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I. INTRODUCTION

In two previous papers [1, 2] we have presented a covariant NJL-like [3] model
which is manifestly covariant and which includes confinment [4]. The quark-
antiquark (¢g) interaction is a relativistic generalization of a potential consisting
of a constant plus a linear confining term, and has two functions: (i) it dynam-
ically generates quark mass through a Dyson equation for the quark seli-energy,
and (ii) it binds ¢7 pairs into mesons (and can be extended to include the de-
scription of baryons as three quark states, but this extension has not yet been
developed). As in the original NJL model (which, however, does not include
confinement) our model guarantees that the dynamical generation of quark mass
in the limit when the “bare”, or undressed quark mass is exactly zero (which
we will refer to as the chiral limit) must be accompanied by the existence of
a pseudoscalar bound state of zero mass (the pion). This occurs because the
Dyson equation for the dynamical generation of quark mass and the equation
for a pseudoscalar bound state of zero mass are identical in the limit when the
current quark mass is zero, and hence the existence of a solution for one implies
a solution for the other. In our previous papers we described in considerable de-
tail how the relativistic confining interaction is defined, and how the relativistic
equations are constructed in the general case. The equations are covariant, two
body equations with two channels: one with the quark restricted to its positive
energy mass shell, and one with the antiguark restricted to its negative energy
mass shell. The equations and model will be reviewed as needed below, but for
an introductory discussion of all of these ideas the reader is referred to Refs. i,
2].

In our original work, we assumed that the entire Dirac structure of the rel-
ativistic kernel which described the ¢ interaction was invariant under transfor-
mations of the chiral /(1) group. Later, in Ref. [2] we realized that, because of
the constraint given in Eq. {1.3) below, it was not necessary for the purely linear
part of the confining interaction to be chirally invariant, permiting us to use this
mode] to explain the small mass of the pion even when the linear potential is a
scalar inleraction in Dirac space, and hence breaks chiral symmelry. It is the
purpose of this paper to explore this attractive possibility further. As part of
this exploration, we present numerical solutions for the first few bound states of
both light and heavy mesons, which encourage the belief that, after the addi-
tion of the one gluon exchange mechanism (not discussed here), this model will
both (i) provide a natural explanation of how the mass of the pion approaches
zero in the chiral limit, and (ii) explain the entire spectrum of the “normal”
mesons. A detailed discussion of the entire meson spectrum is postponed until
the one-gluon-exchange mechanism has been added to the model.

In the rest of this Section we will briefly describe the new model we are
proposing. Next, in Sec. Il we discuss the dynamical generation of quark mass,
and in Sec. HI present the exact form of the bound state equations and wave
functions for pseudoscalar and vector meson states. In Sec. IV we discuss a family
of pion-like solutions (including the physical pion state) and in Sec. V present
solutions for the other “normal” mesons. Section VI presents our conclusions and
includes a discussion of the relation of this work to other recent work, and some
details are given in the Appendix.

In this paper the kernel which describes the interaction of a quark q with
momentum p; = p -+ %P and an antiquark § with momentum p, = p — %P, as
illustrated in Fig. 1, is written in the form

E
Yok =B ¥3 {@ntp -0 2 Oty 4+ vie 1 | (1)

where m is the mass of the on-shell quark (or antiquark), E, = v/m? + p?, C

Figure 1: Diagramatic representation of the coupled channel bound state
equations with the momenta and channel numbers labeled. The particle
which is on shell is marked with an x, and for channel 1 it is the quark
and for channel 2 the antiquark. The wide shaded line connecting the two
quarks represents the interaction kernel, which is a sum of constant plus
linear terms.



is a constant, 7* are the Dirac gamma matrices, and F, = 3, are the SU(3)
color matrices. 'The kernels V and Vi, are functions of the relative four-momenta
(p and k) with energy components which depend on which quark is on shell,
as discussed in Eq. (3.3). Note that both the relative four momentum and the
magnitude of the relative three-momentum will be denoted by p; the distinction
should be clear from the context. The subscripts 1 and 2 on the Dirac matrices
1* and on the 4 x 4 unit matrix 1 label the particle on which the matrices act.
On color singlet states, with the color flowing in the directions labeled in Fig. 1,
the color operator F; - F3 has the value
4

F, F, = 3
The function Vi (p, k} is the momentum space representation for the linear, con-
fining potential and is discnssed in detail in Section IIE. For now it is sufficient
to note that it satisfies the constraint

[ 55 m =0 (1.3)

Using the specific form of Vi given in Section III, and taking the limit m —
oo, the kernel (1.1) can be understood to be a relativistic, momentum space
generalization of a coordinate space potential of the form

Vir)=—-C+or (1.4)

(1.2)

The change of sign in the constant term can be traced to the fact that the the
vector and scalar matrix elements for the antiquark have opposite sign:

- = 0 Ey

t(-p2)v(-p2} = -1,  ¥-p2)}y v(-p2) = =~ —1 (1.5)
and the fact that the effective sign of the interaction is determined by the sign
of the scalar matrix elements.

The specific model (1.1) has many features already common to the models
previously discussed in [1,2]. One new feature is that the linear and constant
parts have a different Dirac structure. The linear part is a pure Dirac scalar,
as suggested by lattice gauge calculations [5] and previous phenomenological fits
to the meson spectrum [6]. The constant part is a pure vector, and is chirally
invariant. Note also that both terms are multiplied by the color operator Fy - F3
and hence only colorless g7 states will be confined [6}.

II. DYNAMICAL GENERATION OF QUARK MASS

Quark mass is dynamically generated by the interaction given in Eq. (1.1).
The equation for the quark self energy predicted by this interaction can be ob-
tained by starting with the four-dimensional Dyson equation:

)= [ o o [ e ][R ]
(2.1)

where Ve(p,k) is the (undefined) four-dimensional analogue of (2x)*é(p —
k) %—C , and my is the current quark mass, equal to zero in the chiral limit.
Note that the color factor has been eliminated using (1.2).

Using the general form of the self energy,

I(p) = pEv(p’) + Es(p’), (2.2)

Eq. (2.1) can be reduced to

e _ d'k {Vc(p, k)[4m(k®) — 2 k] = Vi(p, k)[m(E*)+ IC]}
1-Zv(p?) (2n)* | 1-Zv (D)1~ v (k)] [m(k)* — & — i]
(2.3)
where the effective mass is
g 2

m(k?) = T“Lz“f,%)—) (2.4)

Our equation for the self energy with the cn-shell quark (or antiquark) constraint
is obtained from (2.3) by integrating over dky and retaining only the contribution
from the positive energy quark pole. In this case k? = m?, and the quantities
Ty = X} and Eg become constants. Renormalizing the constants C, o, and the
current quark mass mp by:

C o mp

C—)-U_:—iw, 0'—4—(1_29/)2’ m[)R:-———-l_E?/ (25)
and setting p? = m? giv&s the following equations
~ [ G eVelp By~ Vilp,b)
1_20 - (2 )32 Cpl ij )
m -—m/da—k[*ﬂ/( k) - Vi(p, )] 2.6
m oR = (27!')32Ek clp, p, ( . )

where we used the identity



fd3k K :p]d%%”. (2.7)

The first of Egs. (2.6) will enable us to evaluate the renormalization constant
ﬁ@v—. The second gives a relation between the dynamical mass m, the renor-

malized current quark mass mqg, and the (renormalized) strength of the constant
potential, C. Using the constraint (1.3), this equation becomes simply

C= %(m — moR) (2.8)

showing that C — %m in the chiral limitl. In Section IV, we will use this equation

and the value of C' which emerges from our fit to the pion state to estimate the
current quark mass,

II. THE EXACT BOUND STATE EQUATIONS

The coupled equations which describe a bound state of four-momentum P
coupled to a quark ¢ with momentum p;, = p + %P and an antiquark § with
momentum p; = p — %P, as illustrated in Fig. 1, can be written in the following
form:

3 .
[G—l(p) _ C(p)] \I’(p, P) - _/ d ka v(plk: P)_
(2P 1+ 7)1+ k2

where j = p/(E, + m) (with E, = \/m? + p?), and G=1(p} is the inverse of
the two body Green’s [unction, C{p) is the constant part of the interaction, and
V(p,k; P) is the kernel of the integral operator which describes the linear, con-
fining part of the interaction. This kernel is obtained by taking the appropriate
matrix elements of the kernel given in (1.1).

