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Abstract
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light-cone sum rules.
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L INTRODUCTION

The extraction of fundamental parameters from data on heavy flavoured
hadrons inevitably requires some information about the Physics at large distances.
Numerous theoretical studies have been devoted to making this extraction as re-
liable as possible. While the inclusive B and D decays appear to be the mosl
clean reactions theoretically, exclusive decays are often much easier Lo measure
experimentally. However, for their interpretation one needs accurate estimates
of decay form factors and other hadronic matrix elements. In the exceptional
case B — Dev, the form factor at zero recoil can be calculated in the heavy
quark limit [1,2]. In most other important cases, one has to rely on less rigorous
nonperturbative approaches. Among those, QCD sum rules [3] have proved 1o
be particularly powerful.

In this paper we employ sum rule methods in order to calculate the D* Dr and

D — x and B -5 x near Zero pionic recoil, where the - and B*- poles are
believed to dominate. For further discussion one may consult refs. [4,5]. Recently,
it has been argued that i the combined heavy quark and chiral limit vector meson
dominance becomes even exact [6]. As noted in refs. [7,8], B* dominance is also
compatibl: with the dependence of the B —. 7 form factor on the momentum
transfer p predicted by QCD sum rules at low values of p?. A simifar conclusion

taken several times in the framework of QCD sum rules. Unfortunately, the sum
rules obtained in refs. [10-13] differ in nonleading terms and, to some extent,
also in numerical results. Here, we suggest an alternative method known as QCD
sum rules on the light-cone. In this approach, the ideas of duality and matching
between parton and hadron descriptions, intrinsic o the QCD sum rules, are

tional sum rules based on the Wilson OPE of the T-product of currents at small
distances, one considers expansions near the light-cone in terms of nonlocal op-
eralors, the matrix elements of which define hadron wave functions of increasing

conformal invariance of QUD and are coded 1y the hadron wave functions. M any
of the theoretical results obtained in the context of exclusive processes {see g
ref. [16]) are very useful in the present context as well. I turn, we will see that
heavy-flavour decays can provide valuable constraints on the wave functions.

Previous applications of light-cone sum rules include calculations of the am-
plitude of the radiative decay ¥ — py [17], the nucleon magnetic moments [18],
the strong couplings g, xn and Fpws (18], form factors of semileptonic and ra-
diative B- and D-meson decays [8,19-21], the pion form factor at intermediate
momentum transfers {22], and the 743" form factors [23]. In all these cases the
results are encouraging.

The light-cone sum rule for the coupling of heavy mesons to a pion is the
principal result of the present paper which is organized as follows. In Sect. 9
we discuss possible strategies in constructing sum rules for coupling constants
and explain the concept of light-cone sum rules. The derivation of the sum rule
for the B*Bx and D" Dx couplings is then completed in Sect. 3, taking into
account the pion two- and three-particle wave functions up to twist 4. Secy. 4is
devoted to a detailed numerical analysis. In Sect. 5 we show that in a simiplified
case, putting the external momenta in the correlation function equal to each
other and performing a Borel transformation in one momentuin instead of (wo,
we obtain the sum rule proposed previously in refs. (10-13]. We demonstrate
that despite the slightly different terminology of these Papers the sum rules must

framework of light-cone sum rules following ref. (8]. A comprehensive comparison
of our results on the D* Dy and B* Bn couplings with other estimates and our
conclusions are presented in Sect. 7.

Technical details are collected in two Appendices. Appendix A sumrarizes
the relevant features of the pion wave functions and specifies the mput in onr
nuimerteal calculations. In Appendix B we derive a simple rule how to subtract
the contribution from excited resonances and continuum states in the sum rule.

II. LIGHT-CONE VERSUS SHORT-DISTANCE EXPANSION

For definiteness, we focus on the D* Dx coupling defined by the on-mass-shell
matrix element

(D™ (pyr~(q) I D%p +q)) = —9D Dxque”, (hH



where the momentumn assignment is specified in brackets and ¢, is the polarization
vector of the D*. The couplings for the different charge states are related by
isospin symmetry:

GDpx = gpst+pog+ = —\/in-+D+...n = \/igD-oDo,o = —gpsop4y- . (2)

Most of what is said below applies equally to B* Br couplings. The corresponding
relations are obtained by the obvious replacements ¢ — b, D* — B* and D — B.

Following the general strategy of QCD sum rules, we want to obtain quantita-
tive estimates for gp.p, by matching the representations of a suitabile correlation
function in terms of hadronic and quark-gluon degrees of freedom. For this pur-
pose, we choose

Fup.g) =i [ dhze® (x~ ()T {d(2)yuc(z), 0)i7su(0)}[0) . 3)

To the best of our knowledge, the study of correlation functions with the T-
product of currents sandwiched between the vacuum and one-pion state was first
suggested in ref. [24).

With the pion being on mass-shell, ¢° = m2, the correlation function {3)
depends on two invariants, p? and (p+¢)?. Throughout the paper we set m, = 0.
The cantribution of jnterest is the one having poles in p? and (p + q)?:

mpmp- fi fo-9p+ e
me(p? = mp. )((p + 9)* — mB)

o )
Fulp.g) = (qu + 501 - m—*%.)Pp) : (4)
Obviously, this term stems from the ground states in the (de} and (¢u) channels.
To derive eq. (4) we have made use of eq. (1) and the decay constants Jp and
Jp+ defined by the matrix elements

2
. m
(D | iveu | 0) = 22 (%)
and
(0] dyuc| D) = mp- fpee, (6)
respectively.

The main theoretical task is the calculation of the correlation function (3) in
QCD. This problem can be solved in the Euclidean region where both virtualities
p? and (p + ¢)? are negative and large, so that the charm quark is sufficiently far
off-shell  Substituting, as a first approximation, the free c-quark propagalor

dk ke B+ M

{0IT{e(2)(0)}10) = iS2(z) = PO (7)
mto eq. (3) one readily obtains
. dz dik . ;
Fulh.0) = i | Gosars s P70 (melm{ (e Py u()]0)
+ &Y (m(g)ld(x)747. y5u(0)[0) . (8)

Diagramatically, this contribution is depicted in Fig. la. Applying the short-
distance expansion (SDE) in terms of local operators to the first matrix element
of eq. (8),

d@)n15u(0) = 3 2 d(OND 2" 1u25(0) ©)

one has after integration over z and & -

m. o~ (2p-q)
Fulp.g) =1 = : — Mg, . (o
3 m — p? L (mi —p2)n D

where
(”(Q)IJ Dalﬁa, Ba,. 7p75u|0) = (i)nq,u‘Iaquu;---QG,.]wﬂ + ...,

D being the covariant derivative, has been used. One immediately encounters
the following problem. If the ratio

£=2(p-q)/(m? - p%) = ((p + a)? — p)/(m? — p?) (11)

18 finite one must keep an infinate series of local operators in eq. {10). All these
operators give contributions of the same order in the heavy quark propagator
1/(m2 - p?), differing only by powers of the dimensionless paramelter £ *. There-
fore, SDE of eq. (8) is useful onlyif £ - 0, ie if p2 >~ (p + ¢)? or, equivalently,
¢ =~ 0. Under this condition, the series in eq. (10) can be truncated afier a few
terms involving only a small number of unknown matrix eleinents M,,. However,
for general inoinenta with p? # (p + ¢)2 one has Lo sum up the infinite series of
matrix elements of local operators in some way.

*This feature is also observed in deep inelastic scattering, with the variables {Q7, v, z}
playing the role of {—p®, p. ¢, £) . As well known, there one applics an expansion
near the light-cone in terms of vperators of increasing twist, rather than of increasing
dimension.



