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Heavy Mesons In A Relativistic Model

J. Zeng, J. W. Van Ordeq and W. Robertst
cs, Old Dominion Univerayty, Norfolk, VA 23599
and
Continuous Fleetron Beam Accelerator Facility
12000 Jefferson 4 vende, Newport News, V4 23606,

Motivated hy the present interest in the heavy quark effective theory, we yse the
Spectator equation to treat the mesonic hound states of heavy quarks. The kernel we
use is based on scalar confining and vector Coulomb potentiajs. Wave functions are
treated to leading order and energies to order 1/mg in the heavy-light systems, and

order 1/m% in heavy-heavy systems. Our results are in reasonable agreement with exact ordering of states, or their masses. In essence, HQET provides a framework
experimental measurements. We estimate two of the parameters of the heavy quark for systematically extracting symmetry relations and the corrections to the for-
effective theory, and propose further calculations that may be undertaken in the future. mal heavy-quark limit but can predict neither the spectra of the heavy mesons

nor the approach to the heavy-quark limit. Until we know how to solve non-
perturbative QCD, the details mentioned above, along with many others, are the
realm of models: such models continye to play a crucial role in our understanding

I. INTRODUCTION . A model t!lat. is quite successful in predicting the mesonic spectra is the re)-

tries above and beyond those usually associated with quantum chromodynamjcs
(QCD) arise. This realization has led to the development of the heavy quark
effective theory ( HQET) (1] [2] {3]. In the framework of this effectjve theory, cor-
rections to the formal limiy can be systematically included. One Very important o .

. : relativistically covariant model.
phenomenological consequence of this has been a number of attempts to extract " A covariant extension f the Go dfrey-Isgur model can be constructed using

. . I .
Ver frorn_ cxperimental _data, “It.h fittle model de}-)end_ence In the resul_t. . the spectator or Gross equation [5], which has been used with some success in
Despite the power inherent in HQET, there is stil] much that this effective . . )
. models of the nucleon-nucleon interaction [6], as well as in quark models of mesons
theory can not tell ys about the Properties of heavy hadrons. As an example, . .
. . - composed of equal magss quarks and antiquarks [7]. This equation can be related
HQET allows us to infer the ahsolute normalization of some of the form fac- . ) . X .
¢ for describing the d f had ith beauty to th with to the Bethe-Salpeter equation by placing one of the Intermediate-state particies
ors necessary for descri 108 the decays of hadrons with cauty o those wit on the positive-energy mass-she)]. This has the advantages that the prescribed
constraint on the relatjve energy is manifestly covariant and that in the limit that
the mass of one constituent goes to infinity (the static limit), the wave equation

reduces to the Dirac equation for the light particle [8]. Thisis a property of the

normalizations due to the finite masges of the b and ¢ quarks, as wel] as those
due to perturbative QUD effects. We can even deduce bounds on the slopes of



full Bethe-Salpeter equation that is lost when the infinite sum of contributions
to the kernel is truncated. Clearly, the properties of the spectator equation make
it ideal for studying the properties of heavy mesons at finite mass.

In this article we use the spectator equation to construct a constituent quark
model of heavy mesons. In particular, we will use the spectator equation as
a basis for construction and expansion of the heavy meson spectra and wave
functions in 1/mg, where g is the heavy quark mass. This allows us to study
the heavy meson spectra in the approach to the heavy quark symmetry limit. By
choosing a reasonable set of model parameters we are able to obtain a respectable
fit to the observed heavy meson masses and to predict the approximate masses
of heavy mesons which have not yet been observed.

This article is organized as follows. In the next section, we describe the model
that we use for heavy mesons, including the derivation of a wave equation from
the spectator equation. In Section III, three methods of obtaining solutions of
the wave equation are described, while in Section IV we display our results. In
Section V, we present some conclusions.

I1. THE MODEL
A. Q¢ and ¢@ mesons

The spectator equation is most easily understood in relation to the Bethe-
Salpeter equation. The Bethe-Salpeter vertex function for two bound fermions is
represented by Fig. 1 and can be written as

4
Ly, P) = i f %V(p,k;P)Sif)(kl,ml)S}'*’)(kz,mz)r(k.P), )

where p = %(pl —-p2), k = %(kl — k2), V is the Bethe-Salpeter kernel and
Sg)(k,-,m,-) is the free Dirac propagator for particle i. The Dirac indices are
suppressed for simplicity.

The spectator vertex function can be obtained from the Bethe-Salpeter vertex
function by placing one of the fermions on its positive-energy mass-shell. For our
model the heavy quark (particle 2) is placed on shell while the light quark ( particle
1) remains off shell. This is achieved by a replacement of the propagator
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FIG. 1. Feynman diagrams representing the equation for the Bethe-Salpeter vertex
function.

