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I. INTRODUCTION

There has been considerable interest recently in the use of semi-leptonic weak
neutral cucrent scatlering to study the strange-quark “content” of the nucleon
[1-12]. In particular, several parity-viclating (PV) electron scattering experi-
inents are planned and/or underway at MIT-Dates, CEBAF, and MAINZ whose
objeclive is Lo measure the nucleon's strange-quark vector current form factors
[t3-17). In a similar vein, & low-|@? determination of the nucleon’s axial vec-
tor strangeness form factor will be made using neutrino scallering at LAMPF
[18], following on the higher-|Q?| measurement made al Brookhaven [19]. These
experiments are of interest in part because they provide a new window on the
role played by non-valence degrees of freedom (apecifically, virlual 53 pairs) in
the nucleon’s response to a low- or medium-energy exlernal probe. ln contrasl
to Lhe theoretical analysia of acattering in Lhe deep inelastic 'regime, for which
perturbative methods are applicable, the interpretation of low-to-mediumn en-
ergy scatlering can be carried out at present only within the conlext of effeclive
hadronic models. In the case of the nucleon’s slrangeness form factors, several
model calculations have been performed yielding a rather broad spectrum of re-
suits [20-26). It is desirable, then, that cxperimental determinations of Lhese form
factors be carried out at a level of precision allowing one to distinguish among
various models and the physical pictures on which they are Laged.

As discussed elsewhere in the literature, semi-leptonic measurements per-
formed with proton targets alone would not be sufficient for Lhis purpose [1,2,8].
A program of measurements which includes 4 > 1 targels appears lo be war-
ranted [1,2]. The interpretation of neutrino-nucleus and PV electron-nucleus



scaltering observables naturally introduces a new level of cqunplication associ-
ated with many-body nuclear dynamics nol encountered .in the case of proton
largels. These many-body eflects are interesting in Lwo respects. On the one
hand, if one wishes to extract Lhe single nucleon strangeness form factors fromn
nuclear form factors, one requires knowledge of the many-body contributions Lo
the nuclenr strangencss forin factors. On the other, the role played by non-
nucleonic strangeness (i.c., non-nucleonic, non-valence quark degrees of freedom)
in the nuclear response is interesiing in ils own right,

Recently, one cless of many-body conlributions to the nuclear strangeness
form [actors — meson exchange currents (MEC’s) — were analyzed for the case
of "lle [27,28]. A hclium target will be used in a future GEBAF PV electron
scatiering experiment designed to study the nucleon’s strangeness electric form
factor al moderate-|Q?] {14]. in Rel. [28], it was shown that MEC’s give a
non-negligible contribulion to the 1lle strangeness forin factor at the kinematics
of the approved experiment, Of parlicular note is the p-to-m-meson strange-
quark “transilion current”. Using a simple ¢-meson vector dominance model
and the known ¢ — prx branching ratio, this MEC was estimaled to give a 15%
contribution to the I'V asymmetry. Given the magnitude of this result and its
potential importance in the interpretation of the 1le experiment, one would Jike
a more delailed nnnlysis of this sirangeness transition current. The goal of the
present paper is to improve upon the vector dominance estitnate by including
loop effects. In so doing, our objective is not so much to provide an airtighl
theoretical prediclion as to arrive al an order of magnitude for, and quantify
the theoretical uncerlainly associaled with, loop effects. Seclion 11 gives a bricl
discussion of the nuclear physics conlext flor our calculation as well as a review
of the ¢-dominnnce eslimate of the p-x strangenesas form actor. In Seclion HI
we present the formal framework in which we carry out our analysia. The loop
calculation is presented in Section 1V. Seclion V givea our results and a discussion
of their signilicance, and in Section VI we munmarize our work. Technical delails
mny be fonnd in the Appendix.

1I. NUCLEAR STRANGENESS FORM FACTORS

The "He PV asynunetry, A, q, can be writlen as [1,2,6]

_Glet [, 0
App= L5 [4 sin® 8, + Ty | (1)

where G is Lthe Fermi conetant measured in p-decay, Q? = w? — |G]* is Lhe
four-moinentum transfer squared, and where electroweak radiative corrections
have been ignored for simplicity. The quantily FT="(¢) is the ‘lie electroinag-
nelic elastic charge form faclor (7' = 0 for isoscalar targela). The *lle elastic
atrangeness form faclor, F5')(g), is given by

FE(g) = ] Pzelt (g 015! (2)6(2)[g..), @)

where |g.5.) is Lhe nuclear ground state and s(£) is the strange-quark field oper-
alor. Note that since #!s is just the charge component of the strangeness vector

current, 7,5, and since ‘lle has no net strangeness, the forin factor F.g') musl

vanish at zero momentum transfer. For non-zero momentum Lransler, F‘é')(q)
receives a number of conlributions, some of which are illustrated in Fig. 1.