For both pseudoscalar and vector states the wave function vector ¥(p, P) can
be constructed from the following four rest-frame matrix elements of the gq vertex
function I'(p, P):

¥(k,P) (3.1)

i(p1, ALY, P)v(—p2, Aa)

m
¢lﬂ(p) = _N E; 2Ep — mB
il , Al (1),}7 A
$18(p) = NE% ip1, M) (PmB Ju(pz, Az)
= _p 1 3Py, ATE?), Plu(ps, As)
¢'2a(p) =-N Ep QEP T
u A (2)
baa(p) = —N 1 L1, I)F@m Plu(pz ) .
r B

where u(p, A) and v(p, A) are quark spinors, N is a normalization constant, and
mp is the mass of the bound state. The matrix elements ¢14,5 are associated
with channel 1, in which the quark is restricted to its positive energy mass shell,
while ¢3, 3 are associated with channel 2, in which the antiquark is restricted
to ils negative energy mass shell. The energy component of the relative four
momentum, p, is restricted in each of these channels, and we denote the relative
four momentum in channel 1 by p{1) and in channel 2 by p(®). In the center of
mass (cm) system, these restricted relative momenta are

P = (E, — ymp,p), pP? = (E, + ymp,p) . (3.3)

The structure and dimensionality of the wave function vector ¥, and of the
matrix operators G~1(p}, C(p), and V(p, k; P), are different for pseudoscalar and
vector states. For pseudoscalar states, the matrix elements in Eq. (3.2) can each
be expressed in terms of a single scalar function of the magnitude of the relative
three-momentum. The expansions are

$is(p) = u)p) <|>  du(p) = v (p) < |o-p|> (34)

where u*) are S-state wave functions, v®¥) are P-state wave functions, p is the
unit vector in the direction of p, and the matrix elements in the two-component
spin space are < | >=< A1|A; > and < [0 - p| >=< A(]e - p|A2 >. The wave
function vector ¥(p, P) is then defined to be the 4 component vector constructed
from the u and v wave functions

uW(p)

e

v(z)g)’; : (3.5)
u(?)(p)

For vector states, the matrix elements (3.2) require two scalar functions for their
complete description:

‘I’(p, P) =

$ia(p) = v(p) < [0 - ¢} > +w<"(p)% <[[B¢-pa-p—o-&|>

$is(p) = v (P)V3 < I6- B > -V (p) ﬁ <|lo-o-p—€&-p]|> (3.6)

where £ is the spin one polarization vector of the state, and u(") and w() are S-
and D-state wave functions (respectively) and v{") and v,(') are singlet and triplet
P-state wave functions. For vector states the wave function ¥(p, P) is therefore
an eight dimensional vector:



[ ulN(p) ]
w(p)
w1 (p)

(1)
Uy (P)
. 3.7
v2(p) @0
v (p)
u((p)
L w)(p) |

The operators G~(p), C(p), and V(p, k; P) which enter Eqs. (3.1) are there-
fore 4 x 4 matrices for psendoscalar states and 8 x 8 matrices for vector states.
'The Green’s function G™!(p) can be written

-(2Ep - ms)].

¥(p, P) =

1 —mgl
G™'(p) = . (3.8)
mg

(2E; + mp)1 |

where 1 is unity for pseudoscalar states and the 2 x 2 unit matrix for vector
states. Similarily, the “constant” part of the interaction can be written

m 2p7 2p? h
(E:+—LmE')1 —;,%a —%a T(Eﬂ'1+—L3mE'b)

T
"i%a Eﬂ'l -E'l':l —-E%c
C(P):C 2.aT m m P
~E5® A A ~E©

k)

2p
(ET: + mE,,) 1 J

m a
T (—3'1 + 5,—*‘;{’-E;b) g —fc
(3.9)

where C is a constant, 1 was defined above, T' = —3(+1) for pseudoscalar (vector)
states, and a, b and c are all unity for pseudoscalar states and 2 x 2 matrices for

the vector states:
=gl Y] =l W] el X
(3.10)

The linear, confining kernel can be written in the following block matrix form

([ A Eipk)] [Ey(p,k) B
Vi1 7 Viz .
| By (k,p) -D | | -D  El(k,p)l
V(p,k,P):
Ef(k,p)) -D ] [ -D  ET(kp)]
Vau r Vo
\' 7| BT E_(p.k)] E_(p.F) A

(3.11)

where V;; are the elementary kernels for the momentum space linear potentials
(first worked out in Ref. {1] and given below), and A, B, D, and E are simple
functions of p and k for pseudoscalars, and 2 x 2 matrix functions of p and k for
vectors. For pseudoscalars [where Ex = Ey(p, k)]

A =1-25kz + p?k?
B=-— (52 +E 4 2;’;’7::)
D =z — 2k + p?k%2
Eg =k (1—7%) + pz(1 — k%). (3.12)
In these expressions, z is the cosine of the angle between p and k. For vector

states

1 25kz + pPR2 — 3p2K2(1 - 2%y —EpRRR(1 - 2P

A= VIs2i2 2 Pﬂ(’-)—%*iz + Pk
~252k3(1 :
5P k(1 —2%) ~ ik — 27)
[ @R 2VE(5P(e) + R+ 2pke)
B=-
3 i2 ~2 sk £2 4 52 SE
22 (k P(z)+p +2pkz) (k% + p*)Po(z) -+ 2pkz
(z(l — 2pkz + pUE?) 0 )
D = _ . ~
0 z(1 — 2pkz + p2k?) — pk(1 — z%)
9



E(1-5%) + pz(1 — k2)

+2j52}:-(1 — 22) :F‘/i('i’ + p2)(1 — ﬁl-cz)

(3.13)

sl-

V2[pz(1 — 2pkz — k?)
+E(1 + 52)Py(2)]

lpz(1 - £?) - 52R(1 + 2?)
+E(L+7)Pa(2)]

where P3(2) = (327 ~ 1)/2 is the Legendre polynomial of order 2.

