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C.J. Curtis, W. Oren, K.J. Tremblay
CEBAF, Newport News, Virginia, USA

1. INTRODUCTION

The Continuous Electron Beam Accelerator Facility (CEBAF) in Newport News,
Virginia is 8 new accelerator designed to produce 4 GeV 200 micro-amp continuous wave
beams for nuclear physics research. It consists of two superconducting linacs each
accelerating electrons by 400 MeV and linked by arcs allowing five pass recirculation.
These linacs form the straight sections in a racetrack shaped accelerator contained in over
1.3 km of tunnel. The beam lines will consist of 42 superconducting accelerating
cryomodules (in the linacs only), over 400 dipoles, 650 quadrupoles, and 100 sextupoles,
most of the which are concentrated in the two arc sections of the machine. It is here that
the single beam line from the linacs is split into five beams of differing energy and
transported to the opposite linac where it is recombined into a single beam to again pass
through a linac and receive additional acceleration.

These recirculation arcs are designed to maintain beam quality through a lattice
which is achromatic, isochronous and whose length is equal to a multiple number of RF
wavelengths [1]. The short term relative alignment tolerances coupled with the beam line
design reflect the beam quality issues while absolute positioning determines the range of
adjustment needed to match the RF phase in the linac segments. The alignment techniques
which use a monumented control network as a reference, are designed to position stacked
magnets and their support systems to these tolerances. Specialized procedures were
tailored from existing hardware and software systems to address each phase or step of the
alignment process. This allowed a relatively rapid expansion of alignment services at a
new laboratory where surveying support was not seriously addressed until more then one
third of the enclosure had been built.

2. TOLERANCES

In order to transport electrons around the arcs and deliver beam of acceptable
quality to the succeeding linac, the alignment tolerances of magnets in the arcs have been
defined as follows:
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- relative position over 50 m transverse to the beam is 0.20 mm for quadrupoles,
0.67 mm for sextupoles, and 0.50 mm for dipoles,

- absolute position for individual recirculation arcs is within 5.0 mm of ideal,
- linearity of the linacs should be within 2.0 mm of a straight line

The tolerance for quad positioning is a final design tolerance, with an initial alignment of
0.5 mm over 50 m required for the commissioning of the machine. All tolerances assume a
Gaussian distribution truncated at +/- 2 sigma for simulation.

3. CONTROL NETWORK
3.1 Design

The first stage in achieving the final tolerance was to establish a comprehensive
control network. It was determined that this network would consist of stations in a zig-zag
pattern around the accelerator such that those nearest to the beam line would permit the
use of optical tooling techniques, and those furthest away would be more suited to
theodolite measurements. This pattern also ensured that the majority of usable tunnel
space was employed in order to strengthen the geometry of the traverse.

Pre-analysis using software developed at SLAC [2] was employed in order to
determine an optimal observation scheme for the network which would be measured in
two phases. In the first phase a "skeleton" network of almost 70 stations was measured
which encircled the entire accelerator. These stations were to be of the highest order with
error ellipses of less than 1.0 mm. This scheme ensured a homogeneous and closed frame
from which a densified network, necessary for the day to day operations, could be
.established when required.

3.2  Survey Method and Equipment

Survey monuments consist of stainless steel cups drilied and grouted into the
tunnel floor. Into these, a 1.5 inch diameter half-sphere is placed to serve as a target either
for directions or for centering a tripod. A full sphere provides a reference for levels. The
SLAC system of fixed aluminum tripods and CERN sockets [3] was adopted because of
its availability and the need to begin measurements as soon as the survey group arrived.

Direction observations were carried out using either the Kern E2 or the Wild
T3000, and distances were measured with the Kern ME 5000. Leveling was carried out
using a Wild N2 and double scale invar staves. Data was booked electronically onto the
HP110 computer and transferred to PC's for reduction and adjustment using GEONET
software [4].



