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Abstract

A quasipotential formalism for elastic scattering from relativistic bound states is based
on applying an instant constraint to both initia! and final states in the Breit frame.
This formalism is advantageous for the analysis of electromagnetic interactions because
current comservation and four momentum conservation are realized within a three-
dimensional formalisth. [1] Wave functions are required in a frame where the total
momentum is nonzers, whick means that the usual partial wave analysis is inappli-
cable. In this work, the three-dimensional equation is solved aumerically, taking into
account the relevant symmetries. A dynamical boost of the interaction also is needed
for the instant formalisin, which in general requires that the boosted interaction be de-
fined as the solution of a four-dimensional equation. For the case of a scalar separable
interaction, this equation is solved and the Lorentz invariance of the three-dimensional
DISCLAIMER formulation using the boosted interaction is verified. For more realistic interactions, a
simple approximalion is used to characterize the boost of the interaction.
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L INTRODUCTION tivistic impulse approximation, thus guaranteeing current conservation for elastjc
matrix elements. There is a price associated with the current conservation. [n

The theory of relativistic bound states in quantum field theory features four- the analysis of elastic electromagnetic scattering, a boost of the interaction is nec-
dimensional equations and, in principle, an infinite number of degrees of freedom. essary in order to calculate the bound state wave functions in the Breijt frame,
Practical methods to solve the problem are not available and it is therefore com- where the total three-momentum is nonzero.
mon to reduce its complexity. In this paper, we discuss a covariant reduction Dirac showed that the boost operator must depend on the interactions when
to three dimensions and a finite number of degrees of freedom. [1] The interac- the generators of the Poincare group are quantized at an instant of time. (10}
tions used are instantaneous. The formalism is tractable and it is applied to the This has its counterpart in the instant quasipotential formalism. A dynamical,
deuteron bound state problem. four-dimensional equation must be solved to determine the instant quasipotential

A general technique for reducing four-dimensional dynamics to three dimen- corresponding to different values of the total three-mornentum. We distinguish
sions is to introduce a constraint which fixes one component of a four-vector in between a kinematical boost and a dynamical one. The former is simpler because
terms of the others. [2] This may be done covariantly, but the resulting formalism it ig effected in the same fashion as for free Particles and this is an advantage
may possess unphysical asymmetries or singularities. An example is when one of a covariant formalism. [3,4). The latter is required in an instant formalism.
particle is constrained to its mass shell, and a second, identical particle is not. In the work of Hummel and Tjon, [6] an instant quasipotential is used together
[3] Symmetry with respect to exchange of particle labels is lost. It is possible with a kinematical boost. This leads to an inconsistency with respect to current
to respect the Pauli Principle by use of appropriately defined interactions, but conservation in matrix elements. In the present work, we develop methods to
they are cumbersome and they possess unphysical singularities which must be handle the dynamical boost thai are consistent with current conservation for
removed by hand. [4) electromagnetic interactions.

Symmetncal three dinensional reductions have been used recently by Tjon For the special case of a scalar, separable interaction, the dynamical equation
and collabaraton |5 0] Our work is similar but is based on the three-dimensional corresponding to a boost of the interaction is solved exactly and we verify that
b inabimnns e sebopend by Mandelzweig and Wallace [7,8], with an instant constraing the mass of the deuteron is invariant when it is used. The boosted interaction
o s sees Lodad momentum . {1 An instant constrajng maintains symmetry with varies rather slowly with the momentum for the deuteron and it may be approx-
trapars b Lo exchange of particle labels and yields a constrained equation for rel- imated by a renormalization of the strength of the rest-frame interaction This
stivastic hound states with no unphysical singularities. In this regard, it is an approximation is used in our analysis of electromagnetic form factors, which will
atractive alternative to reductions in which one particle is constrained to its be the subject of another paper.
mass shell. Although unphysical singularities are avoided, they are not entirely This work contains the analysis and methods of solution for wave functions
absent. They are expected to appear in corrections to the theory and in the in the Breit frame. Becauge the total three-momentum is nonzero, the uwsual
four-dimensional equations for the boost of the interaction. Unphysical singular- partial wave analysis is inapplicable. The wave functions are obtained by solv-
ities are an unsolved problem for quasipotential approaches. In our approach to ing the three-dimensional integral equations using appropriately boosted inter-
elastic electron scattering from a two-body bound state, they play no role. actions. Section H reviews the quasipotential equations in a frame where total

A theory of bound states needs to be complemented by a corresponding the- three-momentum is nonzero Section III discusses the equation which relates the
ory of currents, e.g., the electromagnetic current. It is necessary to maintain a quasipotential in different frames and bresents the solution for a scalar, separable
well-defined connection to quantum field theory and, for this reason, the Bethe- interaction. In Section IV, we discuss the symmetries of the relativistic bound
Salpeter formalism is the preferred starting point for the two-body problem. The state equations and use them to reduce the equations to a solvable form for the
associated currents have been formulated by Mandelstam in a celebrated paper. case of a boson-exchange interaction. Section V presents results for the deuteron
[9} In general, the currents depend on the interactions used to describe the bound wave functions and their variation with the total momentum of the bound state.
state and a consistent relationship between the two is mandatory in order to con- Section VI presents some concluding remarks.