Finally, the elementary kernels V;;, which describe how the linear potential
connects the two channels, can be obtained from the generic kernel in Eq. (1.1)
by substituting the appropriate momenta

V.'j(P' k) = VL(P(i)vk(j)) ' (3'14)

being careful to include the treatment of singularities appropriate to each com-
bination of momenta. Explicitly,

. R 3L/ . .
Vi(p, k) = Va(e!), k) ~ EL6(p - k) ] %VA@(".&'{')) i=1,2

f

VA, K0) - Bs(ekp -1 [
Tk

itk <k_
Va(p, k) =< 0 k. <k <ky
a3k
VA (p(z), k(l)) - E}G(kpf) - k)
[ 15-3 1
{ ifky <k

VA(P(I) kD) — E,8(¢(k)p-k ~ p) / d 1" = Va (P, k@)

ifp<p_
J 0 fp.<p<p; (3.15)

p VA (P, k(2

Via(p, k) =
VeV, k) — B, b(pyk - p) j
\ ifpy <p

">p+

where the integration regions for V)3 and Va2, are bounded by

mE(QEp + mpg)

k=
¥ 2(Ep:Fp+mB)

(3.16)

10

(with p — k for the quantities py), and

_.B_ -
£(p) = 1 ifmp<m and p> [1+m mB] (3.17)
—1 otherwise.

The function V4 can be written
; . i 1
VAl 69) = ~8x0 1 () 1 () |25 ~ e 1) 1 (89
(3.18)

where A is cutoff mass, ¢2 is the square of the momentumn transferred by the
quark, f is a quark form factor

(3.19)

2
167 = | Gt
(A2 —m)Ef (m? —p2)?| °
and the values of py, pa, k1, and k3 depend on the choice of channel. For channel
(1), the quark {with momentum p, ) is on shell, while for channel (2) the antiquark
(with momentum p,) is on shell. Hence, in the rest system of the bound state we
have
2 - P =m?+m} —2E,m
hannel (1 m? p}=(py 3 — 2E,mp
channel (1) :>{f(p D (p2) = f(m? + m} — 2E,mp)
2=m? pI= PY =m?4+m 4+ 2E,m
channel (2) = { P25 ™ Pi (P2 + B pinB
@ {f(P'i’)f(Pg) = f(m® + m}; + 2E,mp) .

Similarily, while the momentum transferred by the quark is ¢ =
specific fori depends on the channel assignments:

¢’ = (E,— Ee)’ ~ (p—k)?
for V1, ¢ = (Ep — B — m,B)2 —(p- k)2

(3.20)

(pl - k1)2, its

for Vi or Vaq

for Vyy ¢ = (Ep — Ex + mp)? — (p ~ k). (3.21)
The physics behind the construction of the V;; was discussed in detail in

Refs. [1,2], so here we will only comment briefly on several features of the result:

(1) The potentials are hermitian. This means that Vi;(p, k) = Vji(k,p). The
diagonal elements are therefore symmetric under interchange of p and k, while
the off-diagonal elements map into each other under this interchange.

11



{(i1) The singularties of the kernels are regularized by the constraints

jd%-glkv.-j(p,k) =0 fori>j

[ v viato ) =o. (3.22)
~p

In the nonrelativistic limit (i.e. when m — oo0) the constraints on the diagonal
kernels reduce to

7 /d-”k Vip-k)= /d3p Vip-k)=0 (3.23)

which is the momentum space form of the statement that a purely linear nonrela-
tivistic potential V{(r) = o r is zero at r = 0. The constraints on the off-diagonal
kernels are extensions of those for the diagonal kernels, and are consistent with
the hermiticity requirement.

(iii) The quark form factors (discussed in Ref. [2]) are unity when the quark
{(or antiquark) is on shell, and hence there is always only one form factor for the
initial and final state, as given in Eq. (3.20). When the bound state mass mg = 0,
the mass of the off-shell quark approaches m and the form factors become unity.
Introduction of quark form factors was found to be necessary [2] in order to insure
that integrals over the kernels approach zero as the external momenta approach
infinity.

(iv) The off-diagonal kernels are equal to the diagonal ones when the bound
state mass mg = 0. This is a natural feature of the definitions and essential for
recovery of the chiral limit. However, when mpg is large (in comparison with the
mean internal momentum of the bound state), the kernel V;, is much larger than
the off-diagonal kernels (because the effective ¢* transferred by the quark is then
much larger in Vj2 and V2, than in V};), and also much larger than the kernel
Va2 (because of the mp dependence of the quark form factors).

This concludes our review of the full set of coupled equations implied by our
model. In applications we will reduce these equations to a smaller set by making
approximations appropriate to the sector under consideration. In practice there
are two sectors of interest. In the first sector (the pion), the bound state mass
mp = p is small compared to the quark mass m, and also small compared to the
mean internal momentum pg of the bound quarks. In this sector the off-diagonal
kernels are nearly as large as the diagonal kernels, and cannot be neglected, but
other approximations are possible. This sector is examined in Section IV. In the

12

second sector (all other states considered in this paper) the bound state mass mpg
is comparable to twice the quark mass, and large compared to the mean internal
momentum po of the bound quarks. For these states we may safely neglect the
coupling to the second channel. The validity of this approximation (which is
excellent) was studied for the case of the (unrealistic) chiral confining interaction
in Ref. [1]. This approximation will be used in Section V in our discussion of the
light quark vector mesons (the excited pion and the p and its excited states) and
the heavy quark states (the ¢ states).

IvV. THE PION

In this section we diacuss the sclutions for the pion, which is the only meson
which has a very small mass mp = u. As discussed in Refs. [1, 2], the equations
have been designed to give a natural explanation for the emergence of a zero
mass Goldstone boson in the chiral limit, and our focus here is to show how this
feature is preserved even when the linear potential is a scalar, which breaks chiral
symmelry.

A. Solutions

In the {imit when u — 0, the coupled equations (3.1) reduce to only three
independent equations

20 _ a3k -
2E, (1 - 7,,—) «p) = - j @y P E)u(=)(k)
a3k Volp, k)
(21)° (1+ p?)(1 + k?)

x { [(1 P~k - 4;31”cz] uH(k) + [I:(l - p*) + pz(l — E’)] u(+)(k)}

Bk Volp. k)
(27)° (1 4 P)(1 + k2)

(QEP + 2(;_’."._) wH(p) + 2().!’._,,(+)(p) - _
Ep EP

PP = —
CE,,“ () - C5v(p) =

x { [E(l — %)+ pz(1 — P)] ulH(k) — [z — 25k + E“ﬁ%} v("')(k)} (4.1)

where the (+) and (—) combinations are
u®(p) = uD(p) £ uD(p) (42)

and

13



1 1
with ¢* given in Eq. (3.21) (all three definitions are identical when p# = 0). Note
that there is no equation for v(~)(p); it must be fixed by other considerations.
The basic definitions (3.2) and (3.4) show that, if ¥(!)(p) and v(®)(p) are finite in
the limit 4 — 0, then v{~)(p) = 0 in this limit. We are assured that the first of
the Egs. (4.1) has the non trivial solution

u(p) = ’f"; (4.4)

because this form satisfies the consiraint (3.22), insuring that the RHS of the
equation is zero, and in the chiral limit C — m insuring that the LHS is also
zero. However, no such special conditions hold for the last two of the Egs. (4.1),
and we therefore conclude that they are only solved by the “trivial” solution
u(t)(p) = v(+)(p) = 0. The pion wave function vector (3.5) therefore reduces, in
the chiral limit, to

1
N O

¥(p,0) = 7= o (4.5)
-1

This discussion leads to the conclusion that the P-states should also be very
small for the physical pion. Initial attempts to obtain numerical solutions to the
equation with all four channels lead to difficulties, which we believe are associated
with the fact that the equations reduce to only three independent equations in
the st — 0 limit. Hence we decided to approximate the equations by setting the
P-states to zero, and obtain numerical solutions only for the two large S-state
channels. It was found that a light quark mass of m = m, = 325 MeV gave a
reasonable mass for both the pion and the rho, and all of our light quark solutions
use this mass. With this mass fixed, we solved the coupled two channel S-state
equations for “pions” with three different masses: 139.7, 205 and 237 MeV. The
S-state wave functions for each of these pions is given in Fig. 2. Key properties of
these solutions are summarized in Table 1. This table gives the mass, p, of each
state, the values of the small parameter ¢ = 1 — 2—;?: from which the “eigenvalue”
C can be extracted, the mean momentum, py, of each state, and the ratio Falf-
discussed in Sec. IVB below.

