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Abstract

The most general supersymmetric model contains baryon number violating
terms of the form A;x D; D; Ty in the superpotential. We reconsider the
bounds on these couplings, assuming that lepton number conservation en-
sures proton stability. These operators can mediate n — 7 oscillations and
double nucleon decay. We show that neutron oscillations do not, as previ-
ously claimed, constrain the Ay, coupling; they do provide a bound on the
Adby coupling, which we calculate. We find that the best bound on Ay, arises
from double nucleon decay into two kaons; the calculation is discussed in de-
tajl. There are no published limits on this process; experimenters are urged to
examite this nuclear decay mode. Finally, the other couplings ¢an be bounded

by the requirement of perturbative unification.

Ir the standard electroweak model, conservation of baryon number and lepton number
arises automatically from gauge invariance. This ia not the case in supersymmetric models,
however. In the most general low-energy supersymmetric model, one has terms which vio-
late lepton number and terms which violate baryon number [1]. Since the presence of both
of these may lead to unacceptably rapid proton decay (unless the couplings are extraordi-
narily small), one or both must generally be suppressed by a discrete symmetry [2]. In the

—3BHLHF where B, L and F are the baryon num-

most popular model, R-parity, given by (
ber, lepton number and fermion number, ia imposed, leading to baryon and lepton number
conservation. However, there is no @ prieri reason that R-parity must be imposed (other
than a desire to conserve baryon number, lepton number and to simplify phenomenoclogy};
it is quite possible that only one of the quantum numbers is conserved. There has been
extensive discussion of the possibility that lepton number is viclated [3], but relatively lit-
tle investigation of the possibility that lepton number is conserved and baryon number is
violated.

In this case, baryon number conservation will be violated in the low energy theory. A

term will appeer in the superpotential given by
A DD 1)

where the indices give the generation number and the chiral superfields are all right-
handed isosinglet antiquarks. Since the term is symmetric under exchange of the first
two indices, and is antisymmetric in color, it must be antisymmetric in the first two fla-
vor indices, leaving nine couplings, which will be designated (in an obvious notation) as
Adsws Adbus Asbus Adser Adbey Aaber Adots Adbe,aNd Agr.

There are many models in which low energy baryon number is violated and yet lepton
number is conserved; the most familiar are some left-right symmetric models (see Ref. [4] for
a comprehensive discussion). It is widely believed that the strongest bound on B-violating
operators comes from neutron oscillations, which violate B by two units. The first discus-

sion [5] on the effects of some of these operators in supersymmetric models used neutron
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oscillations to bound the A4, and Ay, couplings; this result remains widely cited today
[6,7].

The purpose of this Letter is to determine the most stringent bounds that can be placed
on these nine couplings. First, we will point out that neutron oscillations do not provide
any significant bound at all on the Ay, coupling, due o a suppression factor which was
neglected in the original calculation. This suppression is less severe for the Ag. coupling,
and we will obtain a bound in that case. We will then note that the strongest bound on the
Adsu coupling will come from limits on double nucleon decay {in a nucleus) into two kaons
of identical strangeness, and will estimate the bound. A recent work of Brahmachari and
Roy [7] noted that the A and A, couplings can be bounded by requiring perturbative
unification; we will extend their work to cover all of the additional couplings. Finally, we
will comment on various bounds which can be obtained by conesidering products of some of
the couplings.’

The first attempt to place a bound on some of the above operators was in Ref. [5].
There, the contribution of the A4, and Ag. terms to neutron oscillations was calculated
by considering the process (udd — E-,- d— § — d:d — udd, where d is & squark and § is
a gluino. The effects of intergenerational mixing were included by putting in an arbitrary
mixing angle, assigned a value of .1. However, there is a much more severe suppression
factor which results in this process giving no significant contribution to neutron osciilations.

Consider the term Mg D S U. It violates B by one unit, and it violates strangeness
(S} by one unit. However, it conserves B — 5. Since neutron oscillations violate B but
net S, strangeness violation must appear somewhere else in the diagram. This means that

there must be flavor-changing electroweak interactions (involving either a W or a charged

1Gevere bounds on some of the couplings have been suggested from cosmological arguments,

hewever, Dreiner and Ross [6] have shown that these bounds can be evaded,

Higgs and charginos) in the diagram?®. ‘This flavor change is produced by the box diagram
of Figure 1. One can also replace the W with a charged Higgs boson, and the W should
be the lightest chargino, but we will consider the case in which the charged Higgs boson is
much heavier than the W, and there is little mixing in the chargino sector; for an order of
magnitude estimate, this will be sufficient. Since only isodoublets participate in the weak
interactions, and the baryon number viclating term only has isosinglets, there must be mass
insertions (at least two, in the simplest case) which give a transition from dp; to d},,r. This
mass insertion will be proportional to the mass of the associated quark. Thus, there will be
electroweak interactions in the diagram, and an additional suppression factor of the order
of m?/m{;, where m, is the strange quark mass. This makes the contribution of the Az,
highly suppressed.

