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ABSTRACT

Variational and Green’s Function Monte Carlo methods are reviewed as
applied to the study of the few-nucleon continuum at low- and intermediate-
energies. Results recently obtained for the radiative and weak capture reactions
n+3He — *He+v and p+%He — ‘He+e* +u,, the *He P-wave resonances, and
the inclusive and exclusive electron scattering reactions on *H and the helium
isotopes are summarized.

INTRODUCTION

In recent years great progress has been made in the description of few-nucleon
systems with a variety of different techniques. Accurate ground state wave func-
tions for the A=3 and 4 nuclei have been obtained from realistic Hamiltonians
with Faddeev [1-3], Yakubovsky [2], and Correlated Hyperspherical Harmon-
ics [4,5] methods. These techniques have also been generalized to successfully
describe the three- and four-nucleon continuum at very low energies [6,7]. How-
ever, at moderately high excitation energies the number of channels to be included
for converged solutions is very large. Indeed, reliable solutions of the Faddeev
equations up to 100 MeV energies have only very recently become available [8].

Monte Carlo methods have been applied to a variety of strongly interacting
many-body systems in condensed matter [9] and nuclear [10] physics, and lattice
quantum chromodynamics [11]. The present contribution is an overview of how
Variational and Green’s Function Monte Carlo techniques, in particular, are used
to describe bound and continuum spectra of few-nucleon systems. The theoretical

framework, the methods involved in the treatment of the continuum (our focus
here), and the results obtained to date for both low- and high-energy continuum
properties are reviewed.

HAMILTONIAN AND CURRENTS

In the non-relativistic many-body theory of nuclei, the Hamiltonian governing
the nucleons’ dynamics is taken as the sum of a kinetic energy, two- and three-
nucleon interaction terms:

BTt Tt ¥ v 0
H i<y 1<k
The two-nucleon interaction is written as
vij = ‘Ug + U:J- s (2)
where v]; is the long-range one-pion-exchange potential (OPEP)

5 =7 (ri)ei o5 + 0 (rig) Syl (3)

v
o (7) being the standard Pauli spin (isospin) matrices and S;; the tensor operator.
The radial functions v°"(r) and v*" (r) reduce to exp(—ur)/(pr) and [14+3/(ur) +
3/(pur))exp(—pr)/(ur), respectively, when the interparticle distance r2p (=
1.4) fm. The effects due to all other subnucleonic degrees of freedom, such as those
associated with heavy mesons and nucleonic resonances or quarks and gluons, are



absorbed into vf}. This part of the interaction has a short range r<pg~!, and is
characterized by a complicated spin-isospin structure

Ug = Zv(“(r,-j)o,?j , {4)
P

O =0,0i0;, 8. (L-S)j, ] [1,5 7] , (5)

L and S being the relative orbital angular momentum and the total spin of the
pair, respectively. It is constrained by fitting nucleon-nucleon elastic scattering
data in the laboratory energy range 0—350 MeV and deuteron properties. The
first eight operators listed above are common to all current, realistic models of
vij- The additional operators not shown above include terms quadratic in the
relative momentum p, such as in the Paris [12] and Bonn {13] interactions, or
quadratic in L, such as in the Urbana [14] and Argonne [15] interactions.

The two outstandihg features of the v;; are its short-range repulsion and long-
range tensor character. These components induce important short-range and
tensor correlations among the nucleons in nuclei. indeed, one primary motivation
of few-body nuclear physics is the theoretical and experimental investigation of
these correlations. All the calculations reported in the present contribution have
been carried out with the Argonne v,4 interaction [15] and a simplified version
of it denoted as Argonne vg [16]. This latter interaction does not contain terms
quadratic in L, and is designed to exactly reproduce the deuteron properties and
S- and P-wave phase shifts, as calculated with the full Argonne v14. The reason for
using the vg model rather than the more complete v14 is that terms quadratic in
L (or p) are difficult to handle in simple Green’s Function Monte Carlo (GFMQ)
schemes, as they essentially correspond to different effective masses in each two-
body channel. However, these terms are small in the v;4 model. In perturbation
theory they are found to provide 0.15 MeV and 0.9 MeV extra binding energy in
the A=3 and 4 systems, respectively.