In conventional (non-relativistic) nuclear models, the processes of Figs. la
and 1b are sensilive lo Lhe nucleon’s strangenesa veclor current form faclors.
Thoae of type la give Lhe so-called impulse approximation, or one-body, contri-
bution. Peocesses of type 1b which involve an exchange of a meson M must be
included in any nuclear calculalion which respects vector current conservation
and in which the two-nucleon polential arises from ihe exchange of ineson M. In
the present paper, we are concerned wilh contributions of Lype lc, which involve
matrix clernenta of Lhe strangeness veclor currenl belween incaon stales M and
M’. 1L is straighlforward to show using G-parily invariance that (M'[éy,.s|M)
vanishes when M = M’. Hence, only transition matrix elementa contribute. The
corresponding MEC's are referred to as “Lransition currents”. For moderale val-
uea of momentum-trensfer, one expects the lighteat mesons Lo give the largeal
eflect, since they have the longest range and experience Lhe least suppression
from the N — N short range repulsion. For this reason, we reslricl our atiention
to the transition currenl involving Lhe lightest possible allowed pair of states:
M =7 and M' = p, '

For on-shell mesons, Lhe p-lo-a transition matrix element has the structure

(2} 2
e R (3)



where € is the p-ineson polarization veclor, k, and ky are the meson momenta,
and a and & are isospin indices. In the case of nuclear processes, where Lhe
lypical momenta of hadrons inside the nucleus have magnitudes less than the
Fermni momentum {~ 200 MeV), the virtual p-meson will be ralher far off its
mass shell. Consequenlly, Ulie dimensionless forn [actor g( ) ought also Lo depend
on k7 and k2 as well as Q2. I is conventional in nuclear calgulations, however,
to neglerl. lhe ofl-shell dependence of transition form [actors, so for purposes of
making contacl wilh this framework, we will quale results for the on-shell case.

In previona work [27, 28], an estimate of q(')(Qz) was made baged on the aa-
smplion of g-meson dominance, as iltusirated in Fig. 2. Under this assumplion,
one has

{p" (kv, )livaln’ (k2)) = (0]av,0l4(Q, E4)) Mﬂ;('f'(f-'.u)lr’( ki, e)n{ka)),

(4)

where €4 ia the virlunl ¢-meson polarization vector and where a sum over all
independent polarizations is implied. Noting that Lhe ¢ is nearly a pure 55 state,

8o thal (0]iiy, ul$) » 0 a4 (0]dy,.d|¢), one has (see the Appendix for details)
M?
01375 16(Q.€)) = -8 (OM,116(@, ) = =3 Fhe,, (5)

where one obtaing [y & 13 froi an analysis of P(¢ — ete™) [29). From the
experimental value for the ¢ — pr branching ratio [29), one may obtain a value
for the mngnitude of the decay amplilude, {pr|p}. From these inpuls one oblains
for Lhe Lransilion form (nclor (see Lhe Appendix)

Hons

NN, o = T it (6)

with |gpa.] = 0.20 GeV? [30).

“In whal follows, we consider addilional contributions to ys,:r)(Qz) arising from
loups, ns in Fig, 3.

The rationale for considering Uiese contributions ia similar Lo that for in-
cluding loops int studies of other formn faclors. From a dispersion integral stand-
point,, g (Qz) reccives contributions not only from poles (identificd with veetor

mesona}, but also [rom the multi-meson, intermediate-state continuum. For val-
ues of Q? sulliciently far ftomn the poles {e.g., M?2 ), the continuumn contributions
need not be negligible. In the present instance, the lightest allowed intermediate
states contain one pseudoscalar and one vector meson (parity requires the van-
ishing of the strong inleraction # — two I mnplitude). Hence, we will consider
contributions involving one K z‘md one K* in the intermediale stale.

1. EFFECTIVE LAGRANGIANS

In this section we derive the effective interactions relevant Lo the calculalion
of one-loop contribuliona to Lhe mnatiix clement {p?(ky, £)|a7,8|x (k1)) and de-
lermine the elleclive conpling constanls associated wilth thew. In the derivation
we use an effeclive chiral Lagrangian, which takes into account the global syn-
metries of QCD. This Lagrangian involves the octet of light pseudoscalar micsons
(the qunsi-Goldatone bosons of spontancously broken chiral SU.(3) x SUR(3)),
the nonet of vector mesons, and external gauge sources needed Lo oblain the rele-
vant currents (electromagnelic and strangeness) which play a role in our analysis.

The [ramework is that of the non-linear o-model. The quasi-Goldstone ficlds
are coordinales of the coset space SUL(3) x SUx(3)/SUv (3) ~ SU(3), and appear
in the following form

U(z) = exp (—;’3-) .

where A? are the Gell-Mann malrices normalized according lo Tr(AA} = 2 598
% are the members of Lhe oclet of pseudoscalar quasi-Goldstone fields, and
Fp ~ 93 MeV is the pion decay constant in the chiral limit. The translornalion
properlies of the quasi-Goldstones are delermined by the way U(z) responds
lo a chiral transformation: U(z) — RU(x)L}, where I () belongs to SUL(3)
{SUn(3)).

a8
=3 "2, (7)
a=1

The chiral transformation law for the octel of veclor mesons is given by

Vi = hV, & (8)

where V,, = V2%, u(z)
cquations

=/ U(x), and h = R(L, It, u(z)) i3 determined Ly the



Lu(z)=u'(z)h Rul(z) = u"(:z:) h, (9)

where 1’ resulls from the aclion of the chiral transformation on wu.

In order Lo build & chirally invariant Lagrangian for the octet of vector mesons
we further need Lo introduce a covariant derivalive

Vp=08,—il, I, = %(u'ﬂ,.u-f ud,u'), (10)

which operales as follows on Vy,: V,V, = 8,V, — i[[,, Vi]. Similarly, we require
the axial veclor conneclion

wy = %(u'ﬂ,.uuuﬂ,.u'). (11)

Both V, and w, have the same chiral transformation law as V,,.

n addition, we will consider two exlernal source gauge fields, the electromag-
nelic potentinl A, and the potential S, which couples to the strangeness vector
cirrenl. In this wny one ean obtain the moal general for of the reapective cue-

renls in the elfective Lheory. AL Lhe appropriale stage we will show how they
enter in the elfeclive Lagranginn.