In each figure the solid line is the u(!) solution (arbitrarily normalized to
unity at p = 0), the dashed line is the u{?} solution, and the dotted line is the

14

my = 0.1397, C = 0.4974
1 2 a

0.0 0.5 10 L5
p(GeY)

L0 T T ™ T

mg = 0.205, C = 0.4942
L 1 x [ ] i

0.0 0.5 1o 15
p (GeV)

Yip)

mp = 0.237, C = 0.4917
A 1 . 1

0.0 0.5 10 L5
p(GeV)

Figure 2: Solutions for three pion-like states with masses my= 0.1397,
0.205, and 0.237 GeV. In each curve the solid line is u(}), the dashed line
is u(2), and the dotted line is (1) + «(?), In the top figure, the dot-dashed
line is the integral Eq. (4.8), discussed in Sec. IVB.
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Table 1: Properties of the family of pion-like solutions discussed in the text. The
quantities marked with an * are obtained from the estimates given in Sec. IVB.
The units of u and pp are in GeV.

e=1-25 00052 00116 0.0166
# 0.1397  0.205  0.237

u 0.1396  0.207  0.249

Po 1.26 084  0.73

P 126 084  0.71
f+lf- 0.059 0120 0.142

(f+/£-)" 0076 0131  0.159

sum ulP = w1 4 u®. Note that all of the wave functions have long “tails”
which extend to several GeV, but that the sum u(*) falls off much more rapidly.
Except for some structure at small momentum, u® = —uV) as suggested by
the solution (4.5), and this relation holds to a better approximation as the pion
mass p decreases.

The values of 100 x s? (in GeV?) and 1/pd (in GeV~2) are ploted as a function
of the (small) parameter e = 1 — 2-;;1— in Fig. 3. Note that the first few solutions
satisfy the relation (the dashed line in the figure)

W= (1 - 3@_) (4.6)

where a, = 3.75 GeV2. When combined with Eq. (2.8) for the dynamical gen-
eration of quark mass, this leads to a Gell Mann, Qaks and Renner relation

{1
pl = 401% (4.7)

u

which gives a (renormalized) current quark mass of mg = 1.7 MeV, in qualitative
agreement with current thinking. '

B. Stability of the pion

In this section we will show how the constant and linear parts of the potential
cooperate to produce a stable, low mass pion state, and that the relativistic
nature of the equations is an essential aspect of the description. Our discussion
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Figure 3: The values of 100u® (open diamonds) and 1/ pi (solid diamonds),
in GeV units, ploted against the “eigenvalue” ¢ = 1 — 2;,% for the three
solutions discussed in the text. The dashed line is Eq. (4.6) with a) = 3.75
and the solid line is Eq. (4.24) with 1/az = 121.1.

is a generalization of Feynman’s famous argnment which uses the uncertainty
principle to show that the hydrogen atom is stable [8].

In order to develop the argument we use the fact that the primary feature of
the exact solution shown in Fig. 2 is the long, smooth “tail” which falls off slowly
with momentum. The large solution, u{!), also has a distinctive, rapidly varing
low momentum structure. By comparing u(*) + u(?) with the integral

5y = /Vm u® (4-8)

both of which are shown in Fig. 2 for the u = 0.1397 solution, we conclude that
this structure comes from the off-diagonal linear potential, and arises from the
way in which we have removed the singularities of V13. We will assume that this
is not an “essential” feature of the solution, and that the average properties of the
pion can be understood by ignoring this detail. In this case the two components
of the pion wave function, u(!) and u(®), have essentially the same shape with an
average momentum which is much larger than the quark mass.

17



In order to understand these solutions, it is convenient to consider the equa-
tions for the coupled amplitudes u*) introduced in Eq. (4.1). These equations
are

2C d3k d3k
: = S Y g = (=) _ +)
2E, (1 ) u pu PHE V__u (2 )3 V_4u
2Cm d3k
—nu-) ¢ (2E ) + — _ / Voo ult? (4.
pu P+ Ep u (2 )3 + (2 )3 ++ U ( 9)

where the polential kernels are
V= F(Viu+pp'Vaa) A+ (p' Vit pVan) B
2 (1+52)(1 + £?)
with A and B defined in Eq. (3.12), and p ard g’ can both be either + or —. If
we then integrate these coupled equations for u(*) over the external momentum

p, we are lead to the following simple coupled equations for the mean values of
the wave functions fy = [dpu(®) = (u(¥).

2Eq (1 - —) fo—pfy = ([ Vo_ully = (/ Y, ulh)

<t + (2B + ) e =~ veei = [y @y

where Ey is the mean value of the energy £,. If pp is the mean momentum, we

will assume that, for any function F, (F{p)) ~ F(po), so that Ey = \/m2 + pZ.
The matrix elements of the linear potential have the form

([ Virn®) = [dp [ a8, W) = (W, @12)

where the repeated g’ indicies are not summed.
The next step in the argument is to express the mean values of the linear
potential matrix elements in terms of pg,  and fi. To this end we note that

, (4.10)

- A _ m2+E_,,E;,—pkz
(1+ p2)1 + £2) 2B E;
- B ! _E,E; — pk ~
= — = :m PE]: pz:—l-l—A. (413)
(1+P)(1+ 8 2E, By

In the Appendix, we show that the integrals are dominated by values of these
functions where p and k are much greater than the quark mass m, and where
p = k and z = 1, so that, for the purposes of this simple esiimate, we may
approximate A by
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e m2(p + k)2 N m?
T (2pky T pr
Using this expression we show in the Appendix that the moments of the potentials
can be approximated by [recall Eq. (4.12)]:

(4.14)

o;

(Vi) = 74— adgp, (4.15)
Po

where & is either A or B, and the oi; and );; are constants. It is a good approx-

imation to take a3y = #32 = ¢y and 033 = 021 = @3, and then the remaining

constants can be expressed in terms of these two, and one other constant A, as

follows

1
Atz = 502521 - A

1
Agz = 3% baz , (4.16)

Ap = %0'1 b

1
Agy = 272 bay

where, if all units are in GeV,

biy=1.31, by =166, by =2.94. (4.17)

The arguments leading to these estimates are presented in some detail in the
Appendix, but will also be summarized here.