A+(2](k2, ms) = Z u' (kg 5, mg)u(ﬁj(kg,sfz, ms), (3)

i

*3

and replacing p, k and k; by the corresponding quantities p, & and £, with
particle 2 on mass shell. The on-shell energy 1s given by E(p,m) = /p? + w2
The spectator vertex function is then

d3k g
(27)® E(ka, m3)
Defining the spectator wave function as
$ua(B, P) = S5 (51, m1)a(pa, 52, my)T (5, P), (5)

the wave function satisfies the wave equation

I(p, P) = VB, k; P)SD k1, m)AY D kg, mo)D(E, P). (4)

-1
S b1, my ), (B, P) =
dak Ty

a2 Ve, (B k; P)gy (k, P), J
(2r) E(kz,mz)g 2y (B K P)g (£, P) ©

where
VoD, k; P) = at¥(pg, 55, ma}V(p, k; P)ul?(ky, s, ma). (7)

This wave equation is covariant and can be easily boosted from frame to frame.
It is generally easier to solve the wave equation in the bound-state rest frame
where the angular expansions of the wave function and potential are defined. In
the rest frame P = (W,0), py = —pg = p, ky = —k; = k, p{ = W — E(p,m,),
P} = E(p,m2), k) = W — E(k, m3), and k3 = E(k, ms) where W is the bound-
state mass. The wave equation can be written as

[¥2° 0¥ — E(p,ma)) — ) p m | o lp. W) =

&>k s

G e 2 Voeen (0 ks Wi (e, W), (8)



where
i‘;,.,;(p, ki) = ﬁ‘z)(—p, sz, ma)V(p, k: Wul2d k. 55, my). (9)

Since we wish to examine the approach to the limit m, — oc, 1t is useful to
rewrite this equation in a honcovariant. form by defining

= — _Tn_;g | 7
‘I’s;(P) =14/ Elp. 2) 'J’.c;(l), |26 ) (10)
f LS , maog
U ? . 4 == —_— ? .
’-’2.1‘)(p'kl I'T ) - E(p. 2) l/‘.],‘,:(p,k, ';V) E(k, 2) (II)

0
[7‘” (W — E(p,my)) -4 . p ml] ¥,,(p) =

and

to give

&3k
(2r)3 ZUsa,a;(pak; W)‘I',;(k). (12)

where

to reduce particle 2 to the Pauli spin space, and defining a wave function which
I8 an operator in the Dirac space of particle 1 and the Pauli space of particle 2,
V=3 \a ¥,.. (12) becomes

2 2

(7-”}0(”’ — E{p,m4)) — ~ p - ml) ¥(p) =

3

&3k ((E(D,mz)+?"2)(E(k,m2)+m2) )
(27)3 4E(p, my) E(k, my)

: o . pol® i
* {( N (E(p. ma) + my)(E(K, mz) + my)

) V(@)
(E(p, m2) + ms)(E(k, m3) + )
+ M. ( 72 pa? oD |

(B(p, m2) +m3) (B ma) 4 i)

) V(@)
) @ e, (15

Expanding eq. (15} to order 1/my, we find

2
(7“’ (W —mj ~ %2—) A mx) ¥(p) =

d3k

Gy (%) 10"V (q?)

1
L e N CCECRT Pr(a)) Wik (16)

where q = k — p.
Eq. (16) can be Foutier transformed to coordinate space, multiplied from the
left by 4/1° and then rearranged to give the wave equation

H¥(r) = wy(r), (17)

where the hermitian hamiltonian is H = Ho + Hy with

Hg:a(l)-%v-{»ﬁ(”ml+ﬁ(“V,(r)+V,,(r)+m2, (18a)
_ 1 2 fy () () _(2) _ cupe
Hi= o {-v2-i {v(r),a -v} +aM. g, rv,,(r)}, (18b)

where 7 is the unit vector in the radial direction.

Eq. (18a)} is the Dirac equation for particle 1 with scalar and vector potentials
plus the mass of the heavy quark, particle 2. The solutions of the Dirac equation
with such a potential have been extensively studied. The operators



TABLE I. Values of £ and 7 for various values of K
¢ ¢
K1 <0 j] -1 jl + ,;;
K >0 h+3 h—3

are a set of mutually commuting operators which commute with Hy, where j1V) =
L+S() st — 1s) = %.,élla(l), KW = gtyp@ 1) _ 1yand 8 = lat2),
The eigenstates of Hy can then be labelled by the corresponding set of quantum
numbers {n, j,, m;,, &y, s3}. The wave equation associated with Hy can then be
written as

H{)‘I’(O) (r) = W(O) q,(o)

nEyfim; a3 ne g m‘lilmu'z(r)’

(20)
where

Greyy () LELE

() _ | TV, @)

nR pim,, Sz(r) - iFnlJ.(’)y{"Jl (Q)
2L,

Xs3s (21)

with

i 1
J“'J‘I(SB) = Z <£'ml, 551

mye,3,

jnn,—,>nm,m)x,,, (22)

and y,, and y,, are the Pauli spinors for particles 1 and 2, respectively. The
cigenvalue &) = £(j, + %) can be any nonzero integer. The values of £ and ¢
assoclated with various values of &, are displayed in Table 1.

Note that the zeroth order invariant mass Wr(n?c).j. 1s determined by n, x; and
J1, or equivalently by n, j;, and £. The parity of the Qg bound state is given by
P= (_1)t+1 .