serve the electromagnetic current. An attractive feature of the instant formalism
we discuss is that a Ward-Takahashi identity is realized at the level of the rela-



IL. RELATIVISTIC BOUND-STATE EQUATION

The two-body equation with instant constraint has been derived in Ref. [7]
in the rest frame of the two-body system. The derivation incorporates crossed
graphs using a form of the eikonal approximation. The same derivation carried
out in a frame where the total momentum is nonzero yields the three-dimensional
quasipotential equation,

%(p: P) = 0olp; P) [(—%ff(p,k; PYy(k; P), )

with relative and total momenta p = (1 —p2)/2and P=p;+p; (p°=0,P =
P?z). The three-dimensional propagator is expressed in terms of projection op-
erators for positive- and negative-energy states as follows,

3 AP (p)A (p2)
(@, P)= 3 (m +plz)(EP/;)—.f1 -’ ¥

P1.p2

“ AT = p PPY?, where PP = uf (pipi)[ul*(pips)]! are projec-
Bt opetabods obeysag 2227 = 8, o Dirac spinors used obey the hermitian

warmalaaterm aulition (Al) Moreover, ¢, = Vﬂlz + p'-2 (pllg = %P t p) and
" t, v MY 4 P are onshedl energies, and nucleon and deuteron masses
vt aied M Liis propagator differs from the Dirac two-body propagator of
R:is |7} ouly by use of the instant constraint in the frame where the two-body
systen muves with momentum P, instead of in the rest frame.

As discussed in Ref. {8], it is possible to use the constraint P-p = 0 to develop a
covariant formalism corresponding to instant interactions in the rest frame. If this
is done, solutions of the equation can be boosted kinematically on a 3D surface
embedded in the 4D space and defined by the constraint p- P = 0. However,
this constraint is not compatible with the momentum transfer g in interactions.
If in the initial state the constraint P - p = 0 is satisfied, the corresponding
constraint for the final state, namely (P +g) - (p+ %q) = 0, depending on which
particle absorbs the momentum transfer, cannot be satisfied. Absorption of the
momentum transfer requires that the wave function be known off the 3D surface
defined by the constraint. In contrast, a compatible formalism can be obtained
by adopting the constraint p° = 0 in the Breit frame in place of the covariant
one. The Breit frame corresponds to initial momentum P, = (EP,0,0,—%-Q)
and final momentum Py = (Ep, 0, 0,%4}), where Ep = /M2 4+ ¢%/4. It has the
special property that ¢° = 0 for elastic interactions and thus is consistent with
conservation of the four-mormentum and three-dimensional wave functions.

where h

The inverse propagalor is easily obtained from the projection property and it
is,

95 (P P) = WYL U EP/2 - pre1)pa + (Ep/2 — paea)n], (3)

with p; = h(pi)/e; (thus piuE(p,) = +u¥(+xp;)). The normalization condition
for the two-body wave function is,

1 dPpd®k o ol tp2 3
= 3k, W%"(P»P) T2 —2“(27") &p—k)

_ (_a%f/(p,k,fj))] ¥(k; P). (4)

II1. BOOST OF THE QUASIPOTENTIAL

In quasipotential approaches, the quasipotential kernel is formally related to
the Bethe-Salpeter kernel by,

K9P(Py= KB5(P) +iKP5(P)A(P)K9P(P), (5)
where a four-dimensional integration is implied over relative momentum, p, and

A(P)= GF5(P) - GFF(P), (6)

8BSy _ (PLM+m  [p2-72+ m]
emn= [}~ m? +in) [}~ m? +4y]" @

and
Gg*(P) = —igo(p, P)2x5(p°) (8)

in our approach. The quasipotential V' used in Eq. (1) corresponds to K9P with
mitial and final momenta restricted to the constraint space, 1.e., pg = 0. As
emphasized in the notation, the quasipotential depends in general on the total
four-momentum, P. The quasipotential propagator involving p® = 0 corresponds
to different constraints for different values of P. Oaly when the constraint is
expressed covariantly does it have the same physical meaning at all £ values.
In order to obtain the quasipotential corresponding to an instant constraint
at different four-momenta, one must in general solve kq. (9) at each value of P.

on



Alternatively, it is possible to eliminate the Bethe-Salpeter kernel to arrive at
a direct relation of the quasipotential corresponding to two different momenta
F and Py. We do this for a somewhat simplified case where the Bethe-Salpeter
kernel is assumed not to depend on the total momentum, P, and find

K9(P) = KI®(Py) + iKY (Ry) [A(P) - A(P)] K9P(P). (9

In the present work, we consider the boost of the quasipotential from the rest
frame, where momentum is Py = (M, 0), to a frame where the four momentum
is P=(Ep,P).