The o/py term in each expression is a direct consequence of the uncertainty
principle, which implies that the mean momentum, pg, of a confined system is
inversely proportional to its size, (r), so that the average value of the linear
confining term goes like o{r) ~ o/py. When the momentum is larger than the
quark mass relativistic effects modify this simple result, but the modification is
cancelled by the m?/p? term in A and B, so that the simple estimate is correct
in both the nonrelativistic and ultra-relativistic limits. The kernels also depend
explicitly on the pion mass through (i) the quark form factors, Eq. (3.20), (ii)
the retardation factors in the off-diagonal kernels, Eq. (3.21), (iii) the limits of
integration in the off-diagonal kernels, Eq. (3.16), and (iv) the “—1” term in B.
The first three of these mass dependences can be combined into functions which
multiply each of the “leading” o/pp terms. These functions can be approximated
by linear relations of the form ci;[1 — bi;pop], where the b;;’s can be estimated
[cf. Eq. (4.17)], and the constants c;; (which are harder to estimate reliably)
absorbed into the definition of the o;’s. 1t turns out that ¢y = ¢22 > 12 = €21,
which explains why a1 = @32 = 01 > @12 = 027 = o3. Finally, the mass
dependence associated with the “~1” term in B could contribute to both of the
off-ditagonal kernels, but because of the condition Eq. (3.22) and the fact that
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the actual solutions are very close to 1/ E, this additional contribution to the V4,
kernel is very small (and is taken to be zero). The size of the “—1” contribution
to the Viz kernel is hard to estimate, but since it goes to zero as g — 0, it is
approximated by 2Au, with A an unknown constant.

Using the estimates (4.15), the V,,: kernels are

o) — O3

(Vo)) =~ D VRN ({20 ) PV S
(e = P22 an (D m=A_p,  (418)

where
Appt = A1+ pp'Aza + pAiz + pAa . (4.19)

Then Eqs. (4.11) become

Fy — O3

2poe f- — p fy =—( —L_p) Fo4A_ 1 fy

2

2m o+
~pfo+ (2Pn + ——) vy =A, pf - ( SR )\Hﬂ) Fv o (4.20)
Po Po
where we have introduced ¢ = ( - %), have assumed that py >> m, and

kept terms up to order 1/pg except for terms of order ¢/py, which are neglected.
We have studied the most general solutions of these equations, and found that
the observed linear dependence of u? on ¢, Eq. (4.6), can be obtained only if
A_, = —1, so we simplify the discussion here by imposing the condition

A, =-1 (4.21)

-+

from the start. In this case the small component f drops out of the first equation,
giving

[2pg£+ D% /\__p] fo=0. (4.22)
Hence the pion mass, as a function of its mean internal momentum, py, is
1 gy — 02 l
= —02 . .
H L [ Po € + 7o ] (4.23)

‘The correct mean momentum is the one for which the pion is stable, i.e., the
value at which the pion mass is a minimurmn. This point occurs at
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9 O1— 02  ai

s ==, 4.24
Pa 2% ¢ ( )
Substituting this into Eq. (4.23) and solving for u? gives Eq. (4.6) with
B(og— o
a =8 T 2) (4.25)

The equations (4.6) [with a; given by (4.25)] and (4.24) explain the linear
dependence of both 4? and 1/p? on the quantity 1 — 2C/m, as shown in Fig. 3.
The straight line fits shown in Fig. 3 correspond to a; = 3.75 and 1/a; = 121.1,
which emerge if we take A__ = 0.1877 and &y — o2 = 0.0165 GeVZ. The values
of py for each case are shown in Table I; note that they are all comfortably larger
that the quark mass, as assumed in the discussion.

The three equations (4.21), (4.24), and (4.25) fix the three parameters o}, g4,
and A. If all units are expressed in GeV, these are

oy = 0.6282, oy = 0.5116, A =038152. (4.26)

Now that the parameters are known, we may return to the coupled equations
(4.20) and use our resulis to predict the ratio of fy/f_. From the second of the
Eqs. (4.20) we obtain

fr _ B _ L4A,_ o 19.34¢ (4.27)
- 2po 1+2m2+al+a2_x++y T 1+61.04¢° )
2p5 2pg

This gives a result in fair agreement with the exact solutions, as shown in Table
I and Fig. 4.

Using the values of the parameters we have determined, the matrix elements
of the kernel are

0.5282

(Vi A)) ~ — 0.6919y
Po
{{Va2 ) ~ 0":’)282 - 0.8768u
0
. 05116
{(Vi2B)) ~ o T 01263
(i]
. 05116
({Va1BY) ~ —— — 150414, (4.28)
0

whete all quantities are in units of GeV.
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Figure 4: The ratio f; /f- as afunction of ¢ for the three solutions discussed
in the text (solid squares). The solid line is the predicted result, Eq. (4.27).

Now that we have a qualitative description of the solutions, it is easier to
discuss the physics contained in our model. First, in the chiral limit when p — 0
and 03 — 03, all of the kernels will approach o/py [where o = 1(0} + 02)]. Yet
this limiting term plays practically no role in the final description of the pion, and
it is not clear that we could even obtain a solution if the interaction contained
only these terms. If the chiral symmetry breaking terms in the linear potential
were ignored (i.e., the the oy — o3 terms and the p dependent terms in the off-
diagonal potentials were all discarded), the determinant of the coupled equations
(4.20) would give

p=de(pl+m’+o) . (4.29)

This gives a pion mass which approaches zero as ¢ — 0 (with a linear dependence
on ¢), but the solution stablizes at pp = 0, showing that the quarks are not
confined. Thus a reasonable description of a physical pion of finite size cannot
be obtained by using only the chiral limit of the confining interaction, which
confirms our initial observation |1, 2] that those contributions from the linear
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potential which survive in the chiral limit will decouple from the description of
the physical pion.

However, it is incorrect to conclude from these observations that the linear
potential plays no role in determining the mass and size of the physical pion. In
fact, both of these quantiities are very sensitive to precisely how chiral symmetry
is broken by the confining forces. For example, had we neglected the second
channel (by setting ¢ = ¢ and neglecting all of the p dependent terms in the
kernels), the determinant of the coupled equations would give

p? = Apde + 20y + (2m* + o) (2e + ;_;) : (1.30)
(4]

This equation gives a pion with mass y? = 2¢¢ # 0 when ¢ — 0, and shows again
that the second channel is needed to obtain the correct chiral limit. Of course a
scalar linear potential does break chiral symmetry, but if the second channel is
retained, we still recover the limit 4 — 0 as € — 0. The difference in strength of
the diagonal and ofl-diagonal interactions, approximated by the constant oy — o,
drives the mean momentum to infinity as ¢ — 0 [recall Eq. (4.24)], and the term
dependent on A__p insures that p? and 1/p2 are both linear in ¢ (at least for
very small €). These two terms insure that the sirength of the diagonal and off-
diagonal potentials will be equal in the chiral limit by forcing them both to zero.
The pion becomes a point particle, permitting us to regard it as a fundamental
field, which is nicely consistent with (but not required by) ils interpretation as a
Goldstone boson. Finally, as discussed above, the condition (4.21) insures that
the linear dependence of u? and 1/p3 on ¢ holds over a wide range of ¢.

In conclusion, this mode! gives a pion with two highly relativistic constituenis
and with a structure sensitive to the detailed way in which the linear confining
interaction breaks chiral symmetry. These points will be discussed further in
Sec. VL.

V. NORMAL MESONS

We now turn to a discussion of how the model describes mesons other than
the pion. For these mesons the mass mg is comparable to the dynamical quark
mass, and the mean momentum is related to the mass difference mg — 2m, as
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in conventional quantum mechanics. Under these conditions it is a good ap-

proximation to neglect the coupling to channel 2, and the equations therefore
become

[‘2Ep (1 _ 9) + CEE - mﬂ] U(p) + cEiaV(p) =
P P

_ / d*k  AU(k) +E.(p, k)V (k)
@mP T () + k2

CE’-’;aTU(p) —~ (CET; + mB) Vip) =

_ [ &%, EL(kpU() - DV(K)
@ (4 )1+ B

where the quantities a, A, D, and E4 were defined in Fqgs. (3.10), (3.12), and
(3.13). For the pseudoscalar states, U(p) = u('Xp), V(p) = v()(p), a =1, and
Eqs. (5.1) are two coulped equations for the S and P state components of the
meson wave function. For vector states,

v = (o) v= (), (52

as discussed in Sec. III. Now Eqs. (5.1) are four coupled equations for the S, D,
and triplet and singlet P states.