The contribution involving the term Aa D BU will be suppressed by a factor of mf/m?,,
which is not negligible, and this could give a significant contribution {o neutron oscillations.
The relevant diagram is given in Figure 2, where the flavor changing box subdiagram is
represented by a blob; the two possible contractions of the legs of the box give an equal
contribution. The resulting dimension nine effective operator can be written as (greek indices

correspond to color)
T oy €y Ting@RG ApylLy Wigedrpe 2

The diagram is calculated at zero external momenta and yields

39t ME mg
15 Wl

T=-
SW"M; Mf‘
L R

Eird (M3, My, M M) @

where the mass term M;  which mixes b, and by is given by M, = Amy, Als the soft
supersymmetry breaking parameter (there is also an F-term contribution which we absorb
25honld additional sources of strangeness violation exist, such as tree-leve] flavor-changing neutral

currents due to an extended Higgs sector, then electroweak interactions would be unnecessary.



into A); j and j are generation indices, {;; is a combination of KM angles (we assume the

left-handed squark KM matrix is the same as that of the quarks) :
Esg = Vi, V3 Vhu, V.4 (4)
and

4 {1In(m?)
J(m?,m3, m?, md) = m i
(im0 ) = 3 o — )

{5)
The neutron oscillation time is then given by v = 1/T, where I' = T9(0)%. ¢(0)* gives
the matrix element of ihe operator in (2); we use the estimate given by Pasupathy [8i,
(0 = 3 x 107* GeV®, but it should be noted that other evaluations [§] differ by more
than an order of magnitude (the bound on Az, will vary as the square root of ¥(0)?). From
the experimental limit on the neutron oscillation time [10], + > 1.2 x 10°® sec., we can
obtain the bound on Ay, The results depend on the Kobayashi-Maskawa angles, which are
taken to be the central values of the allowed ranges, and the squark masses. It is assumed,
as is the case in most models, that the charm and up squark masses are degenerate. The
bound is plotted in Figure 3 as a function of the top squark mass for various charm squark
masses. We keep A = my = 200 GeV throughout. Note the peaks which correspond to GIM
cancellations in the box diagram. Unless the parameters are tuned to this cancellation, the
upper bound on Ay, iz between 0.002 and 0.1 if the squark masses are between 200 and 600
GeV, with more stringent limita resulting for lighter masses. As stated above, the bound
on Agy will be weaker by roughly a factor of ms/m,, and will not be competitive with the
bound in the following paragraph. The bound on the aquare root of the product |Ags, A
is suppressed instead by a factor W As Figure 3 suggests, unless the supersymmetric
particles are lighter than 1 TeV, no useful bounds result from n — 7 oscillations. In fact,
beiter bounds can then be derived from perturbative unification as we discuss later.

The fact that the best bound on Ags comes from double nucleon decay into two kaons
of identical strangeness was noted some time ago [11,12]. It is easy to see that the mass

insertions and electroweak interactions are unnecessary, since the process does violate both
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B and § by two units. In Ref. 12, a rough order of magnitude estimate was given for the
bound (with no details of the estimate). In Ref. 11, it was assumed that, in a nucleus, a
neutron could “oscillate” into a = through two applications of the operator, and that the =
annihilates with another neutron in the nucleus to produce two kaons. Here, we will consider

the process NV — KK directly. The relevant diagram is shown in Figure 4, which redices

to dimension nine operators of the form:

16 1 — — —
3 A Aiuw €afy Eboo (u“n.,dms uf;drp SR SRs + ) ) {8
3 M]

where the ellipsis indicate all possible permutations between the symbols (u,d,s) and the
symbols (uf, ¢, 5°).

The final state must contain minus two units of strangeness, plus some pions. The strange
compenent of the final state can be any of the following: K+°K+¢ K+oA K+P%. Since
for each possible final state the corresponding amplitude contains a large number of possible
arrangements of the quark legs of the effective operators, & good estimate of the individual
rates is very difficuit. For the purpose of giving a bound on the order of magnitude of
|A2sul, @ Tough estimate of those rates should suffice, as they are proportional to the fourth
power of |Ag]. We, therefore, make the following simplyfying assumptions: a) The nine
terms in (6) add up roughly incoherently, and give similar contributions to the total rate;
b} The amplitudes for individual rates are estimated using dimensional arguments, where
the relevant scale is a hadronic scale A, which we will let vary within a generous range; ¢) It
is sufficient for our purpose to consider only a few final states, in particular, the final state
K K. We have checked that the addition of other final states like K K# and K K hardly
affect our results.