'This formidable task is solved by using the technigques developed for hard
exclusive processes in QCD [15,16]. We illustrate the solution for the correlation
function

i ] 42 &7 (2 () T{a(x)7, Qa(z), 40, Qa(0)) 0}
= €uapp® P F* (P2, (p + ¢)?) , (12)

which is similar to eq. (3) and defines the form factor of the coupling of a pion
to a pair of virtual photons [16,25]. In eq. (12), @ is a matrix of electromagnetic
charges, and ¢ is a row vector composed of the up and down quark flavours. As
well-known [14], for sufficiently virtual photons, p? — —oo and (r+4q)2 = —o0,
this form factor can be calculated in perturbative QCD. The principal result
reads

1
Pl era=p [ Sl g drevl (13)

with calculable radiative corrections, and with power corrections suppressed by
the photon virtualitjes. Here, p.(u) is the pion wave function of leading twist,
defined Ly the following matrix element of a nonlocal operator on the light-cone
PR

- l .
(w(q)ld(:)‘}u'mu(ﬂ)l()) = —iq“f,,/u du e (u) . (14)

Physically, o, represents the distribution in the fraction of the light-cone momen-
tum gy + g3 of the pion carried by a constituent quark. Note the normalization
of x to unity following from eq. (14)forz =0 .

Let us first concentrate on the form factor (13) at (almost) equal photon
virtualities, i.e. at £ = (2r-9)/(-p*) < 1. Expanding the denotninator in eq.
(13) around £ = 0 one obtains a Sumn over moments of the pion wave function:

1
F (0 (p+9)%) = ﬂf " | dunp,(u) . (15)
P~ 0

From the definition (14) it is easy to see thal these moments are given by vacuum-
lo-pion transition matrix elements mvolving increasing powers of the covariant
derivative. For p? = (P+q)? ie q= 0, only the lowest moment n = ¢ contributes
in eq. (15), and the form factor reduces to Fo/p? which is the classical resuit.
In contrast, if the photon virtualities differ strongly from each other, then many

moments contribute to eq. (15). In this case, the calculation of the form factor
requires the knowledge of the shape of the pion wave function.

Returning to the correlation function (3) one realizes that the same technique
may be used to obtain a representation analogous Lo eq. {13). The only new
element in the correlation function (3) is the virtual heavy quark propagating be-
tween the points z and 0 instead of the light quarks present in eq. (12). This gives
rise to important differences which however do not. change the formalism substan-
tially. For the present discussion it is sufficient to stick to the approximation {8)
and confine ourselves to the first term proportional to m.. The complete analysis
of this expression and the calculation of further corrections will be carried out n
the next section. Furthermore, writing F, in terms of invariant, amplitudes:

Fulp@) = F(0, (0 + 0%V + F(82 (0 + 0)%)p, | (16)

we focus on the function F. Using the definition eq. (14) of the leading twist
wave function and integrating over z and & one finds

du p(u)

. 17
m? — (p+ ug)? (7)

1

Fip,(p+ ¢)*) = mcft/ﬂ

Thus, the infinite series of matrix elements of local operators encountered beflore

in eq. (10) is effectively replaced by an unknown wave function. The expression

(17) is rather similar to the one quoted in eq. (13) for the 7%9*v* form factor.

Most noteworthy is the fact that the large-distance dynamics is described by one

and the same pion wave function. This universal property is essential for the

whole approach.

Next we indicate how the relation (17) can be turned into a sum rule for the

coupling constant gp.p,. The key idea is to write a hadronic representation of
F by means of a double dispersion integral:

mymp- fp fpegp-pe
me(p? — mp M(p + q)2 — md)
p"(sl,sﬂdslds-_»
+/ (51— p?)(s2 — (p + ¢)?)

Fip*,(p+¢)?) =

h I
p1(s1)ds) / Pa{s2)ds,
+ | =y a0 18
] s —p? 52— (p+q)? (18)

The first term arises from the ground state contribution already indicated in e,
(1), while the spectral function (81, 52) is supposed to take into account higher
fesonances and continaum states in the f)* and D channels. The additional



single dispersion integrals originate in subtractions which are generally necessary
to make the double dispersion integral finite. Then, considering p? and (p + ¢)*
as independent variables one can perform the usual Borel improvement in both
channels. Applying the Borel operator

_ 2y(n+1) d \"
B (@) = i o goeter L (Y @y = soary )

to eq. (18) with respect to p? and (p + q)?, we obtain

, a _ md _ mi
F(Mlerzz) = BM.’BM?F(st(P+G)2) = p™p f::lfo L D3 e _"??_ M
+-/C_;]?—ﬁ?ph(31,32)d81d82 ' (20)

where M} and M2 are the Borel parameters associated with p? and (p + 9)%,
respectively. Note that contributions from heavier states are now exponentially

2 - 2 - . - .
suppressed by factors exp{—"—"ﬁ";"—-‘i'] as desired, while the subtraction terms
1.2

depending only on one of the variables, p? or (p + ¢)2, vanish.
The same transforination has to be applied to the expression (17). To this
end we rewrite (p + ug)? = (1 - u)p? + u(p + ¢)?, and use

(1 - 1)
Mi[mZ —(1=w)p? —ulp + )]

By B = (M2 'e /M 5w _ug) ,  (21)

where the Borel parameters M? and M3 have been replaced by

M 2_ _M{M}
= y M*= . 22
S MIy M M?+ M? (22)

Finally, equating the quark-gluon and the hadronic representations of (M2, M2)
and discarding for a moment contributions of higher states, we end up with the
sum rule

2 2 2 2 2
mpmp: fpfp. B 2 mp. ~m?  m} - m
_'—m’c_'“ "gD*Dx = mfy wxl(to) M exp “—Mli—c + _M;Z_C +

(23)

The ellipses refer to higher-twist contributions which we discuss in detail later.
Since M{ and M} are expected Lo be quite similar in magnitude, the coupling

conslant gp.py is determined by the value of the pion wave function at u -~
172, that is by the probability for the quark and the antiquark Lo carry equal
nomentum fractions in the pion [17]. This interesting feature is shared by the
sum rules for many other important hadronic couplings involving the pion.

The quantity ¢, (1/2) is considered to be a nonperlurbative parameter, sim-
ilar to quark and gluon condensates in the standard approach. It may he de-
termined from suitable sum rules in which the phenomenological part is known
experimentally. We use the value

Pa(1/2) = 1.24 0.2 (24)

obtained in ref. [18].

The dependence on the pion wave function disappears in the kinematical
limit ¢ — 0 as can be seen from eq. (17). This is just the limit where the
correlation function (3) can be treated in SDE. The condition ¢ ~ 0 is imphieitly
assumed in refs. [10,12] where the correlation function (3) is calculated using the
external field method. This technique is equivalent Lo the soft-pion approximatia
used in refs. [11,13] as will become clear later. For COMPATISON . We pren t) 1k
sum rule following from egs. (17) and (18) by putting ¢ = 0. o cops b ity
(p+4¢)? = p? Since p? is the only variable left, one now can ol et
a single Borel transformation and, hence, the subtraction terms i the demble
dispersion relation (18) are no more eliminated. Moreover, the coutnbutions to
eq. (18) of transitions from excited states to ground states are not suppressed
after Borel transformation [26]. This point will be explained in more detail later
in Sect. 5. In the approximation considered in €q. (23) one obtains

2 2 2 2 2
mpmp- fp fp- ) 24 _ 2 mp. —m; mp — m
e g0:0x 4 MEA = mefx M exp TomMz t Toape

(25)

where A is an unknown constant corresponding to the contributions of unwanted
transitions and subtraction terms.

From eqs. (23) and (25) one can clearly see the advantages and disadvantages
of the two approaches. In the light-cone sum rule (23) the hadronic input is sim-
ple, whereas Lhe theoretical expression involves a new universal nonperturbative
parameter, namely @, (1/2). Just the opposite is the case for the sum rule (25) at
¢ = 0. Here the QCD part is straightforward, while the hadronic representation
now involves an additional unknown quarntity, which is non-universal and specific
for this particular sum rule. A comparison of the results obtained in these two
approaches should allow one to check the reliability and improve the accuracy of
the predictions.