The first term on the right hand side of {18b} is the kinetic energy of particle
2. Both the first and second terms on the right hand side of (18b) commute with
the set of operators given in (19}). However, the third term does not cominute
with any of these operators, but instead commutes with

{3%,7.,7P} (23)

where J = j'1) 4+ 8(2) and P is the parity operator. The eigenstates of the total
hamiltonian H = Hy + H, can then be labelled by the set of quantum numbers
{n.J,M;, P}

The eigenstates and eigenenergies of the hamitonian H can be calculated
directly. However, the objective of the calculations presented here is to produce
wave functions which can be used in the calculation of form factors and decay
constants as an expansicn in powers of the inverse of Lhe heavy quark mass ma.
In order to maintain consistency in this expansion, the masses and wave functions
should be calculated perturbatively. The first order correction to the quark bound
state mass Is given by

VV:S.?P = /da"q’h?:jl.f,u,(r)Hl‘I'Luxl,j.JM,(r)n (24)
where
v = (jlmjl, %sg JMJ> L P (25)
m;, .83
The bound state mass to first order is
Wasp = W+ Wi, (26)

The scalar and vector potentials in the calculations presented here have the
form

Vilr) = br +¢, {27)
4 o ,
Volr) = =3 37 Zterf(yr). (28)

i=1

The vector potential is, as in ref. [4], based on a parametrization of the running
QCD coupling constant.

B. Q@ mesons

The sitnation for mesons made of a heavy quark and the corresponding an-
tiquark is somewhat more complicated. The problem is that the prescription
of placing particle 2 on mass shell in the Bethe-Salpeter vertex equation (1) to
obtain the spectator vertex equation (4) is clearly asymmetrical This results
in a spectator vertex function which is no longer an eigenfunction of the charge
conjugation operator. The solution of this problem is to construct a set of cou-
pled equations for the vertex functions which have ither particle | or particle



2 on mass she|| [T]. These equations have been solved in ref. (7] for ¢g¢-systems

containing only light quarks.

However, since we are interested in expanding about the infinite mass limit,
this additiona) complication is not necessary and a hamiltonian with leading

I/mgq corrections can be constructed from {4). The starting point is the spinor

decomposition of the Dirac Propagator of particle 1 in the meson rest frame

Sg ki, m )= -9 ul!(k, Sll!mQ)ﬁ“"(k,s'me)
e PR E,(k, mQ) - W _ QE(](! mQ) n in

-

S,

. v(l)(_k, s, mq)ﬁ”)(‘k’ 51, mg)
W—in -

Using eqs. (29) and (3) in eq. (4), we can write [9]

_ _ d3k me rrs E.
"0 =3 o gy 0k D

(u“ ‘k, s}, mg)u?(—k, 85, mq)\Fffls(k)

+17([)(—k- 3; . mq)u(:?)(—*k, S;, mQ)\Fil_ll {k)) f

where
,p(-H (k) _ mg ﬂ[l)(k’ si,mq)ﬁm)(__k!sle mQ)F(E, P)
.111.5‘3 E(ka) W_2E‘(k‘mq) f
and
V) k= e f’“’(—k.si,mo)afﬂ(~k.sa.m9)r(z,P)
T Bk mg) W :

Multiplying the terms of (30) to the left respectively by

Mg S(2)
u (p.s;.m Y ~P. sy, mg)
E(p mg) uw( Q
and
m
~(1) —(2}
v (—p, s, mo )i (—p,ss.m ),
E(p. mg) ( Q) Q

(29)

(30)

(31)

(32)

(33)

(34)

Means that eq. (12) can be rewritten as the pair of coupled integral equations

9

. d3k
V= 2E(p.mo) ¥(t) (p) = 3° / @ (U3 s (00 Wy, (k)
55,8

FU eI WRE) )], (35)
and
_ Bk o
Wwo) (p) = Zf(——%)s [U“::;J;J;(p,k; W), (k)
al a',

+ Uf,,_a,;s;,,-,(p,k: W)‘I'E;"j;(k)] : (36)
where

mg

Ut (p.k; W)=

-q? !
LA ULETLRTE

xﬁ(”(p,sl)ﬁ(z’(—p.SQ)V(p,k; W)u“)(k, s;)u{m(ﬁk' S), P
m2
_e
E(p, mg)E(k. mg)
xa,f“(p,sl,mQ)a”)(-p.sz)V(p,k; W)v“’(—k.s})u""‘(gk..{,). {3%)
m2
Q@
Xl_’(U(—Py sl)ﬁ(z)(—p! SQ)V(pa k! W)u(l)(kr S;)U(z)(—k, 3'2)) (39)
U it (P W) = — ™
e P ) = S o)
Xﬁ‘”(—p,sl,mq)ﬁ”’(—p.sz)lf(p,k;W)v(”(~k13’1)u(2’(—k.SQ)- (40)

U= ;(p,k; Wy=

et
s],s;,.![..!

-+ (p,.k; W)=

Y 1
1.32;47 8]

These coupled equations can then be reduced to the Paul; spin space and
expanded in powers of 1/mg. In this case, only U+ ¥ contributes to order
I/mf?. Defining a wave function which is an operator in the spin spaces of both
particles ag

= Z x,;x,;\lfft),;, (41)
eq. (35) becomes
2 3
. p _ &k
(w ~ 2mg - 53) ¥(p) = f 2rp (P k) ¥(K), (42)

10



where

1
2
4mQ

5

[(V,’(qﬂ) +V(q%) (k% - p?)”