"I'he piece of the effeclive Lagrangian containing the kinelic and mass tering
of the vector meson octel is given by

2
R Lo TE A UAT (12

where V,, = V,V, - V. V,. The Lagrangian Ly only contains terms with two
vector tnesons (V) and even numbers of quasi-Goldstone bosons (P}. There is
no SU(3) breaking al this level in the inleractions. For simplicily, we will only
include the dominant SU(3) breaking eflects which are generated by the mass
splittings in Lhe oclels of pseudoscalar and vector mesons.

The verlex of Lype VV P needed in our analysis is specifically pICK. In
order to delermine Lhe corresponding coupling constant we need to consider in
addition the VV®P vertices, where V° is the singlet component of the nonet of
veclor mesons. ‘I'he corresponding effective Lagrangians at leading order in chiral
power counting are of O(p), where p denoles the generic small momentum carried
by the quasi-Goldstone bosons, and read

Lyvp = R €uupe TH({V* VY, VP)w?)
Lyyop = Ko €upe TH(VF VY W)V (13)

Here, we have used the idenlity €,,,, VPw® = 0 to simplify the expressions. For
the vertices of interesl we need only keep Lhe fitst Lerm in the expansion of w*;
wh = 5—%8" Il -+ O{I13). 'The only observable strong interaction process of this
type is ¢ — px. In order to be able to delermine fts, we must simultaneously pin
down R, and this requires further information, which we obtain by considering
the radiative decays V — Py supplemented with the hypolhesis of vector meson
dominance. From this analysis, presented in the Appendix, we oblain Rg =
0.27 1+ 0.08.

The verlices of type VPP we need are of the lype K*Kx. They are de-
termined in terms of a single effective coupling, and Lhe correaponding effective

Lagrangian ia

Lyvpp =& T{V,.V, ", u"]) , (14)
where £g can be determined from either of the following Ltwo decay widthy:

2
M(p® — xtas) = _—"1926:1"., MI(M] —ApM3)?

e+ +.0 fg 2 Ly 2 Ex 2
F{K*T = Kta%) = 96x F3 B Ex ky(Mg. — (1 + E;()MK -1+ -E)M,)
1 M2 2 pf2
k.’ = 2MK’ JA[ K"MK' tl ] (15)

where A[z,y, 2] = 2?3 + 22 —~ 22y~ 222 — 2yz. The first width gives &5 = 0.175
and the second gives g = 0.140. Nolice that we have used the same decay
constant for 7 and K mesons. Under the assumption of SU(3) symunelry in the
interactions, the use of either value of £ is justified.

Now we turn Lo those terme in the effective Lagrangian which determine the
eleclromagnetic and strangeness currents, The electric charge operalor contains
only octel pieces and is explicitly given by @ = £(A% ¢ —‘3 A8) = £ diag(2,-1,-1),
while the strangeness charge operator contains a singlel and an oclet piece and
reads § = %(l —~ 3 A%) = diag(0,0, 1}. In the following, § denotes eilher of these
charge operalors, and v, represents either of the Lwo source fields A, and 5.



Lel us fitst consider the V — vy amplitudes relevant for the VMD analysis.
"The effective Lagrangian conlains an octet and a singlet piece

Loy = Cgv* Te(§V,) + Cov™ TV . (16)

The leptonic widths of p°, w and ¢ determine Cy according to:

x 2 My

IV —ete )= ha o (17)

wlere
fo = _E""e'
8
VB M3
cosd Cy
M!

V6
I = m&fg - (18)

Ju=

In practice, Lhe w— ¢ mixing mlgle is taken to be that of idea! mixing, tan 8 = /2,
which leads Lo Cq 22 0.18 GeV?. In order Lo delermine the transition mediated
by the slrangeness current, we also need to know the singlel coupling Cy. As
there is no direct experimental determination of this coupling, one must rely on
some hypothesis. By assuming exact OZI suppression in the w-to-vacuum current
malrix elements (i.e., {0]37,5|w) = 0), we obtain Cp = —Cg/\/:‘-l = —0.092 GeV?.

The transilions within the oclet of pseudoscalar and of vector mesons medi-
ated by the currents are oblained by minimal substitution into the chiral covari-
ant derivative V,, in Fq. (12}, plus a gauge invariant term involving the ekl
slrenglh tensor of Lhe gauge licld in the case of the vector mesons. 1loth elec-

tromagpelic and strangeness current. Leansitions are deterinined by the following
cffective Lagrangiana:

Lppy = _% Te(, 10 1, 1] + ..} "
Lvve = 3V [6.V) 0" 4§ 2 (Vi W] ) (19)

Only one new wnknown effective coupling (z) entera, which is rclated to Lhe
magnelic momenls of the vector mesons. As we mention in the Section V, the

9

lack of expertimental access to z does nol affect our resulls, as it appears only
in a loop diagram (diagram 3¢} which turns out to be numerically substaniially
smaller than the other diagrams.

Vertices of type V PPy are obtained from Eq. (14) by minimal subslitution
in V, and w,, and by a term proportional to the field strength tensor of the
gauge field. The eflective Lagtangian reads (for the sake of simplicity we keep
only terma relevant Lo our calculation):

Lyppy = —i 4—%‘ Te (8"V([8,10, [§,]}v, — i = v)
o
+ o"[§, V¥]([8.11, &, 11))

42‘3 Te (8" VY4, 0], H]) v 1 ... . (20)

+i

The new coupling constant (g is fixed by consideting thie radiative decay p% —
x*x~v. Using the expression for the partial width

0 ' aM, M, M,— B,
) )= dE E
I'{p" = a7x"7) WM. DI/M. dE,
x O [4(E} — M2)(E] - M?)
= (MJ 4 2M] — 2B, + E2)M, + 2 E\ £;)?)
x (2(s M, — (2(s — £8) (E\ + E3))? (21)

and using the previously determined value g = 0.176, we obtain Lwo solulions:
Ca = 0.1566 and (s = —0.082. Unfortunately, there are no further measured
observables to discriminate between these two solutions. In our results we will
include both possibililics.