Hi. LIGHT-CONE 5UM RULE FOR Gp+:px AND Gg-5s

In this section we systematically derive the light-cone sum rule for the D* D
and H* Br couplings taking into account the two- and Lhree-particle pion wave
functions up to twist 4. First, we complete the calculation of the diagram Fig. 1a
which represents the contribution from quark-antiquark wave functions. To this
end we return to the expression (8). In the first matrix element we include the
iwist 4 corrections in addition to the leading twist term already given in eq. (14):

1
(o (@)Id(2 v 15 W(ONO) = —igu i jﬂ e (o, (u) + 2gi(u) + O(z*)

32QF ! wuygr

1 (5= 22 [Lduergat). (26)
qr 0

On the r.hs. of this relation one sees the first few terms of the light-cone ex-

pansion in x2 of the matrix element on the Lhs.. While ¢, parametrizes the

leading twist 2 contribution, g, and g are associated with twist 4 operators. in

the second matrix element of eq. (8) we substitute

TuTv = "io',uy + g (27)

andd expross the result in terms of the twist 3 wave functions ¢p and ¢, defined
by the matnx elements

fam2

(rl@)ld(z)irsu(@)}0) = =7

1
]ﬂ du e, (u) (28)
and

ftmzi

(mg)ld(x)an r5u(@I0) = dapry ~ au2u) gy

t
/ due™¥e,(u) . (29)
o
it should be noted that in egs. {26,28,29) the path-ordered gauge factors

1
Pexp{ig,/u daz, A" (az)} , (30)

appearing in between the quark fields and assuring gauge invaniance, are not
shown for brevity since they formally disappear in the light-cone gauge z, A* =
assumed throughout this paper. More details on these wave functions can be
found in refs. {18,27,28] and in Appendix A.
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Collecting all terms , we obtain the fotlowing result for the invariant function
F as defined in eq. (16):

Ir mz

my, + My

1
FOR(p+ )= [ i {mcf,p,(m {umu)

- (p+ uq)?

1 '+ m )
Il 2 T Vo,
+5 (4 )

Quga{n) BmZ(gy(u) + Gz("))]} 31)
~(p+ug)t  (mZ—(p+ug))? '

+ myfx [ 5
m

where

Golu) = -j0 gz(v)dv .

The suffix (a) refers to the diagram in Fig. 1a which represents the Jeading twist
term in the light-cone expansion of the c-quark propagator given th v {7)

in addition, to the accuracy of eg. (31) we must also take into acconnt g he
twist terms in the propagator up to twist 4 which are sutnerous. e general It
complete expansion is given in ref. [27]. One has contributions feom gty fetoy
and ggjg nonlocal operators, G denoting the gluon field strengih Here we only
consides operators with one gluon field, correspeading to guark-antiquark-gluon
components in the pion, and neglect compouenis with two extra gluons, or with
an additional §g pair. This is consistent with the approximation of the twist 4
two-particle wave functions derived in ref. {28] and used here. Taking into account
higher Fock-space components would demand corresponding modifications in the
two-particle functions via the equations of motion. Formally, the neglect of the
§GGq and §qdq Lerms can be justified on the basis of an expansion in conformal
spin [28]. In this approximation the c—quark propagator reads

. a3k . 1 1 me
T (@0 = i52) i, [ oz [ |5 A e o tomion,

1 .
b G| (32)
where Gy = G, 52i with tr(A%2%) = 26°, and g, is Lhe strong coupling constant.
Substituting eq. (32) into eq. (3) and using eq. {16) one obtains the conin-

bution to the invariant function F represented by the diagram in Fig. 1b:

dik dix du .
()2 2y o, [ _dETEdY 2, (P vz
F (p+9)7) rf Zryi(m? ~,c;;)(‘frld(x)ﬂn. [trp( (v )7




.I;'+mc 1

mi(;"*(”)mJ 75 u(0)]0) .

With eq. (27) and the identities

TuCpr = i(.‘).up'h ~ GurTp) + EppAﬂ'ya.!ﬁ
and
YuTv 0oy = (ayAgvp = CupGur) + i(g,u)agvp = Gupdui)
- 5uupl7l5 - iEvaagaﬂduﬁ'YE
one is led to the three-particle pion wave functions [25,28] defined by
(x [c?(::)g,G,..,(v.z)oap-ysu(OJIO)
= if3r[(§‘p‘lagvﬂ ~ Qladup) — (QMQﬁgva - qpq;sy,.a)]
x ./1)&._ Pa'(a‘_)eiq:(al Frvas) ,

(w,d(:)‘nl 159:Gayp (UI)U(OJ |0)

_ Tag Taq
<1 [ e - %22) o (- 220

X /‘Da,'(,ol(a.-)e"'t(“' tva,)

q .
+ /e -q-f(quzﬂ - qﬁ.‘:a)/Dai ‘Pﬂ(ai)c'"(“' +va) ,

(WIJ(-'I?)‘Y;.!)-Gaﬂ(vt)u(O)IO)

. Taf 59
=ify [q,(i (gar.u - ;IF) — Qa (9,6# - qz“)J

Dﬂf.‘ ‘ﬁ.l. (a‘_)eiqz(a|+va3)

+tft qi;:.-(qqu - Qﬁlu)/ DO.‘ gﬁn(ai)eiez(m+vaa) ,

(33)

(34)

(35)

(36)

(37)

(38)

where C:‘aﬂ = %ca,@,,(}” and Do, = doydaydazd(l — & ~ 03 — a3). While
war(oy) is a twist 3 wave function, the remaining functions P1, @), @1 and Pl
are all of twist 4. Substitution of these expressions in eq. (33), finally, yields
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1
Wbic, 2 2y _ _ s pax{ai)v(pg)
' (p,(p+q))—fﬂ dvau.{[“———_n_,nf

=P+ (a) + vas)q)?)?
+o g, 22100) — pplac) + 29, (o) - gy(an) } _

[mZ —(p+ (a; + vaglq)?]? (59)

In addition to Fig. 1b there are further gluonic diagrams such as the otes

depicted in Figs. 1
the diagram in Fig.

¢ and 1d. Note, however, that it is not necessary Lo take
tc into account separately, since its contribution (to twist 4
included in the two particle wave functions. In contrast, the

two-loop perturbative corrections exemplified in Fig. 1d should be included in a

systematic way, but

Putting together €qs.
formation (21) with respect to P? and (p + g)

their calculation lies beyond the scope of this paper.
(31) and (39) and applying the double Borel trans.
? we end up with the following

expression for the invariant amplitude F :

F(ME,

-
= e-;&Mz{mcft‘Pr(“U) +

M3) = F(M?,up) = BuaBu; F(0%, (p +¢)*) =

fx mf:

1
m (uuwp(uu) + iﬁao(“n)

dy 2fcn,

6  du

+rup 2o ) my
Ug——(ug * 33z Po(u0) + =g tuga{u)

4frm?

= (91(u0) + Ga(ug)) + 2, I (uo) 4 m, f, 14'(1‘0)}_

Here, I§ and I¥ involve the three-particle wave functions of twist 3 and 4, re-

spectively :

15 (up) = /0“0 da, [

If(uu):/ da
0

2

Uy — ) gy

Par(ay, 1 — up, up — @) fl_“' das Parlay, 1 —a) — oy, ay)
_ Ik,
Up—a,

(41)

l~a, d
l/uo_m ‘ai:psﬂ(ﬂi) - sp"(a.-) + 2, () — pylag)] . (42)

The Borel parameters Af2 and uy are given in eq. (22). The above is the de-

sired quark-gluon re
function (3).

presentation of the invariant amplitude F in the correlation

"The remaining task now is to match eq. (40} with the corresponding hadronic
representation (20) and to extract the coupling ¢5)-p,. Asusual, tnvoking duality,
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we assume that above certain thresholds i s, and s9 the double spectral den-
sity p?(s1,s2) associated with higher resonances and continuum states coincides
with the speciral density derived fromn the diagrams in Fig. 1. The procedure 1s
explained in detail in Appendix B. For M? = MJ = 2M? and uo = %, and for
standard polynomial wave functions, the eflect of the continuum subtraction 1s
reinarkably sitnple [17,18). It amounts to the following replacemnent of the ex-
ponential factor multiplying the twist 2 and 3 terms proportional to M? in eq.
{(40):

i - (e-5'f~e‘r'«"s) , (43)
s¢ being the threshold parameter defined in eq. (B10). The higher twist terms
which are suppressed in eq. (40) by inverse powers of M? with respect to leading
one remain unaffected. With egs. (20), (40) and {43) it is then easy to derive
the following QCD sum rule for the DD"x coupling:

Jofpr9p-px = ——;
mDmD

2 w2 am? md .
Mc%’m {Maledﬁ& — e TIR"—] [(p,(uu)

Hx 1 1 dy, 2fax ¢
+ m ('llo(P_p(uD) + §¢o(u0) + 6u0 du (“0)) + m.fx ls (U{))]

c

_mlrpam, 4m?
e m? [“ ;n waltin) + 2ugga(ug) — ﬁf(gl(uﬂ) + G2(uo)) + If(“ﬂ)] } '

was1/2
(44)
where
2 —
Ty _2(QQ)
x = = . 45
# my + Nty ff (“45)

In eq. {45) we have used the familiat PCAC relation between my, f; , the quark
masses and the quark condensate density (§g}. Note that the twist 2 and 3 and
the twist 4 wave functions have different dimensions (see Appendix A). (F-panty
implies g9(1/2) = dp, fdu(1/2) = 0, so that these terms vanish in the sum rule
{44).