The chief complication in solving for the quasipotential lies in the implied 4D
integration. However, the problem is soluble for the case of a separable Bethe-
Salpeter kernel of the form,

K = Ix)k (x|, (10)

where |x) carries the dependence on relative momentum, p,and kis a 16 x 16
matrix. For the discussion of the separable potential case, we omit parts of the
quasipolential propagator which arise from the treatment of crossed Feynman
Krapha Lo aum these contnibutions are not meaningful for a separable potential.
A srnpb 1 puampedential propagator is used which is expressible as,

A" s
Y = 2!6(1)“)] P ogus, (11)
2x

whih agrevs with Egs. (8) and (2) in the + + and — — rhospin states, but is zero
in the + ~ and — + rhospin states.
It follows that the quasipotential also takes a separable form

K9P(P) = [x)k9* (P){(x|. (12)

where ¥9°(P) is also a 16 x 16 matrix in the two-particle Dirac space. It is
related to the Bethe-Salpeter kernel by the matrix equation,

k9F(P) = k + kA(P)E9F(P), (13)
where
&Py =i [ 27 ae) (1)

is a2 16 x 16 matrix. Alternatively, one may relate the quasipotential matrices at
two different momenta by use of Eq. (9), which leads to the matrix equation,

E9T(P) = k97 (Po) + k9P (Po)[B(P) — B(Po)EI7(P). (15)
Either Eq. (13) or (15) is readily solved, e.g., Eq. (13) yields

E9P(P) = {1 — kA(P)]} k. (16)

A. Analysis for a scalar, separable potential

In order to gain insight into the nature of the boost of the quasipotential, we
have solved for ¥9¥(P) for the case of a deuteron bound by a scalar, separable
interaction. This means that k is a coupling constant, g, times the direct product
of unit matrices in each particle’s Dirac space. Taking symmetries into account,
we find

A(P) = (%P-yl + m)(%P 72+ m)A(P)

P-nP-y P-nP-n
M m 2P Ty AP
P.y P. P-yP.
L( M‘Yl M‘rz M‘n M72)A4(P)+711."¥2LA5(P)' (17)

where P = (Ep,0,0, P), P = (P,0,0, Ep) and thus P- P = 0. Vectors with the
L subscript have only x- and y-components and they are orthogonal to P and
P. The quantities A,(P) for n = 1 to 5 in this expression are determined by the
following equaiions,

An(P) = AZP(P) - AJY(P), (18)

where

ABS(Py = i/ (—2%1; (@) [P} —m® +ig) ' [p3 - m? +in) 'O, (19)

a3 dp® . o
ﬁ[x(p)]zjg[p?—m%m] ‘[p3 ~ m? + ig] ' 0,,

(20)

ASP(P) =i

and
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O, =1, (21)

02 = (?iATP) . (22)
05 = (%) 2, (23)
O = ("J‘J—P‘i};l_ﬁ), (24)
Os = p}. _ (25)

Symmetries in the Bethe-Salpeter case cause AP = ABS, and APS = 0.
It is convenient to take matrix elements of A(P) between plane-wave Dirac
spinors depending on the total momentum and defined as follows,

u+(P)=Np( :LP ), (26)
o-P
u (l‘):Np(EP'ifM). (27)

Fhw statew are eigenfuncuons of ¥ - P/M = 11 and the normalization factor is

Ept+ M
Np = s 8
P \/ i (28)

where Ep = /P24 M2, Negative energy states have negative norm:
u”(P)u”(P) = ~1. The matrix form of A(P) is,

A7) Bo(P)  0nAl(P)  ovnAK(P)
BEN= [ o eassy ARG e |
01:84(P)  0nAP)  K,(P) AT Hp

where
AT (PY = uf (PYuF (P)A(P)u} (P)ui (P)
= (3M + m)*A1(P) - Aq(P), (30)

B77TT(P) = up (Pyuz (PYA(P)uy (PYu; (P)
= (GM ~ ) Ax(P) - A(P) (31)

AYTFT(P) = uF (P)uz (P)A(P)uf (P)u; (P)
- (%M2 ~ m?)AL(P) - Ag(P), (32)

E7PTN(P) = up (P)uf (PYA(P)ur (P)ud (P)
= (GM? - m)AUP) - Ay(P) (3)

and

A; = —01,02:A3(P) + 011 - 03, Ag(P). (34)

It follows that the solution of Eq. (16) may be found and thus the full struc-
ture of the quasipotential displayed: ¥9¥ = {1 — gA}~1g1 leads to the matrix
equation [1 — gA] [1] [£9F] = ¢[1], thus,

9= (¢~ (1] - (1] [A] [2]) " (35)

A subtlety here is that the matrix for the unit operator is [1] = diag{1,1,-1,-1}.
It is straightforward to realize k9 numerically by calculating the inverse implied
in Eq. (35).