Ulp, k) = Va(a®) + Vi(a®) -
+Vi(a®) (P2 +k*+ (V) pol) .k 4 o2 pgl®). k)
+Vo(a) (D2 +k% - o) paV) k= g . o). k)
= Vila?) ("“)"m ‘k+alV). P"(I)) ' (0(2)0(2’ ‘k+ o). pa(“)] - (43)

Eq. (42) can then be Fourier transformed to coordinate space to extract the
hamiltonian

H=Hy+ H,, (44)
with
Hy = He + Hyyp + Hyo + Hsp + Hyg, (45)
where
H, = - r‘:;a(;_ + Vo(r) + Vo(r) + 2mg, (46a})

H

1= e L V0] = Bt = I+ [V00) - V) 5} w6

S e (s s e Lge
thp—mz {2 [r‘/v(r)_l/v(r)] (S-rS-r—35

7] (557~ %)} , (46c)

] «; 7 !
Hso = ﬁg; [JVU(I') - V’(r)] s L1 (46d)
Hsivir = —4;% (w2, [V2, Fsrvr(0)]], {46e)

and § = SW 4 8§ Here Fgvir(x) 1s the Fourier transformation of
dViv)(@*}/dq*. For our choices of Vs(r) and V,(r), we find

T 2 Lo 19* L?

m% 2 “or ar:  r ;‘Tg rdr ar?  2p2
Hyg = V.,gr)qu
2mQr-
1 3 2 s .. 0 B84 a?
- e 10 it gyt 28 g
31!1?2\/1720 e ( v Ch "y T ror arz )’

(46g)

Eq. (46a) is the nonrelativistic hamiltonian for equal mass quarks in scalar
and vector potentials. H. contains central and orbitai contributions. Hyy, is the
hyperfine interaction consisting of a tensor-force term and a Spin-spin interaction.
Hgo 1s the spin-orbit interaction. Hsg and Hvr are scalar and vector retardation
terms associated with the third term on the right-hand side of (43). Note that
our spin-dependent interactions Hpyp and H,, have the same forms as those in
many other quark models (see for example: [4,10,11)), but the spin-independent
interactions do not.

The spin-independent correction includes H., Hsp and Hvg. In these con-
tributions, Hsp, Hygr and the term [V/({r) — Vo(r) £ in H, are gauge depen-
dent. Hsg and Hyg are from the second term in the expansion of V(Q?) =
Vig?) - E}%-V’(qz) (k2 -~ pz)2 +O(1/m}). Had we chosen the Coulomb gauge,
these terms would not exist. Most other quark models do not include retarded
interactions. (Ref. [12] gives another expression for the retardation effect.) We
will show that with the scalar and vector potentials in (27) and (28), retardation
contributions are comparable with the spin-dependent interactions.

The operators {H,,L2,82,32,3,} where J = L + 5, are a set of mutually
commuting hermitian operators. The cigenstates of Hy can then be labelled by
the corresponding set of quantum numbers {n,L,5 J, M;}. The wave equation
associated with Hy can then be written as

(0 P(0) 5, 10)
HoW,ygra, () = W, ¥ rsaa,(r) (47)
where
Unp (7}, ar,
'I’EPLJSJMJ(I') = _If,(_‘yﬂ'.f(ﬂ)- (48)

12



and

V(= Y (EMLSMs [JMs) Yiar, () [SMs) (49)
My Ms

is the spin spherical harmonic.

The hyperfine interaction {46¢) mixes states with AL = £2for 5 = 1. As
a result, L is no longer a good quantum number for solutions of the complete
hamiltonian. However, these states have the same parity and charge gquantum
numberssince P = (—=1}*+ and C = (=1)2+7 for ¥/9. The first-order correction
to the mass can then be written as

f }
r(I}])PC' "fdqr‘PExULTEJM;(r]Hl‘pgz0£SJM;(r)
=F.+ Ehyp + Esc + ESR + EVR- (50)

where P = {-1)**+' and € = (-1)Y*¥. The bound state mass to first order is

W,ipc = WY 4+ Wi, . (51)

n
One may also include an annihilation term in the hamiltonian. However, this
z
term first appears at order =% [13] [4]. while in our model the leading spin-

: q
dependent effects are of order 24 Since o, is small in the heavy quark system

Q -
(ao(m?) ~ 0.35 and a,(m?) ~ (.22). we expect the annihilation effects on QQ
spectra to be small.

111. SOLUTION OF THE WAVE EQUATIONS
A. QQ§ sector

The Dirac equation {20) can be reduced by using the explicit forms of the
zeroth order wave function (21} and the Dirac matrices & and /7 along with the
identity

ol -fy,_”;.’i () = -V (1) (52}

ll:t

to extract the coupled radial wave equations [14]

dGﬂ 71 - r s
——;;1—{'"-’ £ 2 Gty (1) = (4 V() = Vo) + B0 Vg, (1), (53)
d[‘ﬂ ] . r
ﬁhﬁﬂ - *;_1 i (1) = (my + V() 4V (r) = ES) )G (7). (54)

13

where

() {0}

Entiy = Wax,j, —m2. (55)

We have obtained three separate numerical solutions of these coupled

equations using iwo different techniques, direct integration and the matrix
diagonalization-variational technique.