For compieteness, we also repeat the standard two-point sum rules for the
decay constants fp and fp. :
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fimb 3 [ rhor(s - mi)? N S
- — - 1 + - - : s
Bx? dse v s me{ggre b+ 1112( 2M?

¢ m?
(16)
and
1 [, rpe=t(s—m?)? m? mhe e mém?
2 .2 e T W] (o, e} ey Si = e
fpemp, = i /m’ dse” » " (2-{- o ) m{gqle” ™ i A
(47)

where m2 = (§o.sG*?q}/(qq} is a conventional parametrization for the quark-
gluon condensate. In the above, we have omitled numerically insignificant con-
tributions of the gluon and four-quark condensates. For consistency, we do nut
take into accouni perturbative O{a,) corrections to these sum mles, since they
are also not included in the sum rule (44).

IV. NUMERICAL ANALYSIS

The principal nonperturbative input in the sum rule (44) are pron wane fune
tions on the light-cone. In ref. {14) a theoretical framework has been developed to
study these funciions. In particular, it has been shown that the wave functions
can be expanded in terms of matrix elements of conformal operators which in
leading logarithmic approximation do not mix under renormalization. For exam-
ple, for the leading twist pion wave function one finds an expansion in Gegenbauer
polynomials,

ex(u, p) = 6u(l — u)[l +ax{)CY 2 (2u — 1) + aa(p)CY H2u — 1) + . ] . {48)

where all the nonperturbative information is included in the set of multiplica-
tively renormalizable coeflicients a,, n = 2,4, ... The corresponding anomalous
dimensions are such that the coefficients a, vanish for g — oo, and the wave
function is uniquely determined by the first term in the expansion. Therefore,
this term is called asymptotic wave function. Sumilar expansions also exist for
the wave functions of nonleading twist [28].

For practical applications it 1s importait that the expansion m conformial spin
converges sufficiently fasi. How fast the wave functions approach their well-known
asymptotic form is still under debate. However, there are indications [24] that
the nonasymptotic deviations have been overestimated previously. Correclions
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to the asymptotic expressions wn next-to-leading (and in some cases also next-to-
next-to-leading order) in conformal spin are known for all wave functions which
appear in the sum rule (44). For details, we must refer the reader to the original
literature [16,28).

In our numerica! analysis we use the set of nonleading twist wave functions
proposed in ref. [28]. The explicit expressions and the values of the various
parameters are collected in Appeadix A. Furthermore, we take fx = 132 MeV,
#e(1GeV) = 1.65, corresponding to {gg} = —(243 MeV)?, m = 0.8 GeV? and,
in the charmed meson channels, m, = 1.3 GeV, 59 = 6 GeVZ, mp = 1.87 GeV
and mp+ = 2.01 GeV. The same pajameters are also used to determine the decay
constants fp and fp. from the sum rules (46) and {47). One obtains

fp = 1703 10MeV, fp. =240 1 20MeV . (49)

‘Yhe uncertainty quoted characterizes the variation with the Borel parameter M?
in the interval 1 GeV? < M2 < 2 GeV?2.

Having fixed the input parameters, one must find the range of values of M?
for which the sum rule (44) is reliable. The lowest possible value of M? is usually
determined by the requirement that the terms proportional to the highest inverse
power of the Borel parameter stay reasonably small. The upper limit is deter-
mined by demanding that the continuum contribution does not get too large. In
the 13* Dr sum rule we take the interval 2 GeV? < M? < 4 GeV?. In this inter-
val 1he twist 4 term proportional to M2 does not exceed 5%. Simultaneously,
higher states contribute less than 30%. The dependence of the r.h.s. of eq. (44)
on the Borel parameter is shown in Fig. 2a. As can be seen, in the fiducial range
of M? given above, the sum rule is quite stable. From Fig. 2a one can directly
read off the prediction

fofp-gppr = 0511005 GeV? . (50)

Dividing this product of couplings by the decay constants (49} finally yields for
the [)* Dx coupling constant:

gpepx = 1254 1.0, (51)

where the error is understood to indicate the range of values corresponding to
the correlated variation of the results (49) and (50) within the fiducial intervals.
While the combination of couplings (50) is not aflected by uncertainties in the
decay constants, It is more sensitive to the charm quark mass and threshold sq
than the coupling gp.py itsell.

A few comments are in order. The twist 3 terms contribute to the sum rule at
the level of (50 + 60} % and are therefore as important as the twist 2 contribution.
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On the other hand, the impact of twist 4 is stall amounting to about 5% Two
sources of uncertainties not included in eq. {50) are the nonasympiotic corrections
to the leading twist wave function p, and to the three-particle {twist 3) wave
function w3,. The latter in turn induce modifications in the two-particle (twist 3)
wave functions g, and p,, apart from the corrections generated by Lthe asymptotic
wax wave function. In order to estimate the sensitivity of our results to the
nonasymplotic effects in wx and wax we drop these coftections altogether and
recalculate the product fp fp-gp-br. Remarkably, the result changes by only
5%. Ome can thus be confident ihat the tota) uncertainty in eq. (50} does not
exceed 20%.

We should emphasize that the above prediction can be directly tested exper-
imentally in the decay D* — Dx. With the value of gp-p, given in eq. (b1) one
predicts the decay width

2
. 90-Dx — 13 ‘ ‘
(DY — Dixty = ZPBx = 32+ 5keV . 52

{ ™) 247mi,. 171 € (52)
Predictions for other charge combinations are easily obtained from eq. (52) taking
into account the isospin relations (2) as well as small differences in the phase space
volumes:

Yt — PPxty = 210Dt = DYy = 2. 0.720(D°° — D% . (53)
The current experimental upper himit
(D't — D%rt) < 89 keV (54)

is obtained by combining the himit Ty (D) < 131 keV [30] with the branching
ratio

BR(D*Y — D°x%) = (68.1 £ 1.0 + 1.3)% [31). Our prediction is well below this
upper limit.

The sum rule for gp-py given in eq. (44) is easily converted into a sum rule
for the coupling gp-ps = gpeop-,+ by replacing ¢ with b, D with B, and 1
with B*. The corresponding parameters are mp = 5.279 GeV, mp. = 5325
GeV, my = 4.7 GeV, and 59 = 35 GeV?. In addition, one has to evolute the wave
function parameiers to a higher scale g, (see Appendix A). With these changes
the two-point sum rules (46) and (47) yield

fo = 140MeV, fg. = 160 MeV (55}
with negligible uncertainties due to variation of M2. Using the same criteria as for
the gp«px sum rule the fiducial range in M? turns out to be 6 GeV? < M? < 12
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GeVZ The stability of the sum rule for the product of couplings fu fp-gp-nx is
illusirated mn Fig. 2b. We obtain

fofo-9p-Bxc = 0.64+0.06GeV” (956)
and with eq. {55)
g Bx =201 3. (57)

The hierarchy of various twists as well as the uncertainty due to the nonasymp-
totic corrections are found to be sumilar as in the case of gp-p. . Contrary to
the latter, the coupling constant gp-p. cannot be measured directly, since the
corresponding decay B* — B is kinematically forbidden. However, the B* B»
on-shell vertex is of a great importance for understanding of the behaviour of
heavy-to-light form factors as will be discussed in Sect. 6.

