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Abstract

We solve perturbative constraints and eliminate gauge freedom for Ashiekar’s gravity

on de Sitter background. We show that the reduced phase space consists of transverse,
traceless, symmetric fluctuations of the triad and of transverse, traceless, symmetric
fluctuations of the connection. A part of gauge freedom corresponding to the confor-
mal Killing vectors of the three-manifold can be fixed only by imposing conditions on
Lagrange multiplier. The reduced phase space is equivalent to that of ADM gravity on

the same background.
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It is well known that quantum gravity is perturbatively non-renormalizable.
Certain hopes that it will be possible to obtain a non-perturbative description of
gravity are related to Ashtekar’s variables [1], [2] in which the constraints become
polynomial. The introducing of cosmological term in this formalism was consid-
ered in Ref.3. Several papers were devoted to the construction of the reduced
phase space quantization in a framework of Ashtekar’s formulation. We mention
recent ones [4]. Certain progress was also achieved in the quantization of 2 + 1
dimensional models (see for example Ref.5 and references therein). And there
are many other related ficlds of research, as loop variables and minisuperspace
models, which are not addressed here.

Apart from the non-renormalizability there are such internal problems arising
in a framework of perturbative quantum gravity on de Sitter background as
the lack of uniqueness of one-loop predictions which originates from ambiguous
treatment of the zero-mode structure and non-covariance of the path integral
measure. Recently this difficulty was resolved [6] in a framework of the ADM
gravity [7]. It is interesting, however, to have a look into this problem from the
point of view of another canonical approach.

In this paper we analyse linearized constraints of Ashtekar’s gravity on de
Sitter background and demonstrate that the complex reduced phase space [8]
consists of symmetric, traceless, transverse fluctuations of the densitized triad and
transverse, traceless, symmetric fluctuations of the connection. Transfer to the
real phase space is done by imposing reality conditions. It is demonstrated that a
part of gauge freedom can be fixed only by means of some additional conditions on
Lagrange multiplier. ‘This is essential for the path integral quantization since this
results in an appearance of an additional Jacobian factor [6]. After this complete
fixation of gauge freedom the real reduced phase space is proved to be equivalent
to that of the ADM gravity. Qur results generalize the results for flat background
space reported in [2].

This work can be considered as a starting point for quantization of full non-
linear theory in the case of non-trivial topology of space-time.

We begin with complex gravitational action in 3 + 1 dimensions

5= ]d“x (iEs'0. A" — N°G, — N°G; — NGy) (1)

where, as usual, the densitized triad E,’ and connection A;® are the canonical
variables; G4, G; and Gy are the Gauss law, the vector and the scalar constraints
respectively

Ga=DiE, =0 )

Gi=F3E7 =0 (3)

. A .
GO = EabCEaIEbJ F:‘_:: - EeabcsijkEa‘EbJ Eck = 0: (4)

A is the cosmological constants; N®, N* and N are Lagrange multipliers, D;
is the covariant derivative with respect to the connection A;* » 5 is the field
strength. We use i, j, k,1.. . to denote world indices, while a, b, c,d ... are reserved
for Lorentz indices.

The reality conditions have the following form

E=FE", A4+A"=2I'(E), (5)
where I'(E) is ordinary connection expressed in terms of E. There is another
polynomial form [3] of the reality conditions. Perturbatively these two forms are
equivalent because both of them ensure real evolution of the real triad.

Let us choose as a classical background the de Sitter space-time with the
metric

dS* = —dt® + ch®(¢) d292. (6)

d?Q? is the metric of unit three-sphere. For the sake of simplicity we put the
overall scale factor in (6) to be equal to one. This corresponds to the cosmological
constant A = 3.

To find perturbative reduced phase space of the theory, let us decompose
canonical variables into background parts E and A, corresponding to the metric
(6), and fluctuations # and B,

E—-E+H A— A+ B.

The linearized constraints take the form

Ga= Du'Hai +Eachs'bEci = (7)
Gi=GHES + FiH =0 (8)

Go =2 Hy By F + €™ ESEJGY — Ae®™eiu HOEYEX =0 (9)

D) is the background covariant derivative, F is the background field strength
and Gf; = 8; Bjy® + e A" B



We also need linearized gauge transformations of the fluctuations i and B. In
general, an action of infinitesimal gauge transformation generated by a constraint
G on a fluctuation of the variable Z reads

67 = { /d%c:g , z}, (10)

where { is the parameter of the transformation and after computation of the
Poisson bracket in the r.h.s. of (10) all the variables should be replaced by their
background values.

In our case the constraints (2) — (4) generate the following transformations
which will be called for short Lorentaz, diffeomorphism and time-evolution respec-
tively.

§p.B;® = iDg (11a)

SLH, = ieao E€° (118)

bp B;" = —iF3¢ (12a)

§pHo' =iD, (Ea[‘E*]) (128)

br B;® = ~2ifeas By F§ — iNee™e;j By B2 (13a)
brH" = iDg (easc AV EH) (135)

where we used that on the background (6) FS = —gijp E°F.

One can see that the action of time-evolution transformation on the the con-
nection fluctuation B;® is the addition of an arbitrary proportional to £,* con-
tribution. Hence the gauge freedom (13a, ) can be completely fixed by imposing
the following condition on B

tr B = B,E," = 0. (14)

The diffeomorphism transformation (12a) add an arbitrary antisymmetric term to
the connection B. This part of gauge freedom can be eliminated by the following
condition

(AsymB)® = gilep;¥l . (15)

After imposing both conditions (14) and (15) the perturbative scalar constraint
(9) is reduced to

tr H = H'E;®=0. (16)

Note that in the expression Dy; Bj1® the Yang-Mills covariant derivative Dy can
be replaced by totally covariant derivative Vi with background Christoffel con-
nection. The background triad £ and the tensor ¢ commute with this derivative.