The masses of the lowest lying pseudoscalar and vector states are listed in
Table 11, and wave functions are shown in Figs. 5 - 8. For completeness, the
physical pion (with mass mp = 0.1397 GeV) is also given in Table II and shown
in Fig. 5. The additional parameters are the strength of the constant potential
€ = 0.4974 x 325 = 161.655 MeV, the strength of the linear confining potential
o = 0.2 GeV?, and the form factor masses A = 1.7m and A, = 3.5m, which
scale with the quark mass. The dynamical mass for the light quark states is
m = my = 325 MeV, and for the heavy quark states is m = m, = 1400 MeV.
Note that the first excited § state, labeled 25, lies above the D state in the light
quark sector, but lies below the D state in the heavy quark sector.

We discuss these results and draw conclusions from this work in the following
Section.

1(5.1)
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Table 2: Masses (in MeV) for the first few meson states.

light quark states heavy quark states

m, = 325 m, = 1400
theory expt. theory expt.
x 139.7 139.6 e 3070 2979
x(1300) 1237 1300100 3540 3590(7)

pfw 785  768/782 e 3m 3097
D 1173 w(1390) ¥(25) 3540 3686
25 1240 p(1450)  ¥(D) 3656 3770

10 T T
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w 03 18 i3
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Figure 5: Solutions for pion and its first excited state. In the top-figure the
solid line is u(!) and the dashed line is u(®). In the lower figure, the solid
line is u(!} and the dashed line is v(V).
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Figure 6: Solutions for rho and its first two excited states. In each figure
the solid line is u, the dashed line is w, the closely spaced dotted line is v,,
and the widely spaced dotted line is v,.
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Figure 7: Solutions for 7. and its first excited state. In each figure the solid
line is u, the dashed line is v {channel 1).
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Figure 8: Solutions for J/¥ and its first two excited states. The curves in
each figure are as in Fig. 6.
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VI. DISCUSSION AND SUMMARY OF THE RESULTS

In this work we have focused on the role of chiral symmetry and on the quan-
titative treatment of the chiral symmetry breaking terms which arises from the
fact that the current quark mass is non-zero and the linear part of the confining
interaction is presumably a scalar in Dirac space. Qur work complements a num-
ber of other recent works which also treat mesons as relativisitc bound states of
the gg system, but do not discuss either the role of chiral symmetry or the origin
of the dynamical mass of the quarks. One of the most ambitious of these is the
study by Tiemeijer and Tjon [9], who have succeeded in describing the meson
spectrum and decays using relativistic two body equations similar to (but differ-
ent from) ours. Among the many things they find is that a global fit to meson
excited states (the Regge trajectories) is greatly improved by allowing the linear
confining interaction to be a mixture of about 80% scalar and 20% vector, and
that even in this favorable case a good fit to the trajectories requires the total
strength of the linear confining interaction to be at least o 2 0.33 GeV?, consider-
ably larger than the strength & =~ 0.2 GeV? required by nonrelativistic equations
and also contrary to the results suggested by lattice gauge calculations. Their
work suggests that our model, when extended to higher excited states, may also
require such an admixture, and may suffer from the same problem. Other studies
using an instantaneous approximation have also found that a linear combination
of vector and scalar confinement may be important [10, 11].

One unsatisfactory feature of our work is the appearance of form factors. It
may be possible to eliminate the form factor which regulates the large ¢ behavior
of the 1/¢* term in the kernel {the one which depends on A% in Eq. (3.18)] by using
the method recently introduced by Hersbach and Ruijgrok [12]. In any case this
form factor is used only to regulate the quark self energy, which could be regulated
is some other way. The quark form factor, given in Eq. (3.19), is sufficient to
insure the convergence of the bound state equations, but also affects the the large
momentum behavior of the excited solutions in the light quark sector, as shown
in Figs. 5 and 6. Perhaps it can also be replaced using the method of Ref. [12],
or by a more sophisticated treatment of the quark self energy.

We close this section with a brief summary of the principal results of this

paper:

(i) Using a relativistic model with the interaction kernel (1.1), which consists
of only a constant vector plus a linear scalar interaction {with no one-gluon-
exchange (OGE) term], we obtain Eq. (2.8) for the dynamical generation of quark
mass. This equation relates the strength of the constant vector interaction, C, to
the difference between the dynamical quark mass of the light quarks which make
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up the pion, m,,, and the current mass of these light quarks my: ¢ = {(my—my)/2.
Using a dynamical quark mass of m, = 325 MeV, a fit to the pion mass gives
C = 161.655 MeV (where, because of the extreme sensitivity of the equations
to the small parameter ¢ = 1 — % = my/my, C must be given to 6 significant
figures f the pion mass is to be determined to 4 significant figures), and hence
a current quark mass of mp ~ 1.7 MeV, in qualitative agreement with current
thinking.

(ii) In common with the NJL model, our relativistic equations (3.1) have the
property that the pion mass automatically approaches zero in the chiral limit
when C'— my, /2 (or mg — 0), even though the linear pari of the inferaction is a
scalar and thus breaks chiral symmetry. This result is due to the constraint (1.3),
which arises from the physical requirement that the linear interaction be zero
when the two quarks occupy the same point in coordinate space. The decoupling
of the linear confining interaction is, then, a consequence of the result that the
pion is, in our approach, piontlike in the chiral limit.

(iii} Using four parameters which are the same for all sectors [the strengths
of the constant interaction C and of the linear interaction o = 0.2 GeV?, and two
form factor masses A = 1.7m and A, = 3.5m which scale with the quark mass
m] and the dynamical quark masses, which must be chosen for each sector, we
are able to describe the gross features of the meson spectrum.

(iv) The light quark sector consisting of the pion (and its excited states} and
the tho/omega (and its excited states) is reasonably well explained by choosing
my = 325 MeV [and C = 161.655 MeV as discussed above]. Note that, even
though there is no OGE term, this choice of quark mass gives a good separation
between the pion and the rho/omega, and we also obtain a large splitting between
the pion and its first excited state, in good agreement with experiment (see Table
11). The first excited S and D states of the vector mesons are about 200 MeV too
low. Experience with nonrelativistic models leads us to believe that addition of
OGE should improve the splittings and contribute to the meson masses, but this
model suggests that the smallness of the pion mass is due primarily to coupling
to a second channel, required by chiral symmetry, and not to the QGE force.
However, the constant part of the interaction we are proposing has a pure 4
vector structure, and hence might be regarded as arising ultimately from the
renormalization of the QGE force.

(v) The choice of m, = 1400 MeV gives a reasonable account of the low
lying charmonium spectrum, including the splitting between the », and the J /¥,
but other splittings are ~100 MeV too small, as might be expected for a model
without the spin—spin interaction of a perturbative, OGE force.
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Some of these results, the #—p mass splitting and the quark self-energy, will
be modified once the full OGE force has been added to this model. Hlowever, one
may view our constant interaction, which is purely vector, to be a first approxi-
mation to a full incorporation of a nonperturbative OGE force. In particular, the
constant term may ultimately owe its origin to the renormalization of the OGE
contributions to the quark sell energy. In this case, the remaining finite part of
the OGE force may have less of an affect on the meson spectrum that is the case
in most models.