V. SUM RULES FROM THE SHORT-DISTANCE EXPANSION

With the results of Sect. 4 at hand we are now also in a position to study
in more detail the soft-pion himit (25) of the sum rule (44) which is obtained
from the correlation function (3) at p? = (p + ¢)? or, equivalently, for ¢ — 0. As
discussed 1 Sect. 2, in this limit one can apply a short-distance expansion in
terms of fucal operators with increasing dimensions in contrast to the light-cone
expansion involving nonlocal operators with increasing twist. In technical terms,
at ¢ — @ only the lowest moments of the wave functions contribute. Thus the
integrals reduce to overall normalization factors. The explicit expression for the
invariant function F in this limit is directly obtained from eqs. (31) and (39):

1y IRe f: Hx mz 1062 mg
F@)‘maaﬂP*smc@+nﬁ—ﬁ)+9w¢—f)‘ mi-p)]

(58)

where the parameter §* is specified in Appendix A. After Borel transformation
in p? one has

. 5 _m 2;5, 1 Hat, 10 \ m2§2
FAY. =% 2 <
I'(M )__fncf.,e M []+ c+__._2( +‘_.‘§)_ 4 i (59)

As indicated in eq. (25), the price for simplifying the QCD representation
of the correlation function is a motre complicated hadronic representation. This
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in turn makes it more difficuil to extract the ground state contribution contain-
ing the D" Dx coupling. For illustration, we consider the contnbution m the
dispersion representation of the correlation function (3) from the transition of a
given excited state in the D"-channel with mass m. > mp. to the ground state
D-meson at g —+ 0. This contribution is proportional to

i

60
(= p0mh 1) @
and, after Borel transformation, to
1 -2 2
o By (e_?&—e‘ﬁ’i) , (61)
.~ mp

Similar expressions hold for the ground state transition " — D with m, = mp.
In the limit mp = mp-, one has a double pole instead of eq. {60) and

1
M°

@

(6t

instead of eq. (61). Clearly, the contribution (61} is not exponentially suppressed
relative to the ground state contribution (62), and can therefore not be subtracted
assuming duality. On the other hand, transitions involving excited states in
both the initial and the final states are suppressed by Borel transformation with
respect to the ground state transitions and cause no problems. Schematically,
the complete hadronic part of the invariant amplitude F{M 2} can be written as
follows:

ks

2 - - m2.+m? e
F(Mz):I{%{MQD.D,+AM?}(—%‘E"Q+C-€#, (63)

m,

where the constant A incorporates all unsuppressed contributions of the type
(61), while the term proportional to C' contains all exponentially suppressed
contributions.

To get rid of the contaminating term AM? we follow ref. [26] and apply the
operalor

m],+m2
(1 - Mza—:ﬁ) M2e ST (64)

to both representations (59) and (63). Now it is possible to subtract the contin-
uutn contribution by the same substitution (43) which we have already employed
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to get the light-cone sum rule (44). In this way we oblain a new sum rule for
gD+ Dx:

2 md +m2.—2m2
fofp-gp-ps = —r?i (l ~m2 4 )e P

mpmpes dM?
_to-md 2ix pxm. 10 5m242
MY 1 —e 5t (14 ) peme 105 SmiST)
x[( eM)(+3mc+3+9 omz | - (69)

For the same input parameters and the range of M? leading to the prediction
(51) this sum rule yields

gppx =11 12 (66)

Similarly, replacing in eq. (65) the charmed meson parameters by the correspond-
ing quantities in the beauty channel, one finds

9By = 2846 . (67)

As compared with the predictions (51) and (57) the uncertainties are larger by
a factor of two due to the worse stability of the sum rule (65) against varia-
tion of M2 The agreement of the results indicates selfconsistency of the sum
rule approach and gives support to the approximations nsed in the pion wave
functions

Furthermore, one can show that the sum rule (65) is actually equivalent to the
sun rule obtained in ref. [10] using external field techniques. Indeed, applying the
usual reduction formalism to the pion, one can rewrite the correlation function
(3) in the following form:

Fu(p.q) = (¢* — m2)
x /d‘z d'y e“””""’({) ) T{J(::)uc(z), $x(¥), €(0)ysu(0)} | 0) , (68)

where ¢.(y) is the interpolating pion field. According to PCAC

_ 9"y
¢l(y) - Hfr.”Tg )

Jgy) = u(y)y,ysd(y) being the axial current. Subsituting eq. (69) in eq. (68)
and integrating by parts, one gels |

(69)

'In addition, one obtains two-point correlation functions because of contact terms.
These do not lead to double poles in p? in the relevant dispersion relation and are
therefore eliminated by applying the differentiation operator (64).
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. -q2 - ”'3 " ra 1 m p
P.u(p; q)= f—m"'w(ﬂ‘l)q = _f— l.up(ps ¢)g° (70)

with
Tuolp.q) = / d*z d'y e P WHOIT {d(z)y,e(z), I3, e(0hrsu(0)}]0) . (71)

Instead of dealing with the three-point correlation [unction T,,,(p, q) directly,
it is more convenient to consider the following two-point correlation function in
the constant external axial field AS:

TA(p,q) = [ d'z #7(0 | T{d(z)ruc(z), (0)r5u(0)} | O} . (712)

It is assumed that a term A5# Jp corresponding to the interaction of the external
field with the light quarks is added to the QCD Lagrangian. To first order in the
external field, this correlation function is Eiven by

T, q) = Top(p, 0) A%,

with T, (p, ¢) as defined in eq. (71). In the above sense, the Lwo-point correlation
function (72) in the constant axial field, is equivalent to the three-point function
(71) and, via the PCAC relation (69), also to the two-point correlation function
(3) at ¢ — 0 *. Consequently, the sum rules obtained in refs. [10] and [13) should
coincide with each other and with the sum rule (65) derived in this paper.

In particular, the expzession (59) for F(M?) can be compared with the result
given in eq. (19) of ref. [10) and in eq. (2.15) of ref. {13], after normalization
and kinematical structures are adjusted properly. In refs. {10,13] the correlation
function (3) is separated as follows: :

F, = Agu + B(2p, 4+ q,) , (13

and the sum rule is obtained by evaluating of the invariant function A for g — 0.
In terms of the invariant amplitudes defined in eq. (16) one has

A:F—?,B: (74)

I\Ji"!‘jr

Hence, for comparison we need also the second invariant function F, which we
have not discussed so far, buli which can be calculated along the same lines.

'As a side remark, the light-cone approach leading to eq. (44) corresponds to a calcu.
lation in the background of a variable external axial ficld (17.18].
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Adding this contribution to €q. (59), we have checked that our result for the
invariant amplitude A4 coincides with the one presented in ref [13), apart from
terns proportional to m? which, being associated with twist 9 contributions in
the light-cone sum rules, are neglected in our approximation, Numerically, this
lerms are not important. On the other hand, we disagree with ref. [10] in the
non-leading terms proportional to 82,

Although it is legitimate to use different Lorentz decompositions of the cor-
relation function (3} in order to derive the desired sum rule, we think that the
choice adopted in the present paper is more adequate for the following reason.
Since the vector current ¢7uc I8 not conserved, it not only couples to JF = |-
vector mesons, but also to JP = o+ scalar mesons (D). The corresponding
transition matrix element is proportional to the momentum Pu:

(U | Yuc l DU) = fDannp.u . (75)

The mass of the ground state Dy meson is expected to be in the vicinity of 2400
MeV which is not far from the mass of the D" and below the accepted continuum
threshold in the D* channel. For this reason, the D, contribution should be added
to the sum rule. Unfortunately, this introduces additional uncertainties in the
hadronic representation as is the case, for example, in ref. [13]. In contrast, our
sum rules based on the invariant function F defined in eq. (16) are not affected
by scalar meson contributions, which is a clear advantage.