The final vertices we nced are those of the lype VV Pv. As in Lhe previous
cnae, we only need those involving members of the meson ocleta. They are enlirely
delermined by minimal substitutlion into cq. (13), and the relevant picces read:

' It
Lyypy = ,"‘i 8 €Cuvpa I ("" “él V"], Vp]oﬂ 1
P2 F,

+ v {@"VY, VPG, 1)) . (22)
We notice here that the effective Lagrangians (19), (20) and (22) only couple the

octel components of Lthe vector sources to the mesons, The SU(3) singlel picce of
the vector current is the Baryon number current which cannot couple Lo mesons.

10



From the effective Lagrangians given in this gection. it is,straightlorward Lo
derive Lhe Feynman rulea and caleulate the one-loop dingrams in the following
seclion.

1V, ONE LOOI’ CALCULATION ./

In this section we discuss some salient features of the calculation of the one-
loop contributions to {p°(k),€)|#v,8|x%(k2)}, which on grounds of isospin sym-
metry are the same as the contribulione lo (p* (k, £)|y, et (k2)).

There are only lour diagrams, depicted in Fig. 3, which contribute at one-loop
order. As expected, all diagrams are ultraviolet divergent. Diagrams 3a, b and
d are quadratically divergent, while diagram 3c is only logarithmically divergent.
At this poini we must warn thal, quile in general, the present calculation shows
lack of an appropriate chiral expansion as an expansion in the number of loops;
this is due to the presence of a heavy meson (/(*) in the loop. Hence, in contrasi
to calculalions involving light mesons or atable heavy baryons carried out using
chiral perturbaiion theoty, in the present case multi-loop contributions contain
picces which are leading in the fow encrgy expansion.

We regulale the loops by wsing & convenient form factor. One could instead
have used dimensional regularization as is ususally done in Chiral Perturbation
T'heory. ‘T'his procedure, however, will require the introduction of counterlerms
which are unknown in the present case. Inslead, the use of form factors is more
likely to give a good estimatle of loop contribulions even when counterterms are
disregarded. In the presenl case, we are concerned with a matrix element of
the strangeness veclor currenl operator, and, as mentioned before, only malrix
elementa of the octel piece of Lhe strangeness current are affected by Lhe one
loop corrections. Consequently, one could have related the oclet piece of the
atrangeness veclor current matrix elements to similar matrix elements involving
the electromingnetic current. ‘This in, however, nol good enough due Lo iimporlant
5U(3) breaking eflecls in the loops produced by the mass splitlings in the octels
of psendoscalar and veclor mesons. For this reason we choose in this work Lo
perform the calculalion of the loop correctiona Lo both strangeness and eleclro-
magnelic currenl matrix elements using Lhe aforementioned forin faclors. As it
is made clear later, veclor current Ward identitiea will be properly restored while
implementing Lhe form factor,

For purposes of simplicity, we choose Lhe {orin factor to depend only on k2,
the momentum squared of Lie virtual I-meson, and vse Uhe same cut-ofl masg
patameter for all Lypes of verticea. We expect Lhia choice Lo be of little siguificance
concerning the generalily of our results. The hadronic form laclor is taken to be

M2 — A?

F)= gl T ()

where the scale A will be chosen within a reasonable range as discussed below.
For k¥ = M}, one has F(M%) = 1. Hlence, this choice for the form factor is
consistent with the values of the mesonic coupling conatants (g, Rg, £5) extracted
from on-shell amplitudes,

The implementation of this form factor in the diagrams where the currenl is
inserted in the meson line (3c,d) is performed by Lhe following straightforward
procedure: il G(M}, M%.) denotes the diagram for point-like hadronic vertices
(F (k%) = 1), then the corresponding diagram with ¥(k?) as given in Eq. (23) ia

F(A) [G(ME, ME.) — G(A*, M}.)], (24)

where Lthe operalor ¥ is given by

N a 1

We note that, on general grounds, the introduction of an additional
momentum-dependence at the verlices also requires the inclusion of new “seagull”
verlices in order {o maintain gauge invariance [31,32,24]. In the present case,
these seagull terms generate additional terms in the VP Pv and VV Pu interac-
tions given in Eqs. (20) and (22). Although there exists ne unique prescription
for maintaining gauge-invariance in the presence of hadronic form faclors, we
follow the miniinal prescriplion of tefe. {31, 32, 24] Lo derive our seagull terms.
To this end, one may consider Lhe form factors appearing at the hadronic verlices
88 arising from a co-ordinate space interaction of the formn

W($1,..., WF(=ONOT (26)

where 11 is the oclet of pseudoscalar meson fields defined in Eq. (7), ¥, is a
Lotenlz vector constructed from the other pseudoscalar and vector meson ficlds,

12



and 92 is the D'Alembertian. Translorming to momentum space yields Uhe same
hadronic vertices as generated by Lhe eflective Lagrangians in Egs. (13-14) mul-
liplied by Lhe formn [actor F(k?), where k is ilie momentum of the pseudoscalar
meson nssocialed with the field 11. ‘The gauge invariance of this inleraclion can
be restored by making the minimal substitution 8,, — D,, = 8, — ifv,, where § is
cither the EM or strangeness charge operator and v, is the corresponding source
field. Expanding the resultant interaction to first order in v, yields the seagull
interaction
AT — P

Wb o @+ 200) | e ’] 0% 13, 1] — iv* F(=A%) |4, 1]}

(27)

Here, A? = 8% ~ 2iQ - 8 — Q?, where @ ia the momentuin carried by the source.
Transforming to inomentum space, replacing the source by the associated vector
boson polarization vector £,(Q), and taking the specific form for the form factor
given in Eq. (23) leads to Lhe vertex structure

~its {7000 | f 25 | e + F@2 0D @ T, @0

where the SU(3) index “a” is associated with the pseudoscalar meson carrying
the momentum k, ¥, ia the momentum- -space [orm for the ¥, (wﬂ.hout. the field
operalors), and I.Ile upper (lower) sign corresponds to an incoming {cutgoing)
pseudoscalar meson.