In conclusion, our model gives a good account of the gross features of the
meson spectrum and provides a natural explanation for the small pion mass.
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APPENDIX A

1. Estimates for the confining kernels

In this section we derive simple estimates for the linear confining kernels.
These estimates are used in our discussion of the stability of the pion given in
Sec. IVB.

A typical integral to be estimated is the Vi; matrix element

d3k Vll(pl k)A(p, k; 2,')

Vi Au®) = =
f na (2n)* (14 )1+ k?)
¢ 1.2 1
= d ‘"‘j dzVa(pM, k(1)
-1

o (21)?

uV(k)

9 {A(p,k,z)u“)(k) - 2w, I)u(”(p)} . (A1)

For a first estimate we neglect both form factors, so that V4 = —8xc/q*, and
exploit the fact that the z integral is dominated by the region near z = 1, where
the integrand peaks. Then the z integral becomes, approximately,
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1 1
/ dzVa(p™), kM) A(p, k, 2)u (k) ~ j(p,k,l)u“)(k)/ dzV, (p™M), KV
1 -1

4xo A(p, k, 1) u((k)
T 2pk[m? — E Ey + pk}’

(A2)

where the term proportional to 1/[( £, — Et)* — (p+£)?) was neglected. Inserting
the estimate (A2) into (A1) gives

-/00 kdk [EuA(p,k,1) vO(k) - B, A(p,p, Du(p)]

Vidu® ~ 2
f na pE, [m? — E,Ey + pk]

2x
(A3)

The denominator has a double zero at p = k, but the zero of the numerator
at the same point insures that the integral exists as a principle value, as in the
nonrelativistic case. The behavior of the integrand depends on the behavior of
the wave function u(!). Since A(p, k, 1) decreases monotonically in k, if Exu)(k)
does not increase then the integrand is positive for £ < p and negative for k > p,
with a principal value singularity at p = k, as shown in Fig. 9. Hence the integral
over a region from & = 0 to k = kg >> pis zero, and the entire result comes from
values of & > ko. If Ex A(p, k,1)u®)(k) decreases sufficiently rapidly, the integral
can therefore be approximated by

i (l) o i E’l _ (1) foo kdk
-/VllAu jad (21‘_) (P )A(p:p) l)u (P) ko Ey [m2_EpEk+pk] :

(Ad)

The remaining integral in Eq. (A4) diverges logarithmically, and wili be cut-off
by the form factors we have neglected so far in this discussion. If p << m, and
assuming [ dk/k ~ Ny, the integral becomes

/m kdk 2 [® kdk 2N,
ke Ex[m?—EEx+pk] = mJy, (p~k)? '

If p >> m, the same integral becomes

/°° kdk _ 2 /“’ kdk 2N )
ro Ex[m? —EEx+pk] = m?J,, (p-k)? m?

(A5)

50

3.0+

Integrand

Figure 9: The integrand of Eq. (A3) as a function of the internal momen-
tum k for a fixed external momentum p = 0.84 GeV and a wave function
proportional to 1/E. The thin open box is in the vicinity of the point &o;
the region below kg makes no contribution to the integral,

However, [recalling Eq. (4.13)),

- 1 ifp<<m
Alp,p, 1) 2 . A7
(p,p,1) {% ifp > m, (A7)

and hence, in both limits [either p << m or p >> m],

Ep) - ea kdk 2N,
— A ’ :1 ~om—_, AS
(p (P.p 1) ko Ex[m? — E Ey + pk) 2 (48)
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and

0'N1 T
(fvudy ~ 22=22, (A9)
where our fils to the aclual solutions give N} ~ 27, Hence, in both the ultra-
relativistic and nonrelativistic limits, the linear confining interaction contains a
term which goes like 1/po, as suggested by the uncertainty principle.

The kernels also depend explicitly on the bound state mass p. The diago-
nal terms depend on g only through the quark form factors given in Eq. (3.20).
Assuming that p >> g, the form factors in both channels (1 and 2) are approx-
imately equal, and a function of (pu)?. Their precise dependence on the pion
mass p for a fired momentum py = 0.84 (corresponding to the mean momen-
tum of the “middle” state at u = 0.205) and for the form factor mass used
in this paper (A, = 3.5m) is shown in Fig. 10. Note that they are approxi-
mately a linear function of g in the vicinity of p = 0.14 — 0.25, and il we
require the intercepts of the two lines to be the same (in order to simplify the
theoretical analysis) the form factors in each channel are well approximated by

1.2

0 0.05 0.1 0.15 0.2 0.25

Figure 10: The quark form factors Eq. (3.20) for chanzel 1 and 2 (labeled
on the figure) plotted as a function of y (in GeV) for a fixed p = 0.84 GeV.
The straight line fits are Eqs. (A10).
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hp) = (m + # — 2Bou) =~ 1.12[1 — by pop]
Fa(p) = f(m? + g + 2Eop) ~ 1.12[1 — by pop] (A10)

where the fits shown in Fig. 10 correspond to 8;; = 1.31 and baz = 1.66, the num-
bers used in Sec. IVB. These form factors modify both the p and k dependence
of the kernels, but, as we will see below, Lthe k integration is regularized more
strongly by the smaller mass A = 1.7m, which provides convergence even when
# = 0. Hence the u dependence of the diagonal kernels comes primarily from the
external p dependence, and we have finally

(/ Vi1 A)) ~ gﬁ'—?f\u.u
o
(jvzzA)) > p—;—za\zzﬂy {Al1)

with /\11 = O’lb“/z and /\22 = 01522/2.

The off diagonal kernels have a more complex p dependence coming from the
external form factors, the retardation factor, and the g dependence of the limits
of integration. As discussed in some detail in our first paper [1], the Vy; inte-
grand has singularities over the region from k_ to k; [where ks were defined in
Eq. (3.16)], and our prescription for the definition of the linear potential requires
that this region be removed form the integration. Under the same assumptions
used above, the remaining integrand is finite and negative in the region {0, k_],
and finite and positive in [ky,00). For values of p in the vicinity of a GeV,
f Va1 Bu() can therefore be approximated (roughly) by

[ Vb = 2 / o kdk [EeB(pk, 1) uD(R) = Bx, Blp, ks, )u(ky )]
u ~
B kptb.  PEx [m? — EyBy 4 pk + p(Ep — i) + 347
' (A12)

The numerator and denominator both have simple zeros at & = k,, insuring
that the integrand is finite at k = k4, so that the contribution from the region
[0,k_] can be roughly included by adding k_ to the lower limit of integration
[as in Eq. (A12)] It turns out that the solutions are very close to 1/E over the
momentum region of interest, so that we may replace B = -1+ A ~ A, and if
P >> m, then &y ~ p, and we obtain roughly

o0
/me? N CHRPeRA kdk
2% kptr- Ex [m? — E By + pk + p(Ep — Ey)

u(V(p) A(p,p, 1)



7 ) Spkdk
~ —u — )
2 P2 kitk_ m? [(k _ P)2 + 2}lpk(t— P)]
m

(A13)

where we have retained the exact structure of the lower limit because the integral
1s sensitive to it. The integral is cut off at large & by the mass A, which becomes
effective when

m?(k —p)*

2 _ 2 _ 2
T A? = (1.7m)? = 2.89m? .

g% ~ 2[E, Ex—m?—pk] ~
(Al14)

Finally, assuming k >> p, as we did before, we obtain the following estimate

([ vy = 5[ f’{;)pu] bt

2.89pg dk

= 9 2Eo+ %Fon+g' )
TPo [1 + %:’ [2 T Spol{Eo—poth + 2po(Eotpotn ]
aN

~ —2 ga(p) (A15)
Po

‘The functions g2(u) and g1 () [obtained from g, by substituting fi(u) for fa{n)],
for the fixed momentum pg = 0.84 GeV, are shown in Fig. 11. They have been
normalized to unity at g = 0; the unknown constant N contains all normalization
factors. Note that they can also be fit by a linear function of u (assumed to scale
as the product pop). The fits shown in Fig. 11 are

g1(p) =~ 0.89[1 — b3, pop]
92(p) = 0.89[1 — bay pop] , (A16)

where b4, = 2.68 and by; = 2.94. The second of these curves is the correct one
to use for the V5; kernel we have been discussing.