[. Direct Integration

This approach uses stepping techniques to obtain solutions to the differen-
tial equations. Such techniques are much more efficient if any large asymptotic
damping of the radial wave functions can be extracted and reduced radial wave
equations can then be integrated. The scale of the asymptotic variation of the ra-
dial wave functions is determined by the string tension b appearing in the w b
potential (27). Defining a dimensionless radial variable p = b'/?r_ and f.rs
mining the asymptotic behavior of the radial wave functions. the redu- tw
functions g{p) and f(p) are defined in terms of 7 and ¥ by

G(r) = glp)e™ 30700,
F(r) = f{p)e™ 3" +0), (56)

where v = 2(m; + ¢)/b'/2, and ¢ is the constant shift in the scalar potential.
Coupled equations for the reduced wave fanctions that result are

(;}i; -1+ %) 9(p) = lag + = Vo)) flp), (57)
( :,, —p-1- _,) £(p) = (o + p+ Vaulp)) 9(0). (58)

where V,(p) = Vi(r)/b1/2, ay = L+ and ¢ = EL) ViR

In order to integrate the dlfferentla] equatlons 1t is necessary to know the
values of the functions and their derivatives at some point and then to have a
stepping algorithm that predicts the values of the functions and their derivatives
at subsequent points. The values of the functions and their first derivatives
at p = 0 are obtained by construction of a series solution for the functions for
small p. An adaptive Runge-Kutte routine {15} is used to integrate the differential
equations for increasing values of p. Energy eigenvalues can be found by adjusting
the value of the energy until the functions have the correct asymptotic behavior

14




as determined by an asymptotic expansion of the functions at some large finite
p. This process of finding the eigenenergies is called the shooting method [15].
In the calculations shown here, the accuracy of the eigenvalues is increased by
integrating up from p = 0 and down from some large finite p to some intermediate
point where the values of g(p) and f(p) are required to match.

A second variation on this method is to use the reduced radial wave equations
(57) and (58) to eliminate f(p) to obtain a second order differential equation for
g(p). This equation can then be integrated in a manner similar to the Shrodinger
equation for the QQ sector.

2. Variational Method

‘The starting point for the ‘variational” solution of egs. (53, 54) is the pair of
equations

Fr(r)
E{Gh(r) = (my + Vi + V,)GT Filr) = —2—,
T rs r dg ( )
EanFydr) = (Vo = my = V) FJ(r) + = G7r) + =4
Fn * »n ntj
Frtr) = ~——”“) L Ghelr) = —-~_"(’"). (59)
r
Lhe functions F and G are expanded in a set of orthonormal basis functions
aplrfu)
Gh(r) = Za ¢4(r/e),
i=1
N .
Fier) = Y Broi(r/e), (60)
i=1
with
oo .
| a0t /0 = e (61)
0

¢ is the size parameter of the wave functions, and is used as the variational
parameter mn this calculation.

Substituting the expansion of eq. (60) into eq. (59), multiplying by qﬁtm(r/g)
and integrating, leads to the set of equations

[V =

(0) n
Entjak

<ml + V(r) + I [r)> o)

ki it

K 1 Yo/ d
I n n
< > - ‘Z<$> A
kel i=1 keaf

-
1l
-

+
R

..
I
—

-
N
E 88 =3 Volr) —my — L;(r-)> Ay
i=1 &l it
N N
K +1 ,
b3 ‘2
+§< r >kf,:£u' +Z;<dr>k¢,[ (62)

where we use the symbolic notation
<w(r)> = / drr’es (r/o)(r)eh, (/). {63)
[T PRT 0

The two sets of equations represented by eq. (62) can be combined into the single
eigenvalue equation

(m+l‘f.(r}+V,,(r)—-E) - = )(a _
( (satl y 4 (Valr) = m— Vi) — B) ﬁ)_o' (64)

The size of the matrix in eq. (64) is 2N x 2N. Solutions to the eq. (59)
are obtained by varying the wave function size parameter p, diagonalising the
matrix in eq. (64) for each value of g, and searching for stationary points in the
eigenvalues as functions of g. In principle, if the size of the expansion basis N is
taken to oo, solutions obtained in this way would be exact and independent of
¢- In practice, the procedure outlined above is carried out for finite ¥, and N is
increased until the eigenvalues are largely independent of g, for some reasonable
range in g. With this method, the lower N eigenvalues obtained correspond to
negative energy states, while the higher N eigenvalues are those of interest for
this problem.

For this problem we have used harmonic oscillator wave functions for the
expansion, with ¥ = 10 and N = 20. We compare the numerical solutions
that we obtain using this procedure with those that are obtained using the other
previously described methods. As expected, the variational solutions are better
for N = 20, and the eigenvalues are within 1% of those obtained by solving the
equations by the methods deseribed in the previous subsection.

(11—_1_1
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FIG. 2. Energy eigenvalues as a function of {, for N =10 and N =20 .

B. QQ sector

Using eq. (48) in eq. (47) and defining p = b'/2r, the differential equation for
the radial wave function is

1 (d? (L+1 —
[—; (57— “552) 4701 + ] s ) = eun (o), (65)

where 1 = mg/bl/? | ¢ = (H’[m 2mg — c}/bY? and V,(p) = V,(r)/b'/2.
Determining the asymptotic behavior of the radial wave Tunction, the reduced
radial wave function g(p) can bhe defined by

bozpd ooty

tunr(p) = g(p)e™" (66)

The appearance of fractional powers of p in the argument of the exponential
function in (66) leads to coeflicients with {ractional powers of pin the differential
equation for ¢{p). This complicates the expansion of the reduced radial wave
functions for small and large values of p. Tt is. therefore, convenient to define the
variable £ = p!/2. The differential equation for g(£) can then be written as
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[e’*’ e + (e~ 2ende +4uf“) %

+ (4L + 1) (e + 26°) — pe?6? + 4T, (f;""))] de)=0  (67)

This equation can be used to develop expansions for small and large £ to provide
boundary conditions for numerical integration of the differential equation.