The three-nucleon interaction (TNI} Vije consists of an attractive term due
to two-pion exchange with excitation of an intermediate A-resonance, and a re-
pulsive phenomenological central term containing no spin-isospin structure. The
strengths of these two terms are determined by fitting the binding energies of 3
and *He in (essentially) exact Faddeev [1] and GFMC [17] calculations, and the
saturation properties of nuclear matter in variational calculations based on chain
summation techniques {18]. The Urbana model-VIII is used in most of the results
discussed in the present work. Together with the Argonne v,y it reproduces the
empirical binding energies of *H and ‘He and the equilibrium density of nuclear

matter [19]. However, the binding energy per nucleon in nuclear matter is un-
derpredicted by roughly 15%. It should be emphasized that the TNI, while it
provides a significant fraction of the nuclear binding, has an expectation value
which is only a few percent of the two-nucleon interaction.

One motivation for introducing the TNI in the nuclear Hamiltonian is that
all presently available realistic two-nucleon interactions, with the exception of
one of the Bonn interactions [13], underpredict the empirical binding energies of
light nuclei. QObviously, this does not imply that the TNI alone is responsible
for the binding energy defect in nuclei. Qther effects, including the non-localities
associated with the extended (non point-like) nature of the nucleons and rela-
tivistic corrections, need to be investigated. Many of these effects are related,
and studies of their importance are still in their infancy.

In order to study the response of nuclei to an electromagnetic probe within
the present approach, the nuclear charge and current densities are represented
by eflective operators that operate on the nucleon degrees of freedom. These
operators are expanded into sums of one-, two- and many-body terms:

Py =3 A +3 0+ (6)
) i<

@) =375+ 5P+ (7)
i i<j

The one-body terms p'!) and j(V) have the standard impulse approximation
form, while the two-body terms p(2) and §? consist of “model-independent”
and “model-dependent” parts [20-22] (the expansions of the couplings above are
truncated at the two-body level in the results discussed here). The “model-
independent” j® terms do not have any free parameters, are determined by
the interaction v;;, and are necessary to satisfy the continuity equation. The
“model- dependent” §(?) terms, such as those associated with the A-excitation,
pry and wry mechanisms, are purely transverse and therefore unconstrained by
the v;;. Furthermore, they depend on a set of only approximately known cutoff
parameters and coupling constants. Their contribution for momentum transfers
< 1 GeV/c is small when compared to that of the leading “model-independent”
two-bady currents, and will not be discussed further here [20,19].

The most important of the “model-independent” two-body currents is that
associated with the v (i )Si; i - 7; and v77 (ry;)o; -0 T; - Tj Interactions in v;;.
The corresponding current operator is given by:

ips(a) = GE2) Y- ~i(n x ). {ups(k)anlo, - k) — vps(ki)oy (o - ki)
i<y
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where q = k; + k;, Gg is the isovector combination of the nucteon electric form
factors (evaluated at the four momentum transfer 92 = ¢ — w?, w being the
energy transfer), and vps is projected out from the radial parts of the v°7 and
v'" components

vps(k) = 20" (k) ~ v77 (k) . 9

A detailed discussion of these currents, along with their explicit expressions, can
be found in refs. [20,21]. Here we only note that the jg} gives by far the largest
contribution to isovector observables in the two- and three-body systems, such
as the electrodisintegration at threshold of the deuteron (23] and the magnetic
form factors of the trinucleons [19]. The currents due to the explicit momentum
dependence of the v;; are predominantly isoscalar in character, and give signifi-
cant contribution to the B structure function of the deuteron [23], and isoscalar
combination of the magnetic form factors of the trinucleons [19].

The most important two-body charge operator can be derived by considering
the non-relativistic reduction of the virtual pion photoproduction amplitude [22].
We obtain:

PR =Y 5 P 75+ FY @R loms(ky)os - a)o - ;) +imj, (10)

i<y

where FIS’V are the isoscalar and isovector combinations of the Dirac nueleon form
factors (normalized as F¥(0) = FY(0) = 1). It is determined by the v,;, and
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FIG. 1. The *H and *He magnetic (top panels) and charge (bottom panels) form
factors.

q(m™)

hence is to be considered “model-independent”. The two-body charge operators
are to be viewed as relativistic corrections proportional to 1/m?, where m is the
nucleon mass. For consistency, we also include the Darwin-Foldy and spin-orbit
relativstic corrections to the single-nucleon charge operator.