Inclusion of this “ininimal” seagull vertex (via diagrams 3a,b) is sufficient Lo
preserve the gauge invariance of the loop calculation in the presence of hadronic
form factors (for a demonstration of this feature for the case of meson-baryon
loops, see Refa. [24,26,23]). One may, of course, inciude additional transverse
seagull lerms, which are separalely conserved and which, therefore, do not mod-
ify the gange-invariance of the calculation. At leading order in the low energy
expansion we have already included the only possible seagull term, namely the
Lerm proportional lo (g in Lvpp,. Thus, other iransverse seagull terms will be
of higher order, and [or this reason they can be disregarded.

Tn general, Lhe inclusion of hadronic form faclors also destroya the chiral in-
variance of the calculalion, since the interaction in Eq. (26) is not invariant under
a local chiral rolation. Reatoralion of ¢hiral invariance would necessitale replace-
ment of Lhe derivalives @, acting on Il by the chiral covariant derivative YV
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introduced in Eq. (10). Since the veclor connection I',, appearing in V, can be
expanded in a power series in the pseudosacalar meson field 1I, this prescription for
mainlaining chiral symmetry would generate new chiral seagull vertices contain-
ing additional pseudoscalar mesons. The chiral seagull verlex of lowest order in
1/Fy would contain two additjonsl pseudoscalar meson lields and, consequently,
would first contribute to the transition form factor at two-loop order. Since we
restrict our attention to one-loop results, we do not consider contributions from
these chiral seagull inleractions.

In the notation introduced in the previous section, the VMD piece of Lhis
form factor is given by

4 1
NQ? = | =-3 (A pesino—1 0)—. 2
,(Q 0) 4—dom Fo (\/ERB sin tp cos 74 (29)
It is convenient Lo use the measured rale for ¢ — px, which gives:
(:)(Q! — O)I —_ ___?_' GPhen (30)
¢—~dom f¢ phm

with GP;':“ = 1.08 GeY~!. As shown in the Appendix, we cun use Eq. (30) Lo
determine the combination of Jtg and Ry which appears in Eq. (29).

‘The one-loop contributions turn cut to aflfect only the octet picce of the
strangeness current. This is essily inferred from the elfective Lagrangians
containing the strangeness source S,: the source always appears in a coin-
mutator, which obviously eliminales its coupling to the SU{3) singlel comn-
ponent of Lhe sirangeness current. We denote the one-loop contribulions by

16}]
PG
where Lhe dependence on &} and k) - Q aliow for ofi-shell initial and final slate
mesons. In order Lo give the expressions of Lhese contributions in a convenient

form, we introduce an operalor lo project oul the coelficients multiplying lterms
proportional to k5 or Q@ resulting Irom the loop integrals:

where j = a, b, ¢, d refers Lo the dillerent diagrams, and

Pulr, q)—’l————q“‘fp i (31)

We Lhen have Lhal ﬁ‘a(p,q)p“ =0, Pa(p, 9)4” =

I4



The expressions for the diflerent diagrams then read as follows: (K* (k1 €)M K (k2)). The one-loop contributions in the case of the electro-

magnelic current are related Lo those aiready oblained above in a simple manuner.

1 (2) 11 dtk 1 . : :
— QK k. 8 With obvious nolation, (f and d are structure constants of SU(3)}, one has:
3, 9 (@ Lk Q)L_..,.,, 72 ] @y (B ML B = ME N
1 (v — v
< {36~ ) PO — 6o PP Q) Vel vy = AL 9

‘ - 1
X [%2 (—1+ Xl ~ k) ;Ek' ;,k)) X 3o 4ot 4vab fpac (fase -+ 7 Jare) g8 l_MW(MK' = Mys, Mg — M)
+ Palke, QR (k1 4Q) - (b — ¥)] }
I @ i * _ 2Ry dik F{E)F(k — ) IL is interesting Lo nolice that the one-loop contribulions Lo 95.','.’ are due purely
E Fon (k1. Ky ‘Q)Il_m,m = "‘——Fg 8 (2n) (B2~ MD)((ks + Q@ — k)T - M}.) to strange particles in the loop. Ouly the isosinglet piece of the electromagnelic
1 &2 current contributes here, allowing us to write; gg) = -%gs,:,) . This
% k.(kl +Q._k)(] _._.___..) i I-lgop 1—loep
2k - A2 one-loop correclion clearly cannol be Lhe source of explanalion for the dillerence
— f’,,(kl,Q)k“ (k1 + Q)+ k- (k—2(ky + Q) between ggl, and 9,(,1)“ experimentally observed. On the other haud, the con-

tributions to gf,;'.)xll 1oop BTC TOTE complicated, with contribulions from bLoth
—le

0
pions and Kaons in the roop. Moreover, both, isosinglet and isoveclor pieces of