Since the Runge-Kutte method is designed to integrate systems of coupled
first-order differential equations if is necessary to reexpress the differential equa-
tion (67) as the coupled pair

d
Eg(f) = f(£). (68)
and
d
[~52 (e v a )] 7(e)
+ (4L(L 4 1)+ ¥ (€ + 26%) — pe? + 41:5"?(62)) 7€) = 0 fe

This systern can then be solved by Runge-Kutte integration and intermediate-
point shooting techniques.

IV. RESULTS

Once the zeroth-order solutions are found, the perturbed energies can be
calculated using (24} and (50). The masses associated with the bound states are
given by (26) and (51). These depend on the quark masses m,, m,, m, and m,
as applicable for each meson; the parameters of the scalar potential (27) b and
¢; and the parameters of the vector potential (28) a; and +; for i = 1,2,3. The
model contains a total of twelve parameters. In obtaining the results shown here,
the vector potential parameters

Oy = 0.15,
T = 05:

g = 02,

9 = 1.581, 13 = 15.81, (70

are fixed at the same values as given in ref. [4]. The remaining vector potential
parameter oy is reexpressed as

0] = Grerit — 02 — . (71)

18




TABLE 1I. Parameters of the model.

TABLE 1V. Fitted meson spectra for QQ mesons.

parameter value comments

Oore 0.674 limiting value of o,

b 0.180 GeV? string tension
c 0.02 GeV see eq. (27)

m, 0.258 GeV

m, 0.400 GeV

me 1.53 GeV

mp 4.87 GeV

TABLE III. Fitted meson spectra for Q¢ mesons.
Mass (GeV)

Meson JF theory experiment®
D 0~ 1.85 1.87
D> 1~ 2.02 2.01
D 1t 2.41 242
D3 2t 2.46 2.46
B 0~ 5.28 5.28
B 1~ 9.33 5.33
D, 0~ 1.94 1.97
03 1” 213 2.11
1. - 5.37 5.38
n; 1~ 5.43 5.43

*Experimental values are quoted (16] to the nearest 10 MeV due to ambiguities in
assigming the calculated values to specific charge states.

where a.q¢ is the value of the running coupling constant at Q@* = 0 as
parametrized in ref. [4].

@crir and the remaining model parameters are adjusted to fit the masses of a
selection of mesons. The resulting values are listed in Table I1. The fitted meson
spectra for the Q¢ sector are listed in Table 1T and the fitted meson spectra for
the QQ are listed in Table IV. Additional states which were not used in the
fitting procedure were calculated and a detailed discussion of the results for the
Q¢ and Q@ is presented in the following two subsections,
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Mass (GeV)

Meson Jee theory experiment
e ¢t 3.00 2.98
J/${18) 1-- 3.10 3.10
Xco ott 3.44 3.42
Xel 1t 3.50 3.51
X2 2%+ 3.54 356
Jjv(25) | 3.73 3.69
T(15) 9.46 9.46
xeo{1P) 0+ 9.85 9.86
xu(1P) 1+ 9.87 9.89
x62(1P) at+ 9.89 9.92
T(25) 10.02 10.02
veo(2P) ot 10.24 10.24
x01(2P) itt 10.26 10.26
x62(2P) 2t 10.28 10.27
T(35) 1= 10.39 10.36

A. QF sector

For the Q¢ sector, the zeroth-order cigenenergy Eﬁg}l = I'V,i{ijm — my is
independent of the heavy quark mass, as would be expected in the heavy quark
limit, where the heavy quark should act as a static source. The zeroth-order

spectrum depends only on the light quark mass. The first-order correction to the

mass W,E},)P 1s proportional to 1/my and splits each of the unperturbed states.
These features are illustrated in Fig. 3 which shows W,i[i'm --my for a % quark as

sold lines and W, ;p — ms = W,fi’m + W'Eb)P ~ my with a ¢ quark as the heavy
quark (dotdashed lines) and with a b quark as the heavy quark (dashed lines).
Fig. 4 is a similar spectrum where the light quark is now an 5 quark.

Note that to zeroth order the ordering of the j, = €4 1/2 states is reversed
for the ¢ = 2 states in comparison to the ¢ = 1 states. This phenomenon, called
muitiplet inversion, has been predicted [17] for Q¢ mesons with my > m,. It
results from the dominance of the Thornas-precession over the spin-dependent
forces in this limit.

For the states presented here, the root mean square momentum of the zeroth-
order wave function is approximately 0.9 GeV. Clearly, both u and s quarks are
very relativistic. In addition, it is possible to obtain some sense of the convergence
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FIG. 5. ca spectrum. In this figure, solid lines represent the results of our calculation
for the masses of cii mesons, W, to the first order in the perturbation; dotted lines
represent the data.

of the p/m expansion for the corrections to the infinite-heavy-quark-mass limit
since B2t L while Brme 5. Therefore, the higher-order correction that
are neglected here should be considerably larger for the the ¢ quark than the
b quark. Indeed, this problem will become worse with increasing n since pp,,
should increase with increasing n. This is seen in the shift of the 0— states relative
to the unperturbed states which increases with n.