A calculation rather similar to ref. [13], but with particular emphasis on the
heavy quark limit, has been carried out earlier in ref. [11]. Very recently, another
calculation in the heavy quark limit appeared in ref. [12] using the external field
technique. Unfortunately, in this Paper a wrong expression for the induced quark
condensate in the external field js used, as can be scen by consulting refs. [10,32),
The error can be traced back to the equation of motion for the quark field in
presence of the external field which 1s modified from iPg=0wipPg= 5q.
By this modification the axial current insertions into the vacuum quark legs
are properly taken into account. The numerical comparison of these different
calculations is left for the concluding section.

VL. POLE MODEL FOR D _. * AND B — x FORM FACTORS AND QCD
SUM RULES

The couplings gp.p, and 98- Bx fix the normalization of the form factors of
the heavy—to—light transitions D — x and B — , respectively, in the pole model
description [5,6]. This model is based on the vector dominance idea suggesting a
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mowmentuin dependence dominated by the D" and pi- poles, respectively. More
definitely, the form factor J(p?) defined by the matrix element

(7(¢) [dvuc | D(p + ) = 2/ (%), + (F5(0°) - 15 (0*)pa (76)
is predicted to be given by
I50%) = 5 Luespon (1)

2mp-(1-p?/md.)

An analogous expression holds for the form factor f1(p?).

It is difficult to justify the pole model from first principles. Generally, it is
believed that the vector dominance approximation is valid at zero recoil, that js
at p? — m}). Arguments based on heavy quark symmetry suggest a somewhat
larger region of validity characteriged by (m} — p*)/m, ~ O(1GeV). However,
there are no convincing arguments in favour of this model to be valid also at small
values of p? which are most interesting from a practical point of view. Therefore,
the finding {7,9] that the pole behaviour 8 consistent with the p? dependence at
P -0 predicted by sum rules, is very remarkable. Meanwhile, this claim has
been confirmed by independent calculations within the framework of the light-
cone sum rules [8].

In this section we want to demonstrate that not only the shape but also the
absolute normalization of the above forin factors appears to be comparable with
the pole model description. This assertion is non-trivial, since contributions of
several low-lying resonances in the [* or 8° channel could still mimic the p? de-
pendence of a single pole, but the relation to the coupling gp.p, or ga+px should
then be lost [4]. However, despite of the overall agreement in the mass range of
D and B mesons, there is a clear disagreement on the asymptotic dependence
of the form factors on the heavy mass. The QCD sum rules on the light-cone
provide a unique framework to examine these issues, since both the form {actors
f;.B(p2) al mf,b - > 00 GeV?) and the couplings gp.p, and g5~ can be
calculated from the same correlation function (3) using the same techmque. In
addition, contrary 1o conventional sum rules [7], this approach leads to consisient
results in the heavy quark limit [21].

The detailed derivation of the light-cone sum rules for the D) — 7 and B — &
form factors is discussed in ref. [8] (see also refs. [19-21]). Here we just mention
that the sun; rule for fE(p?) is obtained by matching the expressions (31) and
(39) for Lhe invariant amplitude F(p?, {(p+4)?) in termis of the pion wave functions
with the hadronic representation

2m) fp f1(p?) +-/°° PP, s)ds (78)
) Sy

2 2 _
FE'.(p+9)) = me(m} — (p + q)? s—(p+q)?
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In the above, the pole term is due to the ground state in the heavy channel,
while the excited and continuum states are taken into account by the dispersion
integral above the threshold s;. Invoking duality, the latter contributions are
cancelled against the corresponding pieces in eys. (31) and (39). After Borel
transformation in the variable (p + g)?, the resulting sum rule takes the form

2 H 2 2 2
+4.2y f'mc ﬁ m.D_mc_p(I_u) 2 .2
fD(p )_ 2fD"l§) {/Q u exp [Mz uM? Q?(ul M P ) (79)

_]' udu/ DaiO(ay + uaz ~ A)
o (a1 + uaz)?

m) mi—p'(l—a; — uag)

X exp [E!_z a (a1 + uag)M?

Qa(u,Mz,pz)},

where

Hx 1 m? + p*
P2 = palu)+ p [usop(u) + g9o(u) (2 + = ) ]

dmlgi(u)  2G4(u) m? + p?
WM T TaM? (1+ uMz_) ) (80)
R :zf-'il mf—pQ
BT G e [' - m]
1
- W[QW(G‘) = enlai) + 26, (o) ~ sﬁu(a.)] , (81)

and A = (m? — p?)/(so - p?). The notation is as in eq. {44). lmproving the
approximation given in ref. [8] we have added the contributions of three-particle
wave functions of twist 4. The analogous sum rule for the B — 7 form factor
follows from the above by replacing ¢ — b and D — B, and by rescaling y4, and
the wave function parameters from He Lo .

The maximuem momentum transfer p? at which these sum rules are applicable
1s estimated to be about 15 GeV? for B mesons, and 1 GeV? for D mesons. For
numerical evaluation we use the approximations of the wave functions given in
Appendix A. We emphasize that the mmput here is exactly the same as in the
calculation of the couplings gp-py and 98-8x . The form factor fg (p?) resulting
from the sum rule (79) is plotted in Fig. 3a, together with the corresponding
prediction (77) of the pole model. We see that in the region of overlap both
calculations approximately agree with each other. To a lesser extent, this also
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applies to the form factor T3 (p*) illustrated in Fig. 3b ¥ Quantitatively, at
p? = 0 we find

f5(0)er =066, fL(0)pa =075, (82)
and

fE(0)sk = 0.29, T30 pas =0.44 (83)

Thus, in the regions m3 — p? > O(1 GeV?) with Q = ¢ and b, respectively,
the numerical agreement between the light-cone sum rule and the pole model is
better than 15% for f}, but only within 50% for I7e

At this point, we must add a word of caution concerning the applicability of
the pole model too far away from the zero recoil point, in particular at p? = 0.
The two descriptions differ markedly in the asymptotic dependence of the form
factors on the heavy mass. Focusing on B mesons and using the fannhar sealig
laws

fB\/m :fB, fB'vmﬂ:fu- R =4

and

2m .
9B By = —2 g, (85)
Ix :

which are expected to be valid at my — oo modulo logarithmic corrections, one
obtains

f5@pm ~1/ymp {86)

whereas the light-cone sum rule (79) yields [19]

fEO)sp ~1ymd? (87)

This result rests on the QCD prediction [14] of the behaviour of the leading twist
pion wave function near the end point, that is Px(v)~1—uat u-— 1. Itshould
be noted that the contribution estimated by the sum rules corresponds Lo the
so-called Feynman mechanism. In the case of heavy-to-light transitions it leads
to the same asymptotic behaviour as the hard rescattering mechanism [19,33]

$The dependence of €q. (79) on the Borel parameter is weak [8]. For definiteness, we
take here M? = 4 GeV? for the D — 7 form factor and M? = 10 GeV? for the B — x
form factor.
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Recently it has been shown [34] that the power behaviour (87) of hard rescattering
is not modified by the Sudakov type double logarithmic corrections. We believe
that the light-cone sum rules reproduce the true asymptotic behaviour, although
a rigorous proof in QCD is still lacking. On the other hand, we see no theoretical
justification for extrapolating the pole model to the region p? = 0. The solution
suggested by Fig. 3 is to match the two descriptions in the region of intermediate
momentumn transfer p? =~ m — O(1GeV?).