The results obtained within the present theoretical framework (Argonne v)4
and Urbana model-VIII) for the charge and magnetic form factors of 3H and
3He [19], the charge form factor [19] and longitudinal-longitudinal distribution
function (LLDF) of *He [24] are displayed in Figs. 1-2. The LLDF is defined as

pule) = 5 <Ol (@pl@)l0 > -1 , (1)

where |0 > is the ground state of the nucleus. Inclusive {e.’) data on the longitu-
dinal response function and the measured charge form factor provide information
on the empirical LLDF. The unmeasured strength in the tail of the response lim-
its the accuracy of the analysis, though, as reflected by the large errors in Fig.
2.

The agreement between theory and experiment is satisfactory at fow and
moderate values of momentum transfers (g<600 MeV/c). However, the calcu-
lated zeros of the trinucleon magnetic form factors are shifted to lower ¢ than
the data indicate. It will be interesting to calculate these observables with
the more recent Argonne v,g interaction model (25], which incorporates charge-
independence-breaking components and a significantly weaker tensor force than
the older Argonne vi4. It will also be interesting to explore the effects due to
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FIG. 2. The *He charge form factor (left panel) and longitudinal-longitudinal distri-
bution function (right panel).

three-body charge and current operators, such as those arising from A-excitation.
Such studies are in progress.

MONTE CARLO METHODS AND FEW-NUCLEON SYSTEMS

Stochastic calculations of bound and continuum states of light nuclei with
realistic interactions and currents have been carried out within two approaches:
Variational Monte Carlo (VMC) and Green’s Function Monte Carlo (GFMCQ).

In the VMC method, the nuclear wave function is expressed as

YR)= ) ¢u(R)n> , R=ry, ...,ra , (12)

n=1 N

where [n > denote the spin-isospin states of the A nucleons, their total number ¥
being given by N = 24 A1/[(A~ Z)!1Z!]. Here 24 comes from the spin degeneracy,
while the smaller binomial coefficient suffices for the isospin degeneracy, due to
charge conservation. In this representation, an operator O is 2 matrix function
[Omn(R)] of dimension N x N. The expectation value is written as

< Y|0)¢ > _ V5 (R)Omn(R)Yn (R}
. <l s - /dRP(R) PR) , (13)
where P(R) ,

2 [ (R)[?

P(R) = , 14
)= TaR s R o
can be interpreted as a probability density. If R;, ..., Ry are [ configurations
drawn from P(R), e.g., according to the Metropolis algorithm [26], then
i Y Omn ¥
<0>_LX|_:_"T_R.' (15)

The statistical error associated with the samplingis o /v/L, where ¢ is a calculable
constant.

The main advantage of this technique is that matrix elements of operators can
be calculated in an exact fashion even when they contain many-body terms with
mtricate spin-isospin dependence, as those occurring, for example, in the two-
body current operators or Hamiltonian. The method is very general, and can be
used with any wave function, such as Faddeev (F) or Correlated Hyperspherical
Harmonies (CHH), or also to calculate transition matrix elements (with a suitable
choice of P(R)). However, the size of the arrays grows very rapidly with 4,
and present day computers restrict the application of the VMC method in the
form discussed here to nuclei with A < 8. In the last few years VMC methods
and cluster expansion techniques have been successfully used to calculate ground
state properties of larger nuclei, such as %0 [27] and *°Ca {28] with reasonable
accuracy.

In the GFMC method stochastic techniques are used to sample the imagi-
nary time propagator exp(~7H) [29,30). This permits the evaluation of matrix
elements, such as

< Yr|He ™ |ypp >
< lee"qubT >

<H(r)>= (16)
for which, in the limit of large 7, <H(7)>— E,, the ground-state energy of the
system. Here yr is a trial state having a non-vanishing overlap with the ground
state. Of course, the method is easily generalized to calculate the energies of
low-lying states by judicious choice of the trial state. The rate of convergence
with 7 depends on both the nature of the energy spectrum (the energy spacing)
as well as on the quality of the trial wave function. By dividing the time 7 into
K small steps 67, exp(—7H) can be written in configuration space as:

K K
<R'le™ R >= ][H dR]G(R', R )[[] G(Re, Re-1)]G(R,.R) ,  (17)
k=1

k=2



where
G(Ri, Re_1) =<Ryfe 7R > . (18)

Stochastic methods are used to solve iteratively the integral equation
$EH(R') = [dR G(R', R}y *(R) . (19)

The kernel is interpreted as a conditional probability for a configuration to evolve
from R at 7 to R’ at 7 + §7. This conditional probability in the limit of small
87 can be approximated into a product of kinetic and potential energy terms

G(R'.R) v e~ (87/2)V(R) (Rlle-drTIR> e~ (§7/2)V(R)

= W(R, R 3A02, 00 ™ B 12
= W(R, R)(5- ) 2exp[- (R ~ RY? . (20)

The kinetic energy term acts to diffuse the system around R through a normalized
Gaussian distribution with variance ér/m, while the potential energy term acts
to keep the system in regions of space where the potential energy is most negative
by enhancing the probability for jumps to occur at such locations. The algorithm
for evolving a configuration from R to R’ consists in sampling a new configuration
R’ with probability proportional to exp[—(m/267)(R’ — R)?], and weighing the
importance of this configuration with W(R',R}. One way to effect this weighing
is to replicate or delete configurations with probability proportional to W(R’, R).
In this way a new ensemble of confizurations at  + 67 is generated. The initial
ensemble of configurations is distributed according to ¥r(R). The algorithm
Just described is the simplest implementation of GFMC. More sosphisticated
appreximations for the short-time propagators as well as importance sampling
techniques are used in the actual simulations [29]). Spin and isospin degrees of
freedom render the nuclear problem; technically more involved.

THE LOW-ENERGY CONTINUUM

Both VMC and GFMC techniques have been used to study the few-nucleon
continuum at very low energies. To illustrate the method [31), suppose we have
two clusters of radii Ry and R,. When the two clusters are well separated (R >
Ry + Ry} the Hamiltonian is given by

H:H1+H2+Hrel ) (21)

where H; is the Hamiitonian describing cluster i and H,o is the relative kinetic
energy

1
Hpel = _‘Ev?? ) (22)

4 being the reduced mass. In this asymptotic region ¥ factorizes as it (R),
where y; is the wave function relative to cluster i, and

Yrel(R) = [i(kR) — tgbi (k) ni(kR)] yim(R) | (23)

where k = /2uF . For simplicity, only single channel problems are dealt with
in the present discussion (although, the method can be generalized to treat multi-
channel problems). In order to determine the phase shift & as function of energy,
we fix a radius R in the asymptotic region and a value b = R - Vay/4|p for
the logarithmic derivative. We then solve for the energy and bound state wave
function (with the prescribed &) of the system 1+ 2 confined in a region of radius
R. By varying b, the curve Ea(b) = E(b)-E, -~ Es is obtaimed, which can be
inverted to yield b = b(E+e1), and hence the phase shift.

The method is best suited to describe very low-energy scattering, since at
higher energies the state 3 has to be orthogonalized to all other states with lower
energies (and possibly to bound states, if these are present in the particular chan-
nel under consideration). This is difficult to do in VMC or GFMC calculations.

The VMC method has been used to study the low-lying resonances in *He (31],
the 0+ “He P-wave resonances [32,33], the S-wave J* = 1+ n 4 *He and p+3He
scattering lengths [21,34], and the S-wave J* = 2+ d + d scattering at energies
below 500 keV [35]. The 5He resonances have also been studied with the GFMC
method [33).

The calculated values for the n + 3He and p + 3He scattering lengths are
(3.50 + 0.25) fm and (10.1 % 0.5) fm, in agreement with the empirical values
(3.52 £ 0.25) fm and (10.2 + 1.4) fm. The n + ?He scattering length is above
the value (3.25+0.10) fm obtained from a R-matrix analysis of the experimental
data [36]. In principle, the n + 2He channel is coupled to the p +t channel as
well as to the n+ 3He and p + t channels in relative D-waves. These couplings
in the present VMC calculation have been ignored; the R-matrix analysis as well
as theoretical estimates indicate that they are small [36].