In the case of a separable potential, one may readily solve the Bethe-Salpeter
wave equation or the quasipotential wave equation, using kernels appropriate to
each. For the Bethe-Salpeter equation, we find

$7%(P) = i(xlGPS (P)x) - k- 675, (36)
and for the quasipotential equation,
$9°(P) = i(xIGI* (P)Ix} - k9P (P) - 97 (37)

These are equivalent if k9% is obtained from Eq. (13). ‘The guantity
i(x|G®%(P)|x) has the same form as A(P) using the A% in place of A,(P).
Similarly, i{x|G9”(P)|x) has the same form using A9 in place of An(P).
Numerical calculations for the scalar separable potential have been performed
based on using x(p) = (1+p*/p*)"2 with u = 200 MeV for the separable poten-
tial. The coupling constant g is determined by the condition that a bound state
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FIG. 1. Renormalization factor of scalar quasipotential. Solid line shows X for
invariant deuteron mass and dotted line shows prediction of Eq. (38). Dashed line
shows result for a scalar, meson-exchange interaction.

«viata Lo M cgual Lo the deuteron mass in the Bethe-Salpeter equation. Solutions
—atewp-anhng Lo differing values of P are obtained from both equations and they
bruenatrate that the deuteron mass s invariant when the boosted quasipotential
w uard i by (37).

Owing to dominance of the + + states in the case of weak binding, an approx-
imate charactenization of the boost of the guasipotential is possible. A significant
part of the eflect is to renormalize the positive-energy matrix element in com-
parison {o its value in the rest frame. The ratioc of matrix elements defined as in
Eq. (30) and calculated in the rest and moving frames is,

Lrr [kQP (Pt

MP) = LTr RQP(P) T

(38)
where the trace is over spins. This ratio may be used to approximate the boost
as a similar renormalization of all matrix elements,

E9P(P) = k9P (Po)/M(P). (39)

A “fit” renormalization parameter can be determined as a function of P by
using Eq. (39) and solving Eq. (37) for the value of A(P) such that the mass
nanvanianl - Figure 1 shows the vanation of A(P) with momentum for this fit

I

case. For comparison, we show the “ratio” prediction based on Eq. (38), which
18 in reasonable agreement with the “fit” value. Also shown in Figure 1 is A(P)
fit to yield an invariant deuteron mass with the propagator of the next section,
but using only the (scalar) ¢ meson. The fit renormalization parameter A(P)
decreases for increasing P? in a qualitatively similar fashion for scalar potentials
of either the separable or one-boson-exchange type. Equation (35) would remain
diagonal and proportional to diag{1,1, —1,—1} if the Dirac structure remained
scalar in the boost. As |P| increases, the matrix can be seen to change its
structure. Owing to the dominance of the ++, ++ matrix elements, a significant
part of the effect is a renormalization of the interaction.

If one has knowledge of the rest frame interaction £9F(F,), Eq. (15) may be
used to determine k97 (P). This case is interesting because the NN interaction
is usually regarded as known in the rest frame and the problem is to boost it to
other frames. A more accurate approximation than a simple renormalization of
ali matrix elements is to expand perturbatively as follows,

EQ(P) m k9P (Po) + k97 (Py) [A(P) — A(Po)] k9F (). (40)

Keeping the second order term in Eq. (40) produces a form for £97(P) that
eliminates mosi of the momentum dependence of the mass. If a renormalization
factor A(P) is used with the approximation of Eq. (40), then a value A = 0.984 at
P? = 50 fin~2 is required to keep the mass invariant, as compared with a value
A = 0.882 when k9P(P) ~ k9P(Py)/ ) is used and A = 1 when the exact k9P (P)
is used.

B. Effective boost approximation

For the one-boson-exchange potential (in the rest frame) we use the Bonn
potential (Bonn B, energy-independent, Thompson propagator) {11,12]. This po-
tential includes scalar, pseudo-vector, and vector meson exchanges (o, 6, 5, x,w, P)
and 18 detailed in Appendix B. When projected onto positive-energy plane-waves
(p1pz = ++) in the center-of-mass frame, the Dirac two-body go of Eq. (2) re-
duces to the Thompson propagator and V reduces to the Bonn potential. When
negative-energies are included, there arise couplings in the quasipotential for
which initial state rho spins of both particles are opposite to the final state rho
spins. For example, V+*+=~_ An analysis of Feynman diagrams where such cou-
plings arise shows that they generally are suppressed strongly in comparison with
other couplings owing to the necessity of large time-like momentum transfer of
order 2m. For all other couplings, the instant constraini provides a reasonable



starting approximation. To accommodate this fact, we eliminate the suppressed
couplings by setting them to zero, i.e., [y)43V]?1:#3:#1:02 —  when p| = —p; and
Pz = —pa.

To obtain the correct deuteron binding energy when negative energy sectors
are included, we modify the Bonn B potential by increasing the scalar attraction
about 6%, from g2 /4x = 8.0769 to 8.5503. (See Table II.)