The total rate is given by:

T= [ &k o plka) plks) e {1 = - ) e NN — X), )

1
g
where py is the average nucleon density, p(k) is the nucleon density in momentum space,
and the nucleon velocities are taken in the following as small. Using our assumptions, the

cress section is approximately given by:



1287 a? |Mai* €

Feat( NN — X} ~ —Unt_ﬂl’fg%wl (8)
Here the final state phase space was taken to be that for éwo massless particles. Crp has
dimension ten and is approximated by A®. This scale is hard to estimate; direct annihilation
of the two nucleons by the dimension nine operator is suppressed due to hard-core repulsion,
while the contribution due to t-channel = exchange may be the dominant piece. With this

we finally obtain the following bound:

1287 a? M,, Am.

M, M2 M} ®

T ~pn

Using nuclear matter density py = 0.25 fm=3, &, ~ 0.12 and a lower bound for nuclear
matter lifetime of Ty ~ 10% years, we obtain the following bound on |Ag| in terms of the

ratio between the hadronic and the supersymmetric scales R = —4]—,,-5
o] < 1071 R/ (10)

This ranges from as low as 10~7 for B ~ 1073, to 1 for R ~ 107%). Qur bound is comparable
to the bound obtained by Barbieri and Masiero [11] by considering the transition N — =
in nuclei: they obtained a bound approximately given by 5 x 107" R-%/2. Although their
hadronie scale is not necessarily identical to ours, we expect them to be similar in value.
What can be said about the other seven couplings?. It was recently noted by Brahmachari
and Roy [7] that in a unified theory precise bounds can be obtained by requiring that the
couplings be perturbative up to the unification scale. They looked at only the Az and A
couplings, although their results can easily be generalized to all of the others. Specializing

to real couplings, the renormalization group equations for the A;jx are given by

L2 .
Tr pp ik = W+ Fdink + TEAGe (11)

where the ¢ = (Z#)~Y/29/81{Z2)'/* and Z? relates the renormalized superfield 9 to the

unrenormalized ®2. For example, the renormalization group equation for Az, is

14
E;r"éf"/\dh! = )\,ﬂ,g(’y: + ‘]": + ')’:) + /\q‘n"fg + )‘lbz')'; + f\dbu')’:l + /\dbn')’:' (]-2)

The anomalous dimensions can be obtained from the formulae listed by Martin and Vaughn

[13]. The diagonal 4's are given by*

g8, 2
16x? 7& - 2(Adbi + ’\zzi\'u: + ’\:bu + ’\i’i + A?iar. + Aglﬂ) - 5 .u - Eg (13)

8 o7

15 (14)

8 5
1oria = 2%, + M + A 39, -

for the u and d superfields; the generalization to the other generations is obvious by permu-
tation. There is an additional term 2A? on the right hand side of the expression for 1672~

due to the top quark Yukawa coupling. The off-diagonal 4's are given, for example, by

167257 = 2 Adne dase + Adsehmbe + Adbu dsbu) {15)

167297 = 2(AdsuMse T AdbuAate + AabuAste) {16)

Tf we define ¥ = (A4, + A%, +2%,)/4r, ¥a = (A4, + 2%, +235.) /47 and Vi = (A}, + 05, +
A%, )/4r, then the renormalization group equations can be combined to yield equations for
Y:, ¥z and Y;. These equations, which in general cannot be writien in terms of the Y;’s alone,
take a particularly simple form when one of the ¥;’s dominates (e.g., when the couplings in
Y} and ¥; do not significantly contribute to the beta-function for Y¥3), we have?

ay;
at

=6Y7-8a,Y + 283kl Vi an
We now simply require that the ¥, not become nonperturbative (i.e. ¥; < 1) by the uni-
fication scale; this leads to a bound at low energies on the ¥;. The renormalization group
equations for Y;, ¥z and (if the top quark Yukawa coupling is small) Ya, using o, as it results
from the one loop beta function, can be solved exactly yielding

3The factors of 2 in front of the A terms were given aa 6 in Ref. 7. We thank Herbi Dreiner for
pointing out the correct expressions.

*We ignore the hypercharge term, since it is clearly smaller than the uncalculated two-loop strong

interaction correcticns.