The cross sections for the reactions n + 3He — 1He + 7 at thermal neutron
energies and p+2He — *He +e* + 1, at keV proton energies have been calculated
with the VMC wave functions corresponding to the Argonne v and Urbana
model-VII TNI (model-VIT is a more attractive version of model-VIII) [21,34,37].
The two most recent measurements of the radiative capture, (55 + 3) ub [38)



and (54 £ 6) ub [39], are somewhat smaller than the calculated value of 85.9
pb [37]. The ®He(p,etv,)*He cross section cannot be measured in the energy
range relevant for solar fusion. However, the calculated value is much smaller
than that predicted on the basis of shell model descriptions of the initial and
final states. Indeed, the astrophysical S-factor is found to be 1.44 x 1023 MeV-
b [37] rather than the value 8 x 10-2% MeV-b quoted in the recent review by
Bahcall and Ulrich [40], leading to a significantly smaller neutrino fAux associated
with this reaction.

These reactions are interesting in that their cross sections are very sensitive to
the model used to describe both the ground state and continuum wave functions,
and the two-body electromagnetic and weak current operators. This is because
the single-nucleon magnetic dipole or Gamow-Teller operators cannot connect
the dominant 5-wave components of the *He and *He wave functions at low
energy. Hence, in impulse approximation the calculated cross section is small, as
the reaction must proceed through the small components of the wave functions.
Indeed, g1a(n + 3He) is found to be 5.7 ub, about 7% of the total calculated
value and about 10% of the empirical value. However, two-body currents can
connect the 5-wave components, and their matrix element is exceptionally large.
Furthermore, the cross sections are sensitive to the scattering length and the
tensor force [21,34]. It will be interesting to repeat these calculations with the
presumably more accurate CHH bound and continuum wave functions [4,7) and
the more recent v)5 interaction with a weaker tensor force than the present vig4.
Work along these lines is in progress.

The P-wave resonances in *He have been studied with GFMC and the Argonne
v14 and Urbana model-VIII Hamiltonian {33]. The energies < E(r;3~/2)> and
<E(7;17/2)> of the J* = 3~ /2 and 17 /2 states are shown in Fig. 3 relative to
the a-particle ground state energy.

From the experimental phase shift at a certain energy a given channel radius
R corresponding to the node location in the relative n + ‘He wave function is
easily determined. The “experimental” energies plotted in Fig. 3 correspond to
R=12.5 fm.

The predicted splitting between the 3/2 and 1/2 states is in good agreement,
with the observed one, although the individual energies are somewhat higher than
the empirical values. The TNI gives a significant contribution to the splitting,
and it will be interesting to investigate the effects of a TNI with a more realistic
treatment of the repulsive part. In addition, the dependence of these results on
the underlying two-nucleon interaction is being investigated.
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FIG. 3. The *He P-wave resonances.

THE CONTINUUM AT INTERMEDIATE ENERGIES
Inclusive Scattering

GFMC methods are useful not only in studying the low-energy properties of
many-body systems, corresponding to the large r himit of the propagator, but
also their properties at higher excitation energies corresponding to the short and
intermediate T limits of the propagator.

Inclusive inelastic scattering by a weakly coupled external probe transferring
momentum q and energy w to the nucleus is characterized by a response function

S(g,w) = Y | <nl0(q)[0> |*6(w + Eq — Ey) (24)
n#£0

where |n > and E,, are the eigenstates and eigenenergies of the Hamiltonian,
and O(q) denotes the nature of the coupling. For example, in (e,e’) scattering
O{q) is either the nuclear charge or current operator, while in (§, ) reactions
one attempts to extract the response to the couplings
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poril@) =) oi-qre et (25)

i
and
por7(A) =Y 0i X qry e (26)

One should bear in mind, however, that hadronic probes do not couple weakly to
the nucleus, and therefore care should be taken in comparing the experimental
data with the results of calculations based on the above couplings.

