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Abstract

We investigate path integral formalism for continsum theory. It is shown that the path

integral for the soft modes can be represented in the form of a lattice theory. Kinetic
term of this lattice theory has a standard form and potential term has additional non-
local terms which coniributions should tend to zero in the limit of continuum theory.
Contributions of these terms can be estimated. It is noted that this representation of
path integral may be useful to improve lattice calculations taking into account hard
modes contribution by standard perturbative expansion. We discuss translation invari-
ance of correlators and the possibility to construct a lattice theory which keeps rotary
invariance also.
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Path integral formalism [1] is one of the most useful tools to study a quantum
field theory. However there is a serious problem to go out of boundaries of a
perturbative theory. There are instanton calculations [2], a lattice calculation
method (3] and variational approach which can be used in the case of quantum
field theory [4] and sometimes it is possible to find nonperturbative exact results
using symmetries of a quantum field model [5]. In ref. [6] it was used a cluster
expansion to take into consideration nonperturbative effects.

In [7] it was studied lattice actions which give cut-off independent physical
predictions even on coarse grained lattice. It was suggested to use perfect lattice
action which is completely free of lattice artifacts. 1t was shown that in asymp-
totical free theories a combination of analytical and numerical techniques allows
to find the perfect action to a sufficient precision.

Here we consider another possibility to improve lattice theory. In [8] it was
proposed an alternative method for nonperturbative path integral computations.
All modes are decomposed into hard (with w? > w?) and soft (with w? < w2)
modes where wy is a some parameter. It is clear that when a frequency is enough
large then we can consider a potential term as a perturbation and use a con-
ventional perturbative theory. Thus we can find an effective Lagrangian [9] for
soft modes using wellknown perturbative theory. Soft modes contribution was
estimated by strong coupling expansion. In [8] it was shown that this approach
1s applicable in the case of quantum mechanics with V(z) = Az*.

Here we show that the path integral for soft modes almost coincides with a
standard lattice definition. To see that let us consider a path integral for quantum
mechanics:
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where £(z(1)) = 1(%£)? + V(z), 2(0) = x4, z(to) = z;, H is a hamiltonian of a
system, A is a normalization factor.

In the limit ty — oo and with periodical boundary conditions zi(0) = z(t0),
we have
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where €y, is the energy of the n—th state, and €y is the lowest energy of the
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system. The factor A is chosen in the following form: [ Dz(t)e” Jo = i

In a perturbative theory the following basis for trajectories is used
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z(t) = Z Cren(t) (3)
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where e,(t) = 7%&‘“’*‘, Wy = %;ln, Ca=C*,.
This basis {e.} has the normalization: < e, | em >=< cley >=

J5° €4(t)em(t)dt = 8ur and in the basis (3) path integral has the following form
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Here we use the denotation: < f(t) >= f{;" F(t)dt.

Hard modes can be taken into consideration by conventional perturbative
procedure and after integration over them we obtain a low energy effective La-
grangian for the soft modes.

In (8] another basis for trajectories was suggested:

2(t)= Y BaEa(t)+ Y Cuealt) (5)
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Where E,(1) = 7%9(1 —1p/2 -~ nA)O(te/2+ (n+1)At — 1) and At = 7/wq.
The following denotations are used below: greek letters: u, v,.= 0,41, .., +N;

small letters: m, n,.= £(N + 1), +(N + 2), ..; large letters: M, L,.=0,+1,..00
In [8] it was shown that
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where J = det(< e, F, >) = ¢~ 225 where j =In(r) — 1 ~ (.14. In quantum
mechanics lagrangian has a form

1 dz .,
L= E(E) + V(z) (7

Then in the terms of our basis {£,} -+ {en]} the path integral is
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It is easy to show that the kinetic term for soft modes coincides with lattice
F 2
definition: %(—I’ﬂia_—'“'i where A = 2. is the lattice size.
Potential for soft modes B,, is
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Due to the definition E,(t) the first term in the expansion of eq.{9) coincides
with lattice definition. The rest terms of the expansion in (9) are not presented
in the lattice formulation of the path integral. So, suggesting that lattice theory
and continuum formulation of the path integral describe the same system in the
limit § — 0, we have to conclude that in this limit {(wo — 00) the contribution
of the highest terms of expansion (9) should tend to zero and at a finite wp we
can estimate them. In [8] it was shown that correction of this nonlocal terms is
about few percent at wq ~ A'/? in quantumn mechanics with V(z) = Azl
Let us consider the soft modes contribution to correlator < z(t1), z(t2) >:
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= Ep(tl) < e;Ep > BPB,\ > E,\e: > ey(iz) = e,,(tl)Ww,e.,(tQ)

Using that < B, B, > is a periodical function over p and A it is possible to show
that W,, ~ 64—u. Thus we see that the correlator depends on (t; - t5) only.
We see that translational invariance is not broken if we use any approximation of
the path integral keeping periodical boundary conditions. It is true in the case
of any correlators and it is possible to use this definition of correlators (10) in
lattice calculations.

The formalism suggested here can be expanded to the case of d—dimensional
scalar field theory directly using cubic lattice and the following definition for soft
modes: | p; |< wo, p; is one of components of particle momentum. The main
features of the approach are: 1. Soft modes contribution can be calculated by
lattice computations with additional nonlocal terms which should tend to zero at
wg — c0; 2. It is possible to improve lattice results using effective lagrangian for
soft modes; 3. All renormalizations are taking into account in effective lagrangian
by astandard way; 4. Translational invariance is not broken in any approximation
keeping periodical boundary conditions. Notice that rotary symmetry of quantum
field theory is broken in this approach. It should be restored due to the hard
modes contribution. It is possible to construct lattice theory which keeps rotary
invariance. To obtain this kind of lattice theory it is cnough to use cubic lattice
for soft modes and rotational invariant basis for hard ones. It is possible to see
that in this case kinetic term does not coincide with standard lattice term and it
would be interesting to compare this kinetic term with the perfect action of [7].
The case of gauge theory should be investigated separately to try to find the way
keeping gauge invariance.
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