The local Lorentz transformation (11a) shifts the connection fluctuation B¢
by a gradient term. Thus a natural gauge fixing condition is

ViBY = 0. (17)

Note that due to the condition (15) the operator V* in (17) is real. However,
unlike the previous cases, this gauge freedom can not be eliminated completely
by the last condition. Indeed, undergoing (14) and (15) the B is proportional to
a traceless symmetric tensor. The transformation (11a) of traceless symmetric
tensor can be written as

. j 2
6 (€°B;%) = % (V“E” + Ve — -3—6“°V¢,§”) ) (18)
where €° is the unweighted background triad and Vo = €% V;. The operator in
the r.h.s. of (18) has zero modes of the form

£y ~ S (e n? (x1, 72, 23), (19)

where v”; are the ten conformal Killings vectors of S* and f7 (¢) are arbitrary

functions.
Being imposed the conditions (14) and (15) reduce the vector constraing Gi (8)
to

Gi = e HIE™ = 0. (20)

This means that the matrix H,? E** constructed from the triad fluctuations is
symmetric. The Gauss law (7) immediately leads to the transversality condition
on the triad fluctuations

DiH.} = . (21)

Because of the condition (20) the covariant derivative I; contains only real part.



The complex reduced phase space consists of symmetric transverse traceless
fluctuations of the triad and symmetric transverse traceless fluctuations of the
connection. Let us postpone for a while the discussion on the gauge freedom (19)
which still remains unfixed, and study the reality conditions (5). After lineariza-
tion they give

Hia = Ha'-* B+ B;*" = %Eabc (ek[bVth]k] + EbjBCked,'V[khﬂd) , (22)

where £ is the unweighted triad fluctuation. We are to verify that these condi-
tions do not destroy the structure of the reduced phase space. All the conditions
(14) — (17),(20) and (21) have the form of a linear real operator acting on fluc-
tuations. Real and imaginary parts are restricted independently. Hence the real
part of H and the imaginary part of B satisfy the same symmetry, tracelessness
and transversality conditions. As for the second equation (22), one should verify
that the r.h.s. of this equation will automatically be symmetric, traceless and
transverse. This can be done by straightforward computation.

Consider the gauge freedom (19). It is easy to see that it can not be eliminated
by imposing any condition on variables of the space defined by (14) — (17),(20)
and (21). This situation is similar to that in ADM gravity [9] and QED {10]
on de Sitter space. This gauge freedom can be fixed by imposing the following
condition on Lagrange multiplier N¢ -

fda.t e N%(z,t) e'gv;7 ()= 0 (23)
for all ten conformal Killing vectors »;7, J = 1,...,10. Under the action of
Lorentz transformation the variation of N¢ looks like following

SN = —iD,£°. (24)

Let us find the zero modes of transformation (24) on the space ( 19). To this end
let us calculate the scalar product (6N**, §N)

(N7, §N°) :/drfdax e 6N (€0))"6N" (Ecoy) - (25)

This can be done more easily after formal continuation of the integral in the r.h.s.
of (25) to Euclidian space with the S metric: ds? = dr? + sin2 (7) d%$?, where
all relevant operators have discrete spectrum. Performing integration over  and
integration by parts over + and assuming Killing vectors v’ to be orthonormal
we obtain

1
sin? (1)

_Z/dr sin(r) (f*7 (1)) [82, +etg(r)d; — + 2] (FF(m). (26
J

f (7) can be expressed as a power series in eigenfunctions of the self-adjoint oper-
ator in (26). These eigenfunctions are just the associated Legendre polynomials
Pu'(cos(7)), n=1,2,... . The eigenvalues are —n(n + 1) + 2. We note that
there are ten zero modes f7 corresponding ton =1 and J = 1,...,10. They are
related to ten Killing vectors of S* (or de Sitter space in Minkowski signature).
We conclude that the condition (24) give complete fixation of gauge freedom up
to the Killing vectors of the space-time. The Killing vectors should be anyhow
excluded from the gauge group. In covariant gravity they are excluded from the
diffeomorphism group.

In the path integral quantization the gauge freedom (19) can be incorporated
in the following way. Note that the Lagrange multipliers N ® proportional to con-
formal Killing vectors of S do not give any new constraints. Hence such multi-
pliers should be excluded from the integration measure by means of §—function
of the conditions (23). A Jacobian factor should also appear in the integration
measure. This procedure was considered in more details for ADM gravity on de
Sitter Space [6].



In conclusion, let us summarize the results of this paper and give several
remarks.

(1) By solving perturbative constraints and fixing (linearized) gauge freedom
on de Sitter background we demonstrated that the complex reduced phase space
consists of symmetric transverse traceless fluctuations of the triad and symmetric
transverse traceless fluctuations of the connection. Our procedure has the nice
property that the constraints eliminate the same components of the triad which
are excluded in the connection field by the corresponding gauge fixing. Thus no
problem could arise with admissibility of gauge fixing.

(i) Application of reality conditions do not destroy the structure of the re-
duced phase space. In particular, the real part of the connection constructed
from the constrained triad satisfies all gauge conditions.

(iii) A part of gauge freedom can be fixed only by imposing some condition
on Lagrange multiplier.

(iv) It is easy to see that the real reduced phase space of Ashiekar’s gravity
13 equivalent to that of ADM quantum gravity on de Sitter background [6].
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