Figs. 5 to 9 show predictions for the masses of Q4 mesons, W, to first order
in the perturbation (solid lines). In the spectra for mesons with u and 5 quarks,
the available data are plotted for comparison as dotted lines. Ref. {16] has also
listed states D;(2.440) and D, ;(2.573) with uncertain quantum numbers. We
believe they correspond to the state 1*(2.41) in Fig. 5 and the state 2+(2.58)
in Fig. 6 respectively. For the b mesons, calculated masses from (4] are plotted
because no data exist at present. For the be mesons, ’;n—";‘— ~ 1. This shows that
although the mass of the ¢ quark is relatively large it is quite relativistic in this
case.
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In these figures, the results are in good agreement with the data, which vindi-
cates our choices of potentials and parameters. lHowever, the calculated hyperfine
splittings are all larger than in the data. The agreement is much better in the
b-flavored mesons than in the e-flavored mesons. There are Lhree possible reasons
for this discrepancy. First, as has been mentioned earlier, this model 1s expected
to work better for b-flavored mesons than for c-flavored mesons due to the more
rapid convergence of the nonrelativistic expansion applied to the heavy quark.
Secondly, these calculations do not include any effects associated with possible
strong decay of the heavy mesons. The coupling to these strong decay channels
will result in shifts in the ineson masses as well as decay widths for heavy mesons
above decay thresholds. These shifts will be greatest near the decay thresholds.

The third possible reason for the large hyperfine splittings may have its origin
in the parametrization of a,(r), particularly at small ». While many functional
forms may be used for this parametrization, each form may be expected to lead
to quite different 1/mg contributions, especially in the hyperfine term. This
question is currently under investigation.

The third term on the right hand side of (18b) has off-diagonal matrix ele-
ments between states with j; differing by unity and with ¢ differing by either (

or 2. These mixings do not affect the spectrum to order LQ but should result

T
in shifts in some states at higher order in all of these systems. This should be

particularly apparent for the 1* states which are nearly degenerate to order ;;15

for all Qg mesons calculated here.

One very interesting aspect of this calculation is the mapping of our model
onto the heavy quark effective theory, with a view to evaluating some of the
parameters and dynamical quantities (such as universal form factors) of the ef-
fective theory. While we do not endeavor to perform such a calculation for all
such quantities here, some comments are merited.

Although we have included all of the 1/mg terms that arise from the spectator
equation, it is not clear that these correspond to all of the 1/mg terms of HQET.
In particular, in the spectator equation, the heavy quark is treated as being
ezactly on its mass shell. In contrast, in HQET, the heavy quark is allowed
to be slightly off its mass shell (via the equation p, = mgu, + k,), and this
leads to terms that may be absent from the formulation presented here. The full
ramifications of this are also under investigation.

Until this question is resolved, we dare not examine quantities that are inti-
mately bound up in the 1/myg structure of the effective theory or the model. We
can, however, examine quantities that depend only on the leading-order structure
of the model, as we believe that this is a reasonably accurate representation of
the effective theory. In particular, in the effective theory, one expeets that the



heavy quark should act as a static color source. This very important feature is
reproduced in the madel, as the leading dynamical behavior is described in terms
of a Dirac equation for the light quark.

‘Two quantities of interest in HQET are A and Xy, which are defined by

v 1
My = mo+ A4 (—‘—) s
mne

(M{v) [ho(iD)?hg M(v)) = 2Mp 7,

order calculation. From our model, we obtajn A — 0.45 GeV for the ground
slate pseudoscalar/vector doublet, and A = 0.67 GeV2, These values are in
reasonable agreement with other values in the literature [3]. Further aspects of
the relationship of our model to HQET are discussed in the conclusions.

B. Q0 sector

Figs. 10 and 1] show the spectra for ¢z and bb mesons as calculated with
egs. (44)-(51). As before, the calculated masses are shown as solid lines and the
experimental masses as dotted lines. The DD and BB thresholds are shown as
horizontal dotdaghed lines across the Figs. 10 and 11 respectively. Ref. [16} has
also listed stateg he(1P) with mass 3.526 GeV and 7.(2S} with mass 3.59¢ GeV.
We believe they torrespond to the states 2150(3.67) and 11P,(3.51) in Fig. 10
respectively.

The bb spectrum is in quite good agreement with the data for the states lying
below the BB threshold. The agreement deteriorates as the masses approach and

less salisfactory. This may he an indication of the inadequacy of the truncation of
the nonrelativistc expansion at order m%— In both cases the hyperfine splitting
Q

of the spin triplet states i« too large.