33 Results
3.3.1 First Skeleton Network

Work first started on this scheme in September to October 1990. Orientation for
the network was initially provided by the two main monuments utilized by the contractor
in the civil construction. Transfer from these to the tunnel was carried out via two
penetrations (see Fig 1) located in the north linac and extended to a network of 67 stations
in the tunnel itself. The elevation datum was set by choosing the high point on the tunnel
floor and defining it as the nominal distance below beam height.

The first skeleton network took approximately three weeks to measure. A
minimally constrained adjustment was used with one of the north linac penetration points
fixed in Z and X, and the other fixed only in X. The results largely followed the simulation
with error ellipses of 0.4 mm along the north linac, and up to 0.7 mm along the south
linac.

3.3.2 Densification

Once the skeleton network had been satisfactorily established it was possible to
extend control to a densified scheme. This was first carried out in February 1991 in the
north linac, east arc and part of the south linac, and added approximately 160 stations to
the established points.

Initially the skeleton points were re-leveled and adjusted. Once it was determined
that no significant vertical movement had taken place, the densified points were leveled



and added to the adjustment. All of the horizontal network was observed concurrently
(skeleton and densified), but again the skeleton points were adjusted first. Using a free net
adjustment based on their previously defined positions, it was determined again that no
significant movements could be detected. The positions defined by this free net adjustment
were then accepted and used as fixed positions in a constrained adjustment of the densified
points.

The densification work was carried out irregularly over a three month period. The
full adjustment which held all skeleton points fixed produced error ellipses of less than
0.2 mm for the densified points.

The remaining densification for the accelerator was later completed in August
1991 when the injector, west arc and remaining part of the south linac were remeasured.
Due to local movements in the southwest corner of the accelerator, this portion of the
densified network was oriented by fixing only the skeleton points in the northwest sector
resulting in an acceptable adjustment.

3.3.3 Maintenance

Since the full accelerator was initially surveyed, the skeleton network has been re-
measured twice. The first time was in April 1991 which served as a basis for the first
densification scheme as described above.

The second time was in January 1992 and served as a basis for a full scale update
of the accelerator control coordinates. The new skeleton observations were adjusted as a
free net and then subjected to a deformation analysis with the previous (April ‘91) data.
This highlighted a maximum movement of over 2 mm in the north and east part of the
accelerator. After optimization (i.e. minimizing movements in areas of installed
components) a new set of coordinates for the skeleton network was obtained.

Time constraints had made it impossible to carry out a combined remeasurement of
the skeleton and densified networks which now numbered over 300 points. For this
reason, the possibility of using the updated skeleton network along with archived data for
densified points was examined. The information from the most recent densification
surveys for the entire accelerator was combined with the skeleton observations.
Examination of the residuals from this adjustment highlighted areas where the old data
was inconsistent with the new. In contrast to the deformation analysis, these areas were
located in the north and west of the accelerator. The difference might be explained by a
smooth movement which was indicated in the deformation analysis as opposed to a more
irregular change indicated in the analysis of residuals. A densification survey was then
carried out in these areas as well as in a small area which did not appear to have too many
inconsistencies. The archived data was then replaced with the new observations in the final
adjustment. The results were compared to the adjustment using only archived data and
indicated coordinate changes of up to three times larger in the problem areas as compared
to the non-problem areas.



Although this method is not ideal, given the time constraints, it should prove to be
an adequate way of updating the network provided that an assumption of smooth
movements is borne out in the field.

4. STEP 1 ALIGNMENT
4.1  Concepts

The Step 1 phase of aligninent at CEBAF was designed to position support
systems containing up to five levels of magnets. The typical arc stand consisted of up to
ten mounting points machined so that their internal geometry was correct to +/- 2 mm.
Previous experience at SLAC [5] indicated that a point in space could easily be positioned
to +/- 3 mm of its ideal three dimensional location as determined by intersecting lasers.
This method would, in the worst case, leave 5 mm of the