For the meson-exchange interaction, the simple approximation discussed
above has been used to boost the quasipotential: V{p’~p,P) = V(p'—p)/A(P),
where A(P) is fit to produce the correct deuteron total energy, Ep = (M2 +
P?)!/2, using the two-body equation and propagator of Eqs. (1) and (2). This
approximation can be shown to be consisient with current conservation when used
in the analysis of elastic form factors. Note that the Dirac spinors appropriate
to a moving deuteron are treated exactly and that the factor A(P) approximates
only the additional change of the potential required in an instant formalism. Fig-
ure 2 shows that the required change of the potential is modest, with X varying
linearly vs. P? over a wide range of values. For the full meson-exchange inter-
action, the renormalization factor A(P?) increases with P2, in contrast with the
result of Figure 1 for a scalar interaction. This is caused by the differing boost
factors required for different types of interaction. When A(P) = 1 is used, the
peetenhial 2 Lo altractive and the binding energy of the deutercn increases from
v M oz 22MeV at PP = 0to 2m— M = 4.2MeV at P? = 50fm~2%. We
bave alculated the deuteron form factors based on A(P) = 1 for comparison
with thoee based on A(P) determined so that M is invariant. The differences are

siall

IV. SYMMETRIES AND REDUCTION OF THE EQUATION

The homogeneous equation is symmetric with respect to the operations of
spatial reflection (P), particle exchange (R32), and time-reversal (T), ie., go =
PaoP! =Ra90R; = TgoT ', and V is assumed to behave similarly. Thus it is
possible to have solutions of the homogeneous equation with good corresponding
parities:

vi' (p, P) = 7Py¥ (p, P), (41)
"J)y(p' P) = fhzﬂﬁ’y(l)s P)) (42)
¥ (p,P) = m(-1)MTy; ¥ (p, P), (43)

where the parity, exchange parity, and anti-linear time-reversal operators are,
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FIG. 2. The scaling of the potential, V(p’' — p, P) = V(' — p)/M(P?), that produces
constant deuteron mass, M = (E% — P?)'/2 = 2m — 2.22464MeV: full propagalor
(solid}, ++ states only (dotted).

P =m1rA, (44)

AH: =71, (45)

T = olalk, (46)

where K is the operator of complex conjugation and X and B reverse three-
momenta {Bp = —p, BP = —P); II reverses relative four-momentum

(Ilp = —p); and B, exchanges Dirac indices (Be1h = M Rsy Bl (papy) =
u5* (p1P1)P:, etc). For the deuteron § = 52 = ny = +1. Note that PR is
equivalent to the H-parity operator of Kubis {13].

To find wave functions with good exchange parity, we rewrite the homogeneous
equation using $(—p, P) = 12R.¢(p, P) and find that,

d3p .
w(p’;P)=go(p’;P)7?73/ )0(5;)31?73 Vip',p; P)
Ps

+ V(p',—p;P)msz] ¥(p; P). (47)

Note that the necessary range of integration of p, is halved. To find wave func-
tions with My = 0 and good combined PT parity, we will form eight basis
functions with +P7T parity, and eight with —P7 parity.

13



The Breit frame total angular momentum operator is, J = J; + J 9= £+ S,
where £ = I+L l=rxp,L=RxP, and § = %(o’l+ag). Because
J? and J* commute with g5 and V, solutions of the homogeneous equation
are eigenfunctions of J? and J*. Also, wave functions with polarization states
M; = x1 can be obtained from the M; = 0 state using raising and lowering
operators, yM’¥+1 = VII+M)J - M+ 1)JEyMs. However, 1, L, and S do
not separately commute with g5, and the usual LSJ partial-wave analysis is
inapplicable. To proceed, we define cylindrical eigenfunctions of J* which form
a basis for the ¢ dependence of the wave function:

Vi (9) = M=t g ) ), (48)

where p = (p™ cos(¢), p*¥ cos(¢), p°) is the relative three-momentum, J* YMs =
M;Y¥: and s; = +1 are the +# components of spin (parallel to P = P*z). A
related set of eigenfunctions which we call the PT basis is given by,

1
M= —2(yi‘,: + M,

1
yMr = o (yMr _ yMyy
yis o L ymeymy
1
Y= (V3 - yMn, (49)

where the & subscripts are shorthand for :l:%, :l::}. It will be shown in Appendix A

that these eigenfunctions have good PT parity if My = 0. Each set of eigenfunc-
tions is orthonormal,

[ D a9 = b, (50)

where a = (1,82, M) (or a = (a, M;) with « € {el,01,€0,00}) and o’ is
similarly defined.