Referring for a detailed discussion to refs. [21] and [35] we want to emphasize
that the light-cone sum rules seem to be generally consistent with the heavy
quark expansion. In particular, the light-cone sum rule (44) correctly reproduces
the heavy quark mass dependence of the coupling gp+ 5« - Fitting our predictions
for gg+ px and gp-py to the form

gp*Bx = I; @[14‘—{)—’] {88)
L] B

and the analogous expression for gp-px, we find for the coupling § and the
strength A of the 1/mg correction:

§=0322002, A=(07401)GeV . (89)

turtherniore, we are able to make a numerical prediction for the theoretically
vhis Testing ratio

g8 fBD (g9 {90)
gp-pxfo-/MmB

This satio is unily in the heavy quark limit and is shown to be subject to 1/mg
corrections only in the next-to-leading order [5]. Our result (90) is nicely consis-
tent with this expectation. The deviation from unity also agrees in magnitude
with the estimate in ref. [13], but has a different sign. This is due o a sizeable
diffetence in the ratio fg-/fp-. While the values of the decay constants given in
eqs. (47) and (55) yield

Inyme (91)

fo-/mp

in agreement with the expectation quoted in ref. [5], the latter ratio turns out to
be lasger by 30% if calculated from fg. and fp- as assumed in ref. [13].
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vil. SUMMARY AND CONCLUSIONS

We have presented a comprehensive analysis of the pion couplings to heavy
mesons in the framework of QCD sum rules. The main new result of this paper
is Lhe lighi-cone sum rule (44) providing the numerical estimates for gp-p, and
gp-px given in eqs. (51) and (57), respectively. The decay width V(D" —
Dr) predicted in eq. (52) turns out to be three tirnes smaller than the present
experimental upper }imit. We have compared our sesults to earlier QCD sum
rale calenlations [10-13], and resolved the existing discrepancies.

A rather complete compilation of estimates ** on the pion couplings to heavy
mesons is given in Table 1. In the first row we show predictions on the reduced
coupling § defined in eq. {85). As one can see, the values obtained by combining
the nonrelativistic constituent quark model with PCAC [4,37,38] are roughly two
times larger than the values favoured by our sum rule. However, more recent
analyses [39,40] combining chiral HQET with experimental constraiats on D*
decays tend to give somewhat smaller values of g. Moreover, another recent
calculation [41] based on the extended Nambu-Jona-Lasinio model and chiral
HQET is in perfect agreement with our estimate.

The next iwo rows list the estimates of the couplings gu-p« and gpepx-
These predictions are even wider spread. Quark models [42,43] seem to give the
strongest couplings, whereas SU(4) symmetry {44] and the reggeon guark-gluon
string model [45] predict a refatively small coupling. Two comments are in order
concerning the apalysis of ref. [13]. Firstly, these predictions are counsistently
tower than ours. There are several reasons for that: the different Lorentz decom-
positions (16) and (73) of the correlation function (3), the differences between the
sum rule (44) and the soft-pion limit (65} of it, the different regrons of the Borel
parameter M2, and the different values used for the decay constanis fp( and
fgw- In fact, as can be seen in Fig. 2, the couplings shrink with M?. However,
given the reliability critena, generally accepted for sum rules, we see no possibil-
ity to shift M? to larger values beyond the regions considered in this paper, n
contrast to ref, [13]. Secondly, we find it inconsistent to include the perturbative
gluon correction in the estimates of fp p- and fp p-, since they are not included
in the sum rule for the combination of couplings fp fp-gp-p« and fofp-gB B2
At least, we see no convincing argument in favour of such a procedure. For these
Iwo reasons we believe that the couplings ase underestimated in ref. [13].

For convenience and direct comparison with future measureinents the decay

“We have not included the resnlis of ref. [10] since to our knowledge this analysis 18
being reconsidered [36]. The result of ref. {12] is omitted for reasons explained in Sect.
5.
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width

(D" — D x*) as calculated from gp-px of § is quoled in the last row of
Table 1. The widths in the channels D'+ — D+ 0 and [*© _, 0,0 are related
to the above by coefficients which can be read off from eq. (53). Note that in
contrast to the evaluation of I'(D* — Dn) from gp-py in this paper and in ref.
[13] the estimates in refs. {38,39] using the reduced coupling g do not include 1/m
corrections. However, the latter are important as can be seen from eq. (89).

In addition, we have examined the pole model for the B — x and D — #
form factors. Using our results on the 9p-Bx and gp.p, coupling constants, we
have found approximate numerical agreement between the pole model description
and the direct sum rule calculation. However, the dependence on the heavy
quark mass is found to be completely different in the region of small momentum
transfers. We have argued in favour of the sum rule approach. Moreover, writing
a heavy quark expansion for the couplings gp. g« and gp.p,. we have determined
the expansion coefficients, in particular, the leading 1/m correction.

Last but not least, we have discussed in some detail the theoretical foundations
and advantages of the light-cone sum rules, complementing the work of refs. [14-
19]. We believe that this approach is especially suitable for the study of heavy-
to-light decay form factors, and coupling constants of the type considered in this
paper. Further obvious applications include the radiative decays D* — Dy and
B* — By. Since the photon wave functions are expected to deviate less from
their asymptotic forms than the pion wave functions [17], these decays should
provide a rather conclusive consistency check of the light-cone approach.
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APPENDIX A

For convenience, we collect here the explicit expressions for the pion wave
functions used in our numerical calculations and specify the values of the param-
eters involved.

For the leading twist two wave function we Lake [18]

Px (e, 1) = Gu(l — u)[l + a2(1)C3 (20 — 1) + as()CY *(2u - 1)] (A1)
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with the Gegenbauer polynomials
3
C3*(2u—-1) = S[602u—1)? - 1],
C - 1) = ?{21(21;— DY 14(2u - 1)2 +1] (A2)

and the coefficients a; = %, @4 = 0.43 corresponding to the normalization point
# = 0.5 GeV. In the present applications the appropriate scales are sel by the
typical virtuality of the heavy quark. We choose

Be =y\/m) —m?~13CeV, pu= \/rmi, —-m?~24GeV. {A3)

Renormalization group evolution of the coeflicients a; and a4 to these tugher
scales yields

ax(pe) = 0.41, aglp.) =023,

az(ps) = 0.35, ag(uy) = 0.18 . P
We stress that the value of . at u = 1/2 varies by only 2% when the < . .
increased from 0.5 GeV to 2.4 GeV. Obviously, one can neglect this ofle g L

the 15% uncertainty in the value of Palu = 1/2, 4= 0.5 GeV) quoted m eq. {(24).

According to the analysis in refs. [18,28] the set of wave functions of twist
three is uniquely specified by the choice of the three-particle wave function s, .
Taking into account the contributions to ¥3x UP Lo next-to-nexi-to-leading order
in conformal spin, one has

1
pax(ag) = 360a1aga§(1 +wi05(Tag - 3)

+ wy o(2 — 4oy — Bag + 8a§) + wy (Jojay — 203 + 3a§)] . {A5)

This implies for the two-particle wave functions of twist three [28]:

1 | ,
wp(u) =14 Bz 5(3(u - i)’ - 1)+ 345(35(:; — ) —30(u—u)*+3) (A6)

and

_ 3 9 L 15, 4 ,

wo(u) = 6uu |1 +Cz§(5(u —u) - 1)+ C‘qg(zl(u —u) —~ Mu—u) + 1) , (A7)

where
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By =30R,

3
By = 53(4&02,0 — w1~ 2w ),
1
CQ = R(5 - '2—U1,0) N
1
Ch= ER(%z,o —wy 1), (A8)
with
fa:
= 220 A9
F‘—f' ( )

The coefficients J3x and w; ;. have been determined at the normalization point
# =1 GeV from QCD sum rules [16]):

far = 0.0035 GeV?, w0 =288 w2o =105, w;;=0. (A10)
After renormalization {27] to the relevant scales (A3), we get

Jar(pc) = 0.0032 Gev?, wio{pe) = ~2.63, wso(p,) = 9.62, wi1(pe) = —1.05
Fax(1s) = 0.0026 Gev?2, wio(im) = -2.18, wyo(m) = 8.12, wii{me) = —2.59 .

