves)
are obtained by including the V ;(¢) calculated from eq.(31). The close agreement
between the CGA and GFMC results suggests that the difference between the
nucleon and proton Euclidean responses is due to differences between Vy and
V. It should be noted that the effect of V, is much more visible in Ex(g,7)
than in R (g,w).
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FIG. 5. The integrand given by eq.(35) at various values of .

These results indicate that the Laplace transforms of the response calculated
with the CGA are much more accurate than those obtained with PWIA. They
show that

/[R,(q,w;CGA) — R.(q,w; PWIA)] e/ am-wyr 4,

~ ] [Rz(g,w; EXACT) — R_(q,w; PWIA)] ¢’ /2m=w)T g, (34)

The integrand of the above integral:
Dy(q,w; 7) = [Ry(g,w; CGA) — R,(g,w; PWIA)] e8/2m—w)r (35)

is shown in Fig. 5 for various values of 7. At large 7 the integral receives its main
contribution from the response at w < 1.8 GeV, suggesting that the CGA response




at small w may be fairly accurate. This region contains interesting information
on both the high momentum components in the nuclear ground state and the
possible modifications of the struck nucleon.

‘The present calculations do not test for effects of spectator correlations (31]
and medium modifications of the NN cross section [32], neglected in CGA. These
effects are expected to be small in a nucleus of the size of 14He. However, recent
studies [33] show that they are small even in uniform nuclear matter, where they
should be more visible.
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