Since the hyperfine tensor interaction has non-zero off diagonal matrix efe-
ments for states with spin 1 and with [, differing by 0 or 2, there should be
mixings of states such as 351 with 3Dy and 3P, with 35, These mixings do
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FIG. 10. ¢ spectra. See caption of Fig. 5.

not affect the spectrum to order ﬂ—:,— but should result in shifts in some states at

higher order in both the bb and cé spectra.
_ Table V shows the individual contributions to the masses W of a number of
bb states from woy E., Ervyp, Ega, Esp and Evg. The retardation contributions

sum of these contributions is comparable with Enyp and E,,. The assumption
that the scalar retardation potential depends only on the square of the exchanged
four-momentum Q7 is uncontrolled and it is possible to propose forms for this
retardation potential which would eliminate the scalar terin altogether.
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TABLE V. Zeroth order and various first arder interaction energies in the bb spectrum
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FIG. 11. bb spectra. See caption of Fig. 5.
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{GeV)
State W W) E. Enyp Eso Ezg Evp Esp + Evy
1150 941 9.5315 -0 0602 -0.0367 0.0000 G 0072 -0.0297 -0.0224
1°5; 546 96315  -0.0602 0.0122 0.0000 00072 -0.0207 -0.0224
2150 10.00 10.0892 -0 0708 -0.0192 0.0000 0.0175 -.0192 -0omv
2331 10.02 10.0892 -0.0708 0.0064 0.0000 Q0175 -0.0192 -00017
3150 10 37 13.4511 -0 0839 -0.014€ 0.0000 0.0302 -0 G160 00142
3331 i0.39 10.4511 -0.0839 0.0049 0 0000 0.0302 -0 0160 0.0142
4150 10 69 10.7411 -0 0992 -0.0125 0.0000 0.0447 -0.0144 0.0303
435, 1068 107411 -0 0992 0.0042 0 0600 00447 -0 0144 00303
5150 109t 10.9928 -0 1162 -30113 0 0000 0.0608 -0 0135 00473
535, 1093 109928  _0.1162 0.0038 00000 00608 00135 00473
5150 11.14 11.2202 -0 1345 -0.0105 0 0000 0 078] -0 0128 00653
6351 11.15 11.2202 -0.1345 0 0035 0.0000 0.0781 -0.0128 0.6653
llPl 9.88 9.9438 -0.0610 -0 0023 0.0000 00126 -0 0169 -0 0043
1’py 985 99438  -0.0610  -0.0074  -00243 U126 -0.0169 -G 0043
1°P, 987 99438  -0.0610 00049  -0.0121 00126 00169 -0.0043
1*P, 989 9.9438  -00610  -0.0001 00121 00126  -0.0169 -0.0043
2'p 1027 103311 00752 .0.0016 0.0000 0.0244  -00143 0.0101
2°Pp 1024 103321 .00752  -00056  -0.0182 00244  -00143 001581
23P1 10 26 10.3321 -0.0752 0.0036 -0.0091 0.0244 -0.0143 00101
2°P; 1028 103321  -0.0752  -0.0001 0.0091 00244  .0.0143 0.0101
lng 10.15 10.2072 -0.0637 -0.6008 0.0000 0.0186 -0 0139 0.0047
1°D; 1014 102072 -0.0637 00011 -0 00ST 00186  -0.0139 0 0047
1*D; 1015 102072 -0.0637 0.0016  -0.0032 0.0186  .0.0139 0.0047
13Dy 1016 102072 -0.0637 -0 0001 00064 0.0186  .0.013% 0.0047
211)2 1047 10.5277 -0.0792 -0 0008 0 0000 0.0315 -0.0125 G 0150
23D; 10.46 10 5277 -3.0792 -0.0009 -0 0080 00315 -0 0125 006190
23D2 10.47 10.5277 -0 0792 00313 -0.0027 00315 -0 0125 QU190
2’Dy 1047 105277 00792  -0.000] 0.0053 0.0315 00125 0.0150
1'1"'3 10.36 104164 -0.0717 -0.0004 0 0000 0.0250 -0 0124 10126
F, 1035 104164  -00717  -00004  -0.0047 00250  -00124 00126
’Fy 1036 104164 00717 00008  -0.0012 0.0250 00124 00126
13F4 1036 10.4164 -00717 -0 0001 9 0035 0.4250 -00t2q gu1ze




V. CONCLUSION AND OUTLOOK

We have constructed this model for heavy mesons based on a relativistic
hound staie equation, namely the spectator equation. The calculated spectra are
in guite good agreement with the experimental data. The parameter values we
have are reasonable, and comparable to other models of similar type. The model
is derived by expanding the spectator equation in 1/Mg, where Mg is the mass of
the heavy quark. This treatment is expected to work better for b-flavored mesons
than for c-flavored mesons since in c-flavored mesons, v ~ 1c, but in b-flavored
mesons, v ~ éc. and our results confirm thi§ expectation. )

The retardation contribution to the Q@) mesons, which is missing in other
quark models, has a noticeable effect. Annihilation effects have been neglected, as
they are suppressed by additional powers of a,{Mg), which is a small parameter.

In addition to the questions currently being investigated {parametrization
of a,(r), 1/mg tetms), this work opens np many avenues of investigation. Of
primary importance is the application of the model to decay processes of heavy
mesons. In particuiar, the calculation of the Isgur-Wise functions that describe
the semileptonic decays. not only for decays to pseudoscalars and vectors, but also
to excited states, are of great interest. In HQET, these form factors are essentially
the overlaps of the appropriately boosted wave functions. It will be interesting
to see if this relationship between the form factors and the wave functions arises
in the present model, and if so, how. In addition, the slope of the Isgur-Wise
function for the elastic decays may also be calculated, and various HQET sum
rules checked.

The strong and electromagnetic decays may also be treated with the wave
functions that we have These are particularly interesting for the D* and D]
states, as the former lie so close to the Dx threshold, while the latter lie below
the DI threshold, and thus decay radiatively. In addition, quantities such as
meson decay constants may also be evaluated.
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