Response functions are difficult to calculate, as they require a knowledge of
both the bound and continuum spectra of the nucleus. Indeed, the deuteron is
the only system for which accurate calculations of the electromagnetic and charge
exchange responses [41,42] have been carried out based on realistic interaction
models. Calculations of the A > 2 responses have been performed in plane-wave-
impulse-approximation (PWIA), i.c., by approximating the final states with plane
waves and by neglecting the contributions of two-body components in the electro-
excitation operator [43,44]. Within this approach, the longitudinal and transverse
responses measured in (e.e’) scattering are given by

+q)® P
2m 21’"._,.1_

SPWIA() W) = Cy g /dpj dE §fw—E— P P(p,E).  (27)
Ein 1

where P(p, F) is the spectral function

P(p,E)= ) |<n(A=1)a(p)l0> P6[E + Eo — Enia 1)) - (28)
n(A-1)

Here, the constants C 7 represent essentially the strengths of the single-nucleon
couplings, the [n(A — 1)> and E,(4_1) are the eigenstates and eigenenergies of
the (A—1) Hamiltonian, and a(p) is the annihilation operator for a nucleon with
momentum p. It is easily seen that in PWIA: i) the Coulomb sum

1 o0
5;/0 dwSE VA (qu) =1, (29)

independent of momentum transfer, and ii) the ratio

Cr Sc(gq,w) B
Cr Sr(g.w) lpwia™ 1 (30)

Both these predictions are inconsistent with data at intermediate values of mo-
mentum transfer. For example, the empirical ratio is much less than one in the
quasielastic peak region, particularly so in heavier nuclei.

In the GFMC approach [41}, one considers Euclidean response functions de-
fined as the Laplace transform of S(q,w)

E(g 1) = [ dwe™™ S(q,w)
0
= <0|0'(q)e” " H=E)O(q)|0> —e~ 71| <0|0(q)j0> |? , (31)

where we) is the energy of the recoiling ground state. At 7=0 the Euclidean
response is simply the sum rule, while derivatives with respect to r correspond
to energy-weighted sum rules. For finite 7, the E(q, 7) provides a measure of the
energy distribution. As r increases, the higher energy components of the system
are gradually suppressed, until one is eventually left with the threshold response.

The caleulated Euclidean responses of *H and 3He at q=400 MeV/c, and of
“He at g=300 MeV/c [45,46] are compared with the experimental E<*®(g,7) in
Figs. 4-6. The Argonne vg+Urbana model-VIII TNT have been employed in these
simulations. We note that the *H and He responses include both the elastic and
inelastic contributions {46]. We show the Saclay {47] (Bates [48]) data for *He
(°H) and both the Saclay [49] and Bates [50] data for ‘He. The Bates data [48]
for *He are consistent with the Saclay ones [47), and are not displayed.

The E€*P(g,7) is obtained by simply Laplace-transforming the data. These
are available only up to a maximum energy wmax. In the longitudinal channel
we have estimated the unobserved strength at w > wmayx by means of sum rule
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FIG. 5. *He Euclidean responses at 400 MeV/c .

techniques [24]. The effect of including this high-energy strength in £7*P(q, 1)
is shown for the a-particle in Fig. 6 by the curve labelled “extrapolated”. It
decreases rapidly with 7 because of the exponential damping factor exp(—rw),
and is negligible for 72 0.015 MeV~!. In the transverse channel, we simply
show the experimental results corresponding to the truncated Sy(g,w). Since
the Saclay measurements extend to higher w, they naturally lead to an increased
EFP(q,w) near 7=0. Again though, the effects of this high energy strength
(mostly due to the A-resonance) are rapidly suppressed at finite 7, so that the
Bates and Saclay measurements are nearly identical by 7~ 0.02 MeV~!.

We note that in obtaining the elastic+inelastic trinucleon Ei’fg- we have used
the appropriate experimental form factors. The elastic contribution for r20.06
MeV-! is large.

The longitudinal data for the helium isotopes are well reproduced by the cal-
culations. There is, however, a 10% discrepancy between theory and experiment
in the *H longitudinal channel. Since the charge form factor of tritium is in agree-
ment with the present theory [19], this discrepancy can be traced back to excess
strength present in the inelastic data. This is consistent with the analysis of the
3H Coulomb sum rule carried out in (24]. At the low momentum transfers con-
sidered, two-body charge operators give small corrections. The EPWIA (shown
only for the a-particle) has the incorrect 7-dependence, and far more strength
than observed,

In the transverse channel two-body currents have a rather large effect. In the
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FIG. 6. *He Euclidean responses at 300 MeV/c .

a-particle they account for more than 30% of the measured response even at large
7, where the latter is mostly sensitive to strength in the quasielastic and threshold
regions of Sp(g,w). In the A=3 systems two-body current contributions are also
significant. However, their inclusion appears to lead to a 5-10 % overprediction
of the data for 72> 0.02 MeV~!. Since the magnetic form factors are in agreement
with theory [19], this discrepancy must be due to excess strength produced by
theory in the inelastic channel. At this point the origin of this discrepancy is not
clear.