= Pa(@ )k (k0 + Q)+ k- (k- 3k + Q) }

1
_l__g'(,;)(Q3.k';" ky - Q)im = _.’!ﬁ’a_‘fﬁ _d.._’fT F{k) the electromagnetic current contribute, leading to diflerent one loop corrections
M, L~loop Fq (27) . for charged and neutral cases.
x
(= ME)((ks — k) ~ ME)((E + Q= #)T = ME.)
x {(1 1 42)Pa(Q, k1)k® V. RESULTS
x |Qk(+Q)—Q- (k-1 Q) k- (ky — k)
+ k_2 [“(1 +12) (ky -+ Q) +(3+12) k- (k, +Q)]} . In this seclion‘ we preaerft and discuss the results for Lhe ?ne—loop contribu-
1 tiona Lo the iransition matrix clements of both eleclromagnetic and slrangencas
| HO? k2 & (d) _ 4Raée currents. Throughout we use Ry = 0.27, &3 = 0.18, z = 0, and, ¢ = 0.16 {case
TS AT "Q)l —loop g 1} and (g = ~0.08 (case 2}. Since diagram (c) turns out to give only & modest
Af’p L] P P{)

contribution, the choice z = 0 has litlle impacl on the results {we have explicitly
s (3hpecked Lthat by selting z = O(1) the overall one loop corrections considered in
the following are affected by lesa than 16 %). On the other hand, if we instead
use £ = 0.14, as oblained by considering K(* decay, the resulls oblained for Ca

' F3(k) £ (k) — &)
% _/ B (k2 - MDY {((k+ Q)1 = My )((ky — k)7 — Mg.)

where Lhe veclor meson propagator used is as usual:
, Euk, .
~i (g — S ) /(K7 ~ M + i),

For purposes of comparison we also consider Lhe one-loop contributions to
the matrix elements of Lthe cleclromagnetic current {p(k1, ) I 5™ |7 (ks)) and

and Lhe final results of the loop calculation are only alightly affected.

We discuss first the case of the electromagnetic current matrix elements. “To
this end, it is convenient Lo define the ratio of the one-loop contribution to the
form factor to the incasured form factor (“Phen”)

16



R = 9 p(loop) . s (34)
y(vl',),(l'llcu)

‘The overall sign of this ratio is undetermined, since the sign of the low energy
coupling constanta involved cannol be established from available observables.
Hence, we consider a particular choice of the overall sign, keeping in mind that
in realily Lhe sign might be the opposite. The ratio R(J,), is shown in Figs. 4
and 5 for Lthe cases of p-to-r and K*-to-K radiative transitions respectively. Al

this point it is convenient to stress thal for almost the whole allowed range of

the culofl, gﬁ’,)(loop), gg)(loop), ggg?+x+(loop) and ggzuk.(loop) have relative

signs as follows: -1, 41, +1, -+L.For A < 0.6 Gev the two latter signa change in
cage 2 only. As shown in the appendix, the corresponding VMD pieces have the
telative signs: -1, 1, +1, -1,

In each case, Lhe choice of & “reasonable range” [or the mass parameler A was
dictated by two crilerin. Firat, in order Lo mainlain consistency with our use of
VMD in extracting some of Lhe coupling constants [rom radiative transitions, we
require A to fall within a range such that %Y < 1/2 and RS}"!K < 1/2 (Rg;',), =
1/2 corresponds to loop and vector meson poles giving equal contributions if Lhe
signs of the contributions are Lhe same). This condition gives an upper bound of
roughly one GeV. Second, Lo obtrin 2 lower bound on A, we reler to a “cloudy
bag” picture of hadrons in which the psendoscalar Goldstone bosons live outside
a hadronic bag containing quarks. In this picture, the virtual meson must have
a wavelength longer than the bag radius, 80 as Lo be unabie io penetrate the
bag interior. From this requircinent, we obtain a lower bound of A ~ 1/ Rpag o
0.2 GeV for a Lag radius of one Fermi. For ilis choice of A, the form faclor
in Eq. (23) will suppress contributions from virtua! pseudoscalar mesons with
wavelengths shorler than one Fermi. We emphasize that although we do not
perform this calculation within the cloudy bag framework, we simply turn to
that picture Lo obtain a physical argument for a reasonable lower bound on the
cutoll mass,

For A Ialling within our “reasonable range”, the diagrams conttibuling Lo the
pny forin factor display a zero al A = Mg. Thia zero results from the numerator
in Eq. (23}, which waa chosen Lo give Lhe normalization F(M2) = I. llence, this
zero should be Laken as an un-physical artifact of the clioice of form factor. We
helieve that the values of R(J,), al A ~ 0.2 GeV give a realistic lower bound, since
this vafue on A ia sufliciently far [rom the arlificial zero at M. In order Lo check
this assmnplion, we also computed the diagrams with a slightly different. form
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factor, replacing the numerator of Eq. (23) with —A2. Such a formn factor also
displays pointlike behavior (F(k?} = 1) as A —+ co. The resulting values of R(‘?,),
for A in the vicinity of My do not differ significanily from those obtained with
the form in Eq. (23) and A ~ 0.2 GeV, In the case of the i(* —+ K [orm [actor,
no zero appears at A = Mg since loops involving virlual pions also contribule.
The latter enter with hadronic form factors normalized Lo unity al k* = m3? and,
thus, do not vanish at A = Mg