¥ () = ad(u)f (Zadt) + Cv ) (18)

where we replaced { = log(3f); and Cy is given in terms of ¥ (u = M)

Cy = al’l(Mw) L Ec:r'l(MW] (19)
! Y(Mw) 5 ° )
For a,(Mw) = 0.125, the requirement of perturbative unification yields a bound of

Y:(Mw) < 0.124 giving an upper bound of 1.25 on Adsus Adbuy Arbuy Adscy Adbe and Age. The
bound on Agst, Agw and Aue does depend on the top quark Yukawa coupling and must be
integrated numerically. As shown by Brahmachari and Roy, however, the resulting bound
is very insensitive to tan # and is also insemsitive to the top quark mass-using a top quark
mass below about 180 GeV changes the upper bound by less than ten percent, and using a
heavier top quark causes the top quark Yukawa coupling to become nonperturbative by the
unification scale. It is worthwhile to mention that ¥i(z) decreases up to values of 4 around
107 GeV, an effect due to the running of e,. Note that the first two couplings are bounded
already from neutron oscillations or nuclear decay, but the bound of approximately 1.25 is
the strongest bound on the remaining seven. If one relaxes the assumption that only one
¥; dominates, it is easy to show that the bounds, in all cases, become strengthened. This is
because all the new contributions to the RHS of equation (17) are positive,

The bounds we have abtained are on the individual couplings, On the other hand,
bounds can be obtained on the products of various couplings. These bounds are discussed
in detail by Barbieri and Masiero {11], who considered the effects of these interactions in
K — K mixing, on ¢/¢ and on the neutron electric dipole moment. The first of these gives
bounds on AmeAse and on Aweda; the latter two give bounds on the imaginary part of the
product of two couplings. The reader is cautioned that these bounds were obtained for a
top quark mass of 45 GeV, although changing them to incorporate a heavier top quark is
simple.

We thank Herbi Dreiner for many enlightening discussions and references, and Rabi Mo-

hapatra for helpful remarks concerning neutron oscillations. J.L.G. was supported by NSF

grant HRD-9154080 and by DOE contract DE-AC05-84ER40150, and M.S. was supported
by NSF grant PHY-9306141.



REFERENCES

[1] S. Dimopoulos and H. Georgi, Nucl. Phys. B198 (1981) 150; S. Weinberg, Phys. Rev.
D26 (1982) 287; N. Sakaj and T. Yanagida,Nuel. Phys. B197 (1982) 533; J. Ellis, J.
Hagelin, D. Nanopoulos and K. Tamvakis, Phys. Letz. B124 (1983) 484.

(2] D. Brahm and L.J. Hall, Phys. Rev. D40 (1989) 2449; L.E. Ibifez and G.G. Ross,
Nucl, Phys. B202 (1957) 400.

[3] L. Hall and M. Suzuki, Nuel. Phys. B231 (1984} 419; 5. Dawson, Nucl. Phys. B261
(1985) 297; V. Barger, G.F. Giudice and T. Han, Phys. Rev. D40 (1989) 29387; R.
Godbole, P. Roy and X. Tata, Nucl. Phys. B401 (1993) 67.

[4] R.N. Mohapatra and R.E. Marshak, Phys. Rev. Letf. 44 (1980) 1316.
(5] F. Zwirner, Phys. Lett. B132 (1983) 103

{6] I. Hinchliffe and T. Kaeding, Phys. Rev. D47 (1993) 279; V. Ben-Hamo and Y. Nir,
Phys. Lett. B339 (1994) 77; H. Dreiner and G.G. Ross, Nuel. Phys. B410 (1993) 188;
S. Lola and J. McCurry, Nucl. Phys. B381 (1992) 55%; B.A. Campbell, S. Davidson,
J. Ellis and K.A. Olive, Phys. Lett. B256 (1991) 457.

[7] B. Brzhmachari and P. Roy, Phys. Rev. D50 (1994) R39.
(8] J. Pasupathy, Phys. Lett. B114 (1982) 172

[9] C.B. Dover, A. Gat and J. M. Richard, Phys. Rev. D27 (1983) 1090 and Phys. Rev.
C31 (1985) 1423; W.M. Alberico, A. De Pace and M. Pignone, Nuel. Phys. A523
(1991) 488; Riazuddin, Phys. Hev. D25 (1982) 885.

[16] Review of Particle Properties, Phys. Rev. D50 (1994) 1173.
[11] R. Barbieri and A. Masiero, Nucl. Phys. B267 (1986) 679,

[12] S. Dimopoulos and L.J. Hall, Phys. Lett. B196 (1987) 135.

10

{13] 8. Martin and M. Vaughn, Phys. Rev. D30 (1994) 2282.

11



Figure 1: Boz diagram giving the necessary neutral flavor miz-

ing necessary in n—T7 oscillations. Similar dicgrams appear with

b substituted by .
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Figure 2: Diegram mediating n — @ oscillations. All parti-

cles with no index are right handed. The big blob represents the
insertion of the bor in Figure I, and the small blobs in the b

propagators are insertions of My .
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Figure 3: Bound on |Ag,| from n —7 escillations as a function
of M;. The solid line corresponds to My = M: = 200 GeV, the
dashed line to {00 GeV and the dotfed line to 600 GeV.
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Figure 4: AB = -2, AS = —2 diagrams contributing to dou-
ble nucleon decay. (qi, gj, qr) corresponds to permutations of

(u, d, ), and similarly for the primed quarks.
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