To form a complete set of two-particle basis functions, the angular eigen-
functions are combined with Dirac spinors obeying the hermitian normalization,

w(pp)u? (p'p) = 6,0 (Al),
X572 (p, P) = uf (01 p1)ub" (p202)Va($). (51)

Fither set of sixteen basis functions is an orthonormal set,

11

d © t
[ 5 0.2 20, P) = b8, b (52)
and the wave functions are expanded in either set as follows,
v RiP)= ) X8 (0, PSP (v, 0 P). (53)
P1.,2,8

Using these plane-wave basis functions, the homogeneous equation (1 or 47)
can be written in component form as
k=¥ dk*yk*

(2n)?
XV 0, 7Y Rk kY P)
(64)

¥, Y P) = GO (9, 9V P)

or
"ot k*VdkTy E?
a (P P ) k50 (23',)2

XVELEOE (0t 57k kY0 (K KV, P),  (55)

GoPa(p?, p*Y; P)

where the diagonal hermitian propagator is
d¢ o f
/ 3 [xﬁi””(P, P)] 90(p; P)1i7; X2 ** (p. P)] =
Gp;'p;(pz,pxy;P)ép;‘pl‘sp;,pqéﬂ‘,ﬂ! (56)
with
] I EP -1
A p )= G+ AV - st b )] 1)
and the hermitian potential operator is given by,
VELPEPLO (gt ey e peYy =
d¢,ddy e t .
oy [P RV ek PPy (o8)

or



ror, d d ! 1
Vp”p"p"pz(pz,p‘v;kz,k:y)E —-—-—¢p L {Xﬁ}’h(p,P)] LA I B N e LANY LI B N I

(F>0) a'sa (2m)? 0.07 — 0.0025 |~ ~
. N i + . - ++ -
X172 [V(p,k;P) +V(p, -k P)'ll:?Rx] xa"*(k,P).  (59) 0.06 I '¢'01(Ipl,P) 1 o002 _-'.\'. "’lpzl(lpl,P) -
L _ {005 — L ]
A detailed partial-wave analysis of the potential is contained in appendix B. 3 a 1 00015 +‘\ ]
Equation (54) or (55) is solved for My = 0 at fixed values of total momentum % 0.04 I 1 - I i
using the Malfliet-Tjon iteration procedure [14] and numerical integration over E 003 1 o.001 [ .
p*¥ and p* (or radial and polar angle components). Wave functions with polar- o - -
ization states My = +1 are obtained from the M; = 0 state by using the raising 001 - 1 0.0005 —
and lowering operator, yM731 = VI +MYJT - M; + 1)JEyMs (’)0 -, ) 0.0 .
0 75 150 225 T 0200 400 600 800
V. RESULTS FOR WAVE FUNCTIONS 0.000012 T ™ T 0000015 FA— T T T
l.e-05 -+ - +- -
Our wave functions vary as a function of both the magnitude and polar angle ~ B.6-06 'l,b 10([pI,P ) 1 1.e0s ’(,b "(lpl,P ) -
of relative momentum. To show how the wave functions change with total mo- o ¢ 4 i
mentum, we project them onto standard LSJ basis functions and integrate out T 6.e-06 1 se-06 i
dependence on the polar angles, O 4606 _ ’ ]
i ~ 7 ea- -: 0.0
Tl 0= [ d, Disane, ) 9¥ (o, P, (60) 206 - R y
. 0.0 Y
wlote tbe d 5J Lasis lunctions are given by, 2.6-06 | \l'ﬂ‘T-] L -3.¢-06 N bl PR
" 0 750 1500 2250 0 750 1506 2250
y:‘:}’(p) = Z (I: S) m‘:mS“:S) J; MJ)“,m,(8)¢) IS, mS); (6].) l-4e‘% L) ' T I T ! T ] 73-07 [ T T I T I T ]
ms=—1 126-06 - - ) - - -
where | and § are the relative-orbital and spin angular momenta, j = 14+ § ~ le-06 "l/)()](lpl,P) q 6e07 [ ¢21('plsp ) ]
and 1 = r x p. These wave function components are shown in Fig. 3 for total N 8.6.07 - q >e07 RN\ ]
momentum corresponding to P? =.0025, 12.5, 25 and 50fm~2. A ‘probability’ ' ) - 1 4607 |- f7 .- %) —
for the wave function projections as defined by v 6.e-07 N . 3.0-07 |-F \ A
M 4.e-07 |- 1 5 o7 L -
1 — 1 2 B N .- -
Pg” = o [ vdpivts” (ol ) (62 2007 [- J 2o :
P 0ok 1 1le07 —
is shown in Table I based on the wave function normalization of Eq. (4). ’ 1 ool + |
0 1000 2000 3000 0 1000 2000 3000
p (MeV) p MeV)

V1. CONCLUDING REMARKS
FIG. 3. Dependence of Breit-frame wave functions on total momentum. [n

. . : . _ this fi J = 1and Mj = 0, P = 0MeV(solid), P = 698MeV (dotted),
I'he theory of relativistic bound states is formulated in three dimensions by P“i QBg;JI;eV(dashed) nmd PJ= 1395 MV (long d;s)(.so ) eV (dotted)

use of an instant reduction of the Bethe-Salpeter formnalism. This formalism is
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P2

npadSs 0.0025 fm 2 12.5fm=2 25fm~? 50fm 2
+401 0.9499 0.9433 0.9363 0.9226
++21 4.97x10°* 5.59x 102 6.18x10°2 7.22x1072
+-10 3.86x10°° 4.00x1075 4.09x1075 4.18x107%
+-11 1.46x 1074 1.19x10™4 9.80x10°5 6.86x10-5
——01 2.70x10~7 3.07x10°7 3.20x10°7 2.82x10~7
—-~21 2.49x10° 1.72x10~6 1.27x1076 8.01x10~7
P{++) 0.99962 0.99921 0.99815 0.99475

TABLE I. Wave function projection probabilities (J = 1 and M; = 0). See text.