The one-loop contribution in the pry case is about 2-6 % when A ~ 0.7 GeV,
and grows to 20-35% for A ~ 1 GeV (see Fig. 4). Thus, we take roughly 1 GeV
83 an upper bound for our reasonable range for A. For the K * K<y form factor,
the loops containing & x and & K* in the intermediate state are the dominaul
ones. The loop contribulions are relatively more important than in the case of
the pry form factor. For cherged Kaons we find the one loop contribution Lo be
0-16 % for A ~ 0.7 GeV and 20-60 % for A ~ 1 GeV, while for neutral Kaons the
corresponding contributions are 0-10 % and 20-50 % (see Fig. 5). Nolice that our
analysia relies on VMD to determine some low energy conslants, like 25 and 2o
(sce Lhe Appendix). Large one loop contribulion to the radiative decays would
demand performing a self-consistent fitling procedure, in which both VMD and
one-loop amplitudes are included in the delermination of g and g. Such an
analysia would become imperative if the culofl would be taken larger than about
1 GeV. Notice that il a new fit would be required, this should be done twofold
due to our ignorance about the overall sign of the one loop corrections. Although
a shilt in the value used for % will result from the loop corrections, we expect
that for our choice of cutoll scale such a shift. will not qualitatively alter our main
conclusions.

For the strangeness vector turreni transition formn factor, we must defiue a
somewhat different ratio since gf,',,)(Q’) has not been measured. We compute

instead ratio 4% of one-loop to vector meson dominance contributions
P
)= _____,m!:%}(""’l’) (35)
[
fpx (VMD)

The results for ihe ratio I_I{,?, shown in Fig. 6, lurn oul to be signilicanl
alimost for any value cutofl mass within the chosen range. The reason is that

()2
|gpl' (Q - 0) ¢—dom

while Lhe absoluie value of the one-loop correction is o factor Lwo larger than

is very small ( a factor Lhrce smaller Lthan 1/e gf,l)m'"" )
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1-foop .
pry case. Consequently, for A ~ 1 GeV, the strangeness p — x transition matrix
clement ean be as farge in magnituda as the corresponding EM transition satrix
olement, nssnming Lhe loop and ¢-pole contributions enlor with the same sign
(uvucertain al preaent). For small values of the form factor mass (A ~ 0.2 GeV),
however, the loop correction Lo the ¢-pole contribution is 50% at most, in which

case g{3(0) is no more than half as large as y,(,I)(O).

i thua, the corresponding ratio is almost a factor siz larger than in

In addition to giving the A-dependence of fz&'.’, the curves in Fig. 8 also
illustrate the sensilivity of our resulls to other parameters which enter. As in
the case of gf.l’(o), the dependence of the strangeness form factor on the choice
of low-energy constanl (g is modest: the lower set of curves (cese 1) and upper
set (case 2) dilfer by lesa than a [actor of two over our reasonable range for A.
Similarly, the dependence on the p and x vicluality is negligible, as 8 comparison
of the solid curves {k} = m}, k§ = m?) snd dashed curves (k} = 0, k3 = 0)
indicates. For thia resson, we conclude that a nuclear MEC calculation carried
out using k7 = 2 and k3 = m? in g% rather than allowing these momenta to
very introduces negligible ecror.

Finally, we refer to the dash-dotled curve, which givea the ratio fls.'.) (for case
1) at the kinemnalics of the approved CEBAF experiment [14], —Q? = 0.6 GeV?,
In this case the ¢-pole contribution to g§*(Q?) is down from its value st the
photon point by (1 — @*/m})™! = 0.6. The ratio LY, on the other hand, is
essenLially unchanged from its value at the photon point. Thus, we would expect
the loop contributions Lo modify the strangeness MEG results of Refs. [27, 28]
by n factor of belween 0.1 and 3.6 (for A varying over our reasonable range) over
the comnplele range of ? considered in those calculations.

These resulls have signilicani implicalions for the inlerpretation of CEBAF
experiment [14]. Assuming, for example, that the nucleon’s strangeness form
factors were identically zero, PV 1lle asymmetry would still differ from its “zero-
strangeness” value [F‘(,')(O) = ¢ in Eq. (1)} by roughly 16-40% due to the p-
# slrangeness MEC. Thus, for purposes of extracting litnile on the nucleon’s
strangeness clectric form (aclor, one encounters about a 26% theoretical uncer-
tainly associated wilh non-nucleonic sirangeness. By way of comparison, we
note thal models which give a large nucleon strangeness electric fosm factor,
[G(,,.')/G;.';l ~ 1 generale a 20% correction lo A,, via the one- and two-body
mechanims of Fig. 1a,b. On the other hand, given Lhe projected 40% experimen-
tal error for Lhe CEBAF measurement, a statislically significani non-zero result
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for F,g'} would signal the presence of both a latge strange-quark contenl of the
nucleon as well as a large, non-nucleonic strange-quark component of the nucleus.

VI. SUMMARY AND CONCLUSIONS

BAY
"

We have calculated veclor-to-pseudoscalar meson vector current form factors
using a combination of vector meson pole and one one-loop contributions. As ex-
pecied, the one-loop resulls are strongly dependent on the mass parameter in the
hadronic form factor needed to regulate otherwise divergent loop integrals. For
values of A lying within a “reasonable range” whose upper limit is determined Ly
self-consistency with VMD and lower limit by a cloudy bag picture of hadrons,
we find that the one-loop contributions lo the pry and K* K(y amplitudes may
introduce important correclions Lo the predictions of VMD model. In the case
of the strangeness veclor current p-to-wx transition form factor, the loop contri-
butions may enhance the total amplitude by more than a Iactor of three over the
eslimate based on VMD. Assuming loops involving heavier mesonic inlermediate
states do nol cancel the contribution from the lightest mesons, our resulls could
have gerious implications for the interpretation of the moderate-}(}?|, CEBAF PV
electron scallering experiment with a ‘lle target [14]. Indeed, this slrangencss
transition form factor, which contributes to the nuclear strangeness charge formn
factor F.g‘)(q) via & meson exchange current {27, 28], would induce a 15 - 40%
correction to the zero-strangeness ‘He PV asymmetry [Eq. (1) with F = 0}.
Were the mneasurement [14] to extract a slalistically significanl, non-zero result
for Fé'), one would have evidence thal non-valence quark degrees of freedom
bolh nucleonic and non-nucleonic — play an iinportant role in the medium energy
nuclear response.
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VIHI. APPENDIX . '

In this appendix we describe the determination of Ry and Jig.