We turn now to the Vi, kernel. Because of the symmetry of the matrix
kernel, the Vi3 matrix element which we need can be obtained from the V5,
matrix element with the k and p integrations interchanged. In particular

(/ ViaBuMy = ]dap/d3k u(p) Var(p, k) B e (ALT)
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1

Figure 11: The functions g, and g, (labeled 1 and 2 on the graph) plotted
as a function of y (in GeV) for a fixed p = 0.84 GeV. The straight line fits
are Egs. (A16).

Recallmg that B = A— 1, and carrying through the estimate as we did above,
gives two terms. The A term is identical to the result we have already obtamed,
but the contribution from the —1 term is no longer small. We know that it must
go to zero as ¢ — 0, and can therefore be written as 2Au, with A an undetermined
constant. Qur estimates of the off diagonal potentials have therefore given

(« f VieB)) = 22— 2huap

((]%IB)) = %03—2/\21;1, (A18)

with A3 = 02021/2 — A and A3; = 30, /2. The constants ay, ¢, and ) are
adjusted to fit the resulis, as discussed in Sec. IV.

2. Numerical methods

In this appendix we discuss our numerical methods. The techniques are es-
sentially extensions of those already discussed in our earlier papers [1,2].
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Figure 12: The full set of cubic B splines used for S-wave solutions in the
case n = 4. The derivative at the origin is zero by construction.

For a given bound-state equation, each wavefunction is expanded in terms of
a set of basis functions {f;(p)}:

Wi(p) = ) i B (p). (A19)
i=1

The bound-state equation is then converted into a generalized eigenvalue prob-
lem, Ax = ABx, by integrating the entire equation over all momentum p using an
appropriately chosen measure so that the matrix arising from the linear—potential
(and hence the entire matrix equation itself) is symmetric [recall that our poten-
tials are hermitian, Vi;(p, k; P) = Vji(k, p; P)]. This last feature is particularly
advantageous as it avoided the generation of spurious complex solutions due to
round—off errors.

For the basis functions we used cubic B splines. While in our previous works
we used other choices (Laguerre polynomials in Ref. [1], generalized Yukawas, i.e.
(p> + M2)" in Rel. [2]), we found that they were not sufficiently flexible in the
present case to solve the pion equation for arbitrary potential paramelers. The
difficulty here lay in matching the high momentum tail in our solutions, arising
from the chiral-symmetry of our equations with the low momentum structure
due to the scalar, linear-potential. The advantage of B splines in this regard is
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that they naturally span large momentum scales while building in only minimal
biases.

Although expansion in B splines is a well-known numerical technique, for the
sake of completeness we give their definition and discuss some delicacies that was
involved in their application to our equations. The cubic B splines are defined[13]
so as to have finite support and to have a continuous first and second derivative.
These requirements are achieved by piecing together four cubic polynomials, each
defined only over a finite region. The points where the polynomials join are
called knots. The cubic B spline b, (), centered at knot z,, with equal spacing
h between knots, is defined as:[13]

’ 3
I—ZXp-2
T —Tp-1 X —Tp_| ? I— Tp_t 3
Lpatemt g (£2m) g (2=2a)

bo(z) = J 1+3:1:,,_,_1 -z 43 (a:,.,_H _1;)2_3 (’-’n+1 _x)s

T & [T-n—zaln—l]
bR [3n—la In]
x € [xn, Tt

r e [3n+l: In+2]

0 ) otherwise.
{A20)

To obtain our basis functions {8i(p)}, we start with n equally spaced B splines
defined over the range 0 < z < 1. For the pion case we then introduced a nonlin-
ear (quadratic) mapping from z to momentum space in order to be adequately
sensilive to the structure in both the low and high momentum regions. For all
other cases, a simple linear mapping was sufficient {a high momentum cutoff p,,
was introduced beyond which the wavefunctions were taken to be zero; after ob-
taining a solution, we then varied pyae to insure that the solution was insensitive
to its value). Each wavefunction was expanded with a basis set taken with the
appropriate boundary condition at p = 0. As illustration, the complete set of
S-wave basis functions in z space (normalized to one at the peak) for the case
that n = 4 are shown in Fig. 12. Note that the derivative has been guaranteed to
be zero at the origin. For the B spline with center at the origin, this is automatic.
To the spline centered at £ = A was added the tail from the spline centered at
z = —h. The basis set for P and D-wave solutions were generated by multiplying
the S-wave basis by p/E, and (p/Ep)? respectively.

The presence of knots required special care in our integrations. All integrals
were subdivided into pieces defined by the knots of the basis functions entering
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the integrand. Gaussian quadrature was then used to evaluate the integral of
each subdivision. This procedure of avoiding integration through the knots was
essential, for without subdividing as many as twelve places of numerical accuracy
could be lost (as e.g. in the simple integral over two basis functions). Due to this
necessity, the double integrals for the linear-potential matrix elements became
rather complicated since in addition to the knots, the pole positions of the various
potentials had to be specially handled. In the case of the diagonal potentials,
Vi1, V22, which have single poles (after the subtraction) at p = k, symmetric
integration in the & integral about the pole position was used in those cases
where the matrix elements involved integrands with overlapping basis functions.
For the case of the off-diagonal potentials, the region cutout of the integral in
Va1 (defined by the poles ki(p) and ka(p)) introduced new integration limits
that had to be properly incorporated (the Vi, matrix elements were obtained
using Hermiticity). Although in this case no pole remains in the potential after
the subtraction, in order to ensure that the ofi-diagonal potentials smoothly
matched onto the diagonal potentials in the limit that the pion mass went to
zero, we integrated evenly below and above the pole positions &, and | 7%

In practice we solved our generalized eigenvalue problem for the bound state
mass after having chosen values for our parameters in the quark—quark interaction
potential. Since the bound state mass not only appears linearly in our equations
in the kinetic terms, but also nonlinearly as part of the definition of the form
factors of the linear-potential, we used an iterative procedure of first guessing
a value for the bound state mass to be inserted into the confining potentials,
then solving the eigenvalue problem and seeking a self-consistent solution. For
all solutions other than the pion, the convergence of this procedure was rapid, as
the dependence in the linear potential is very mild for large values of the bound
state mass (i.e. for p ~s 2M). The pion, on the other hand, required more care.
Finally, the number of basis functions were increased to check the convergence of
our solutions. Except for the pion, this was also in general rapid (n = 6). The
pion however, required significantly more (n = 16). The curves in Section IV
were obtained using n = 40.
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