A final comment is now in order. The theoretical framework employed here
does not include pion production nor a dynamic treatment of the A-resonance,
and hence cannot explain the response in the A-peak region, corresponding to
75 0.02 MeV~!. However, for large values of 7 a static parametrization of the
currents associated with virtual A-production, such as the one used in the present
work should be adequate, since the product 76E > 1, where §E is a typical
N — A excitation energy.

We conclude this subsection by reporting the results obtained with the sim-
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ple couplings p,, 1 and p,r 1 given above for the spin-longitudinal and spin-
transverse response functions of the a-particle [42], Fig. 7. These can be ex-
tracted from measurements of quasielastic (5, 1) reactions. At present no data
are available for *He. However, experiments carried out on '2C and *°Ca show
that, contrary to theoretical expectations [42], no indication is found for the
enhancement of E,, ; with respect to Eqr 1 [51].

Exclusive Scattering

It 1s not possible to use GFMC methods in the present form to describe
exclusive reactions, such as *He(e, e'p)d or *He(e,e'p)t. Faddeev techniques are
employed to study three-body reactions [8]. However, it is not clear whether
Faddeev-Yakubovsky schemes can be extended to treat reactions involving four
nucleons at moderate and high excitation energies.

In the Orthogonal Correlated States (OCS) approach [62-54]) we write the
(A-1)+1 wave function as

A
¢P) = AIS T Falbaci(rs, ..xa_1)dp(ra) (32)

Longitudinal
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where § and A are, respectively, the symmetrizer and antisymmetrizer, ¥4 -4
is the (A-1} bound state wave function, ¢p is the nucleon wave function with
momentum p relative to the (A-1) cluster, and F; 4 is the correlation operator
between nucleon 7 in the residual system and nucleon A. The correlation operator
is momentum-( or energy-Jindependent, and is such that Fia — 1, when r; 4
is large [52]. The single-nucleon wave function is taken as the solution of a
Schrodinger equation with a complex energy-dependent optical potential. The
CS states are then orthogonalized to the ground state of the A-nucleon system,
and among themselves [52], y*5 — OS5,

The OCS wave functions have been used to study the A=3 inclusive re-
sponse [52,53], and the *He(e,e'p)t reaction [54]. In Fig. 8 we compare the
longitudinal and transverse reduced *He(e, e'p)t cross sections in parallel kine-
matics with the Saclay data obtained at a fixed missing momentum Pm (=P—q)
of 90 MeV/e [55]. By setting F; 4 = 1 and ¢, = exp[ip - (r4 — R4_1)), and
by neglecting the effects of antisymmetrization, orthogonalization and two-body
charge and current operators, we obtain the PWIA curve, which is independent
of momentum transfer. The curve labelled “fsi” is computed by using the OCS
wave functions, but neglecting the two-body operators, while the curve labelled
“full” corresponds to the full calculation.

Theory is in reasonable agreement with the transverse data. However, a
20-30% discrepancy remains between theory and experiment in the longitudinal
channel. Tt should be emphasized that the results are sensitive to the optical
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cross sections at pn,=90 MeV/c.

potential, particularly to its imaginary part, used to obtain the distorted wave
function, although it appears difficult to simultaneously reproduce the longitu-
dinal and transverse data. Clearly, the use of an optical model is unsatisfactory,
since the connection with the underlying nucleon-nucleon dynamics is lost.

CONCLUSIONS

Monte Carlo methods are ideally suited for studying both structure and dy-
namics in light nuclei. We are proceeding with a comprehensive program to
calculate properties of nuclear systems from the underlying two-body dynamics
as constrained by NN scatfering data. Three-nucleon interactions as well as two-
body electroweak currents constructed consistently with the interaction model
play an important role in these studies. The ground-state structure of S-shell
nuclei seems to be reasonably well understood. However, low-energy electroweak
reactions, (p,n) reactions in the quasielastic regime, as well as inclusive and exclu-
sive electron scattering reactions at intermediate energies provide both challenges
and opportunities to refine models of interactions and reaction mechanisms.
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