P(++4) = P(++01) + P(++21).

applicable to the analysis of elastic form factors and it is consistent with cur-
rent conservation and four-inomentum conservation. Elastic form factors involve
tuatrix chements which are calculated in the Breit frame, thus requiring wave
fuss tionn fur the imitial and final states that have been boosted to momentum
P - tlq These wave functions are calculated in this paper for the case of the
deuteron. The form factors for the deuteron will be the subject of another paper.

‘The mnain issues addressed in this work are the boost of the interaction that
15 required and the solution of the quasipotential wave equation in frames where
the total momentum is nonzero. We have shown that in general the boosted
interaction is defined as the solution of a four-dimensional equation and that
equation has been solved for the special case of a scalar, separable interaction.
The main effect of the boost is to renormalize the dominant matrix elements
of the interaction as three-momentum varies, although there is also in general
a change in the Dirac structure of the interaction. An approximation which
captures the renormalization effect is used for the more complicated one-boson
exchange interaction. For momenta up to P? = 50 fm~2, the rencrmalization of
the interaction is modest in the case of the deuteron, varying linearly with P2 and
amounting to about a 10% reduction of the one-boson exchange potential at P2
= 50 fin=2. A complete solution of the boost of the meson-exchange interaction
is left as an unsolved problem. However, the separable potential analysis suggests
that a perturbative expansion of Eq. (15) may provide accurate results for the
boost.

The solutions for the quasipotential wave functions have been developed and
the results show that there are modest variations as the deuteron is boosted to
momenta up to P? =50 fm~?, corresponding to g% = 200 fm~2. In a future
article, they will be applied to the calculation of elastic form factors for the
deuteron.

Support for this work by the U.S. Department of Energy under grants DE-
FG02-93ER-40762 and DE-AC05-84ER40150 is gratefully acknowledged.

APPENDIX A: BASIS FUNCTIONS AND OPERATORS

The hermitian plane-wave spinors for particle i and denoted by ufi(pik) are

1
ut(4ki)= N k. |,
l(+ ) (gl ¥n| )

—o; -k
u.‘(—k.-)=N( & *lm ) (A1)

with N = (5%"-)1/2

spinors with zero momentum which are related to the plane-wave spinors by,

and ¢, = (m? + k) Y21t will be convenient later to use

(o) = N1+ pi 2t (0) (A2)

Symmetry and Dirac operators acting on the basis functions will produce lin-
ear combinations (independent of ¢) of the basis functions. Some useful examples
of this follow. The action of the operators on the Dirac and spin parts of the basis
functions will be considered separately. Consider first the symmetry operators of
Eqs. (44) - (46),

Pul'(piks) = pul* (piki)P,, (A3)
Praul* (piki) = u*(pik;)Pra (5 # ), (A4)
Tul* (piki) = uf*(piki) T, (A5)
and
PN (8) = ()Mo y M (4), (A6)
PraY M1 (¢ = (-1)Mim T2 yMa (4 (AT)
TYMI (9) = ()M Y- M (4) (A8)
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the YM1(4) of Eq. (49) (o € {el,0l,e0,00}) are easily
we equations. In particular, for the basis x4;77% (k,P) =

Y (),

2k, P) = { TAP2X5 ks, P) @ =ol, <0
! ’ h —plhle,féuj(k,l)) 0 = el,OO *

(A9)

tions have PT = +1 if M; = 0. The condition P7 = %1
y =P = £(-1)’*! for the standard LSJ basis functions in
me. -

ac operators such as 70, % - k5, 71 - 72, etc., acting on the
given by x£1:52(k, P) = uf' (0)us*(0) VM1 ($). Their effect

81,3
m spinors islp;.rt.icularly simple,
uf(0) = piul*(0), (A10)
7 uf*(0) = u7*(0). (A1)

.ors acling on the basis functions produce linear combina-

M s yM, 2, VM (A12)
“ = -.z;,-llc;y,"j'l,2 + kf"yf‘,h.,, (A13)
HEI Y SR T A0 (A14)

k3¥. For the analysis of potential operators, it is useful to

2191Vl (90) + (7 — VY L (6),  (AL5)
20203950y (#2) + (€™ — KN (0e),  (AL6)
d¢a=dp— ¢s.

an be derived for the same Dirac operators aciing on the
Mi(4) basis functions. This can be accomplished by using

nd defining a basis transform between the two bases. Note
¢ operators, such as 47, do not commute with P7T.