Detlermination of Ry and fg: these two effective couplings can be determined
by using Lhe decay width of ¢ — px and the radiative decays of vector mesons

supplemented with the hypothesia of VMD.

‘T'he partial width 1'(¢ — pr) is given by:

Gypr|’
r# - pr) = ezl g

From eq. (13) we obtain:

Gepn = -I-_“l—o- (—-Ro cos ) 4 —}.ER; sin 9) ,

while the experinentally obaerved partial width gives:
|Ginet| = 1.08 Gev™.
In practice we will Lake @ to correspond to ideal ¢ ~ w mixing.
‘The radiative transition amplitude V — Py has the general form:
AV = Py) = ~ig0} eupe Py PLES.

The radiative partial width is given by:

1)
. _ 2 {fyvp 3
BV — Py) = 3 M, LT3
Using VMD we have Lhal:
Gyy'p Cy:
Wel@) =My 3 R
Vizpl w ¢ v
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where Cy = M3/ fv, J, = 5.1, fu = 17, and J¢ = 13. Fromn eq. (13) we oblaia:

Gopx =10
G =1 iR s + 1 silﬂ)
N'—-FP, 73 8 O ¢ Bl

A

1 .
Gogn = _F-'J (\/:‘: g 8in@ — I, cosﬂ)

2
Gretprt = — Rg
Fy

i 2 .
GK-+“,K+ = F_o (_ﬁ IZQ cos 0 - Ity sin 0)

1 2 .
GK"*‘K"’ = -—-I‘To (W Ila Blll0+ Ru 6080)

GK-D’KG = “GK""ﬂ.K"‘
Gleouge = Groetwr+

Grrogro = Gevgir

(1)

The eflective conplings gi'5(Q* = 0) determined fromn the various radiative

decaya and defined by turn out to be: -

g 0. =0783, ¢, =0568 ¢, =-113,

850 =076, g% =181, g0 = —0.14

where the relative sigus are chosen to malch those predicted Ly VMD. Using

these phenoinenological results, our best VMD fit leads to:
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g~10 Rg~021. .

These litled values give the VMD resulls lor g&',),:

0.56, 0.56, -1.27, 0.7, 181, -0.16

to be compared with the respective phenomenclogical values given above.

The VMDD result for the Lransition matrix elements of the strangeness current
have the same structure, the only difference is that now Cy has to be replaced
by Sy. In the lollowing we assume that Sy is only non-vanishing for V = ¢.
"This holds whenever Cy corresponds to exact OZI suppression as mentioned in
section 111 From eq. (16) we obtain:

Mg
S To

This leads to the VMDD result used in the Lext;

1
—— gt9) Q=
Mp ypl( 0)

! Phen
s-adom — 77 Orbr 54

From the resulis quoted above, VMD predicts the following pattern of signs:

g},‘;) > 0. 9(}2‘-)0‘”0 < 0. gS(T-)+K+ > ol

% >0, y(‘?.. <0, gl?<o.
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FIGURES ot

(s) (b} (c)

Figure 1: Contributions 1o the nuclear strangeness charge form factor,
Fé')(q). One-body (a} and “pair current” (b) contributions depend on the
nucleon’s strange-quark vector current form faclors. “Tyansition current”
() contributions arise Jrom strange-quark veclor current matriz elements
between meson states M) and |M’). Here, the cross indicates the insertion
of the sirangeness charge aperaior,

Figure 2: ¢-meson dominance picture of the strangeness current transition
malriz element, V refers {o a veclor meson, F io a pseudoscalar, and the
cross represenis the insertion of the currend,
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Figure 3: One-loop diagrams which coniribute to the slrangeness current
transition maliriz element. The cross represents the sirangeness vector cur-
rent.

Figure 4: Ratio Rf;}) for the matriz element of the electromagnetic current
between p and x mesons. The solid curve correspond to case | ( = (0.16)
and the dashed one to case 2 (( = —0.08). In each case we huve used
k= Mf, Q@'=0, and k1 = M2

27 28



LS T T v T

10}
o5}

e

X pofiImresease e .

o
05 . ™
a0} ]
_I.S 4 A 1 'l

02 04 06 08 10 12
AlGeV]

Figure 5: Ratio R(,'("EK Jor the mairiz clement of the electremagnetic cur-
rent between K* and K mesons. The solid lines correspond to charged kaons
and the dashed ones to neutral kaons. In each case, the upper curve cor-
responds lo case 2, and the lower ane lo case 1. The kinematic invariants
used are: ki = Mj., Q' =0, and k3 = M2. '
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Figure 6: Ratio RS,’.-) for the matrix element of the strangeness current
between p and x mesona. The solid curves corresponds to case 1 and the
dashed ones to case 2. In each case the Jower curve corresponds Lo ki = M2,
Q* = 0 and k] = M2, and the upper one to k? = 0, @ = 0 and &2 = 0.
The dash-dotted curve corresponds to case 1 with k3 = M2 Q3 =0.6GeV?
and £f = M2, and the dotted curve corresponds to case 1 with k= M2,
Q* = 0 and k3 = M2, and the forin factor F(E*) = A%/(A® - k).
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