The corresponding numerical values of the coefficients (A8B) are as follows:

Ba(pe) = 041, By(u.) = 0.925 Calpe) = 0.087, Cy(p.) = 0.054,
Ba(uy) = 0.29, Ba(m) = 0.58, Co(my) = 0-059, Cy(ps) = 0.034, (A12)

In addition, the running of light-quark masses induces a scale dependence of the

parameter py = m? /(m, + mg}):
Hr{1GeV) = 165 GeV, p.(p) =176 GeV, pe(m) = 2.02GeV. (A13)

The wave functions of twist four are more numerous. The complete set given
in ref. [28) (see also ref. {25]) includes four three-particle wave functions. However,
in leading and hext-to-leading order in conformal spin, these are specified by only
two parameters:

1
waloi) = 306% (o, — az)mg[5 + 2¢(1 — 2ay)] ,
QD"((I.') = ]20526(01 - 02)010203 ,

#1(a) = 3062a2(1 - aa)[% + 2e(1 - 2a3)],

- 1
50"(0';) = k]20620|0203[§ + E(] - 303)] . (AI“)
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The two-particle twist 4 wave [unctions are related to these by equations of
motion. To the above order in conforinal spin they involve no new parameters
and are given by

5 . 3,
91(u) = 552{‘21‘2 + %662[1111(2 + Buu) + 10w’ Inw(2 - 3u 4 gu*)
6
+ 0@ lna(2 — 34+ 5112)] ,

1
g2(u) = Eqézﬁu(u —u),

Ga(u) = §5252u2 . (A15)
One of the parameters is defined by the matrix element
(7l9,dGC apv® uj0) = i fugqu . {A 16
The QCD sum rule estimate of ref. [46] yields 62 = () 2 GeV?oar [T
The remaining parameter is associaled with the deviation of 1wy fonir wone
(A]f nctions from their asymptotic form. At 5 = | GeV it takes the valu. e,
[;8] Renormalization Lo the relevant scales (A3) gives
(u.) = 0.19, e(p.)=045,
8%(m) = 0.17, e(ps) = 0.36 . (A17)

This completes the description of the plon wave functions, as far as it is nieeded
for the applications in this paper.

APPENDIX B

Here we derive the substitution (43) used in the sum rule (44) in order to
subtract the continuum contribution. For this purpose we have to write the
invariant amplitude # given by egs. (31) and (39) in the form of a double
dispersion integral:

. ® ds, oo dsy
o[
(7. (p+9)*) mi 51~ D% Jo2 57 (p £ 97

Focusing first on the leading contribution (17):

PP (51, 55) (B1)
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FE 4 ) = meg, [ el o L £n()
e i E S Ear il S ey P iy
(B2)
and changing variable from « (o (m? - p*)/(s - p*), one obtains
. ds o,
(o +9)%) = m.S, 2 $a(ate) (B3)

m2 (8 —(p+@)*)s —p?)

In general, the wave function ¥x(u) can be expressed as a power series in (1 —u):

S—m2 *
pel = Va1 -t = e (22 (B4)

! &
Substituting this representation into eq. (B3) and introducing formally two vari-
ables 51 and sy instead of s, it is easy Lo rewrite this expression in the form (B1)
with the double spectral density

1k
pQCD(31,32) = m.fy zx: g,—(;li—j;(sl - mf)ké(k)(sl — 832) . {B5)

The validity of eq. (B5) can easily be checked by direct calculation. The above
derivation may seem tricky. However, there is a convenient general method [47] to
find the appropriate double spectral densities. One takes the Borel transformed
invariant amplitude F(ME, M3) and performs two more Borel transformations in
the variables 7y = 1/M? and 1, = 1/M2, to gel

Bs,Bo, F(1/11,1/73) = p9€2(1 /g, 1/03) . (B6)

Details and useful examples can be found in ref. {48].

'To proceed, we apply a double Borel transformation to the dispersion integral
(B1) with p9¢P given by eq. (B5):

o k oy k
Ad2 A2y _ @y d m?
f‘(M ,Mg)-mcf: E m-[zmzds (a)-) [(11— . )

k

M? 1 —v)M}? ,
X exp (« i L.:;(M-} VM, )] : (83)

v=1/2

At M} = M} = 2M? the v-dependence of the exponent disappears and the
differentiation of the bracket gives a factor k!. We then get

F(MZ):mcf.ZQ—finz dse™ BT = m, fup,(1/2)MPe 38 | (
k me

which is the leading contribution in the sum rule (44). For arbitrary values of M,
and M a similar expression is obtained, with the argument of the wave function
and the Bore] parameter in eq. {B9) generalized to ug and M? , respectively as
defined in eq. (22).

We now turn to the problem of subtracting the contributions from ex. it
and continuum states in sum rules. [n the usual approxmmation based o donahin
one identifies the spectral functions PP and ph beyonud a given bowdary
the (51, s2)-plane. Then, the subtraction eflectively amounts to restnicling Che
dispersion integrals in eq. (B1) to the region below this boundary. ldeally, the
result should not depend on the precise shape of this region. To be specific, one
may take

sy + 55 < 8§, (B10)
where sg plays the role of an effective threshold. Popular choices of the duality
region are triangles in the (51, 82)~ plane corresponding to'a = 1, and squares
corresponding t0 a — 0o0. Since the spectral density (B5) vanishes everywhere
except at sy = s, it is actually irrelevant which form of the boundary we adopt
"

Using duality as outlined above we have to evaluate the integral in eq. (B7)
with the integration region restricted by eq. (B10). Changing variables and

co 00 E . . . . S .
BM"BMJ’F = mef, Z/ ds'_/ ds, 1(:1) . (s1 — mf)ké(“(sl _ sz)e-a./Ml’e-.,/n»n}lt:egratmg over v one obtains an expression similar to eq. (BS8), but with the
§ Jm? m?

(k+1)
(B7)

Intioducing again new variables s — 51+ 52 and v = 51/s we can use the §-
function to evaluate the integral over v. The result is
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upper limit of integration in s lowered Lo 259 and with the addition of surface

"This is literally true only if the power series defining the wave function (B4) is
truncated at some finite order, or if it converges rapidly. However, this condition is
always met at a sufficiently high normalization point where the wave function deviates
little from the asymptotic form.
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lerins. ‘The latter disappear for Mg = M3. Hence, one is again led to eq. (B9)
with a simple modification of the integration limit:

234 2

FM*) = mefe 37 (s3) | ds ™R =g, 0 (1/2) M [e-rf‘r _e-rL“:] _

2k+l
k

(Bil)

This proves the substitution rule quoted in eq. (43). It is important to note that
the proportionality of the Borel transform F{M?, M}) given in eq. (B8) to the
wave function ¢, at the point wo'= MI/(M? + M2 is generally destroyed by
the continuum subtraction. It is only retained in the symmetric point M2 = M2
implying uy = 1/2.

The above procedure is not possible for higher twist contributions which are
proportional to zero or negative powers of the Borel parameters. The reason is
that the corresponding spectral densities are not concentrated near the diagonal
51 = 82. In fact, the continuum subtraction is rather complicated in these cases.
For further discussion we refer the reader to the second paper of ref. [48]. Here,
we neglect the continuum subtraction in higher twist terms altogether. This
18 justified to a good approximation since the corresponding spectral densities
decrease fast with 51 and s; as a consequence of uitraviolet convergence and,
hence, the continuum contribution is expected 1o be small anyway.
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TABLE L Summary of theoretic al estimates.

Reference § gB*Br  9D*Dx (Dt — DO%+) (kev)
This paper 0324 002 20+ 3 125 +10 32+5
This paper® - 2846 11+ 2 -

[11) - 32+6 - -

[13]® 0394016 20+4 94 1 -

[13)2* 021+ 0.06 1544 741 1013
[37] 0.7 - -

4] - 64 _

[38]° 0.75 + 1.0 - - 100 + 189
[39}° 0.6 +07 - - 61 ~ 78
[40} 04 +07 - - -

[41)¢ 0.3 - -

[12)¢ = : 16.2 53.4

[43)/ - 1954+ 1.0 76+ 7
[44)¢ - - 8.9 16

[45)* 4782 13.8
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(d)

Figure 1. Diagrams contributing to the correlation function (3). Solid lines represent quarks,
dashed lines gluons, wavy lines are external currents, and the ovals denote = meson wave
functions on the light-cone.
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Figure 2 The r.h.s. of the sum ruje (44) for the coupling constants (a) gp-p- and (b} g5-5-
as a function of the Borel mass squared. The arrows indicate the interval in M2 allowed by
the reliability criteria specified in the text.
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Figure 3: The form factors for the transitions {a) D — = and (b) B — = as predicted by the
light-cone sum rule (solid lines) in comparison to the single-pole approximation (dashed lines)
with the normalization fixed by the coupling constants gpsp» and gg-g«, respectively.