B: PARTIAL-WAVE POTENTIAL ANALYSIS

we sketch the partial wave analysis of the one-boson-

This 1s most readily accomplished using the X5 =

20

uf' (0)us?(0)VM (¢) basis functions. The potential in this basis can easily be
transformed to plane-wave or PT bases. The operator form of the potential is
generated from the Feynman rules for meson propagators,

Ag) = q,—_ﬂlsz (B1)
Aqp(g) = [—ya,ﬂ + ";Z"] Alg), (B2)
and meson-nucleon vertices,
As(g) = -1, (B3)
Ap(g) =47 -¢7°, (B4)
A9 = (5° + 50" ), (B5)

where the exchanged four momentumis ¢ = py — k) = p— k = ky — p;. The
exchange of a single meson is given by A(g)A(g)A(—q) (or A%(g)A. s(g)A®(—q)
for vector mesons) with a factor of 7, - 5 added to the exchange of isovector
mesons and a coupling constant g and form factor F'(¢%) attached to each meson-
nucleon vertex. Note that for the isoscalar deuteron, 7, - 5 — —3. The Bonn
model form factors are,

A} —u?

Fi(¢®) = AT gt (B6)
Thus the full cne-boson-exchange potential is,
Vip, k) = ) gt Ad(a) FA(a*MVila), (B7)
where £ is summed over the six mesons of Table 11,
4 = { 'rlirz 1:f c = ::sovector meson } ’ (B8)
if i = isoscalar meson
and
‘_75(9) = As(g)As(~9), (B9)
Ve(9) = —Ap(g)Ap(—9), (B10)
W (g) = A (q) [yu,p + ";3"] A (- q). (B11)
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~Using Eqs. (A10) to (A16) it can be seen that
NViIXSL02 oy, (K, P)
= X3tk e, (e PV, 70 5 BP0 P00 et (BL2)
where 1 = S,P,V, n = (,£1,42 and ¢4 = ép — ¢ with implicit sum over
double prime variables. The exact form of [V;] is easily derived using a symbolic
manipulation program such as Mathematica. For Vi, note cos(¢a) = (' —

e *#4)/2. Next, the scalar part of the potential, which is a function of ¢4 but not
of ¢, or ¢ alone, can be integrated, .

d d v 1 . 5 n
e} ? Xo12 agi (Bp)| AFZen4 Xoh'va o, (B1)
(2-;) 144 1i%a

= =i
= b0, o Bpy 0y 00} by s bmay M TE AR

(B13)
where | = M) — 5] — s} and
n déd in
lpar = ﬁ‘A(G)Fz(qz)e b (B14)
t canbuoing the necessary faclors, the partial-wave potential is,
b, =
D GLIERE i(p o B KT (Bs)
i

This partial-wave potential based on zero-momentum spinors can be transformed
to a plane-wave basis using the basis transform implied by Egs. (A2), (A1D),
and (A13-A14),

Finally, the scalar ¢4 integral of Eq. {B14) must be evaluated. This can be
accomplished analytically using z = ¢*# and contour integration around the unit
circle in the complex plane. We first express A F'? as a sum of simple denominators
times ¢4 independent coefficients using a partial fraction expansion. The integral
of a simple meson denominator is given by,

n = déq gine _ dég ings __ z.:
W= o o Theo(gg = ) 2w AW =5 (B16)

where a, = puf ~ (¢(¢a = 0))*, b = 2peykey (thus ~A=Y(g) = p2 —¢? = a, —
beos(d4)). and a,, > b, 2y = (a—5)/b, 5, = vaZ =82, The denominators of

Bonn B potential parameters
(energy independent, Thompson propagator)

T 1 P w & o
PV-IV PV-IS V-1V V-IS S-1v S-1S
u .13803 5488 .769 7826 983 .550
A 1.2 1.5 1.3 1.5 1.5 2.0
g*far 14.6 5.0 .95 20.0 3.1155 8.0769
f 6.1 0

g2 [4x with negative energy sectors 8.5503

TABLE II. Meson Parameters of the Bonn B model [12], and modification to
¢2/4x when negative energy seclors are included. M and A in GeV. Nucleon mass
is m = .938926GeV, deuteron binding energy is 2.224644MeV. Vector propagator is
approximated by Aa 5(9) — —ga,n A(g).

the Bonn form factors, Eq. (B6), take the same form with u replaced by A; thus
In = I(p — A). Using the partial fraction expansion for Bonn form factors and
the simple integrals above,

n N 6 i
Ipap =—Ip +I§ — (A% - Pz)ﬁh- (B17)

This integral can be numerically checked using the following simple, well known,
technique. We can write,

A(F*(¢*) = A(g) + (F2(1?) - F*(¢%)) Alq), (B18)

for any form factors with F(u?) = 1. The first term is integrated using Eq. (B16),
while the second term is evaluated numerically. Note the second term is non-
singular even at g2 = u2, which can not oceur with instant constraints, but can
occur if different constraints are used on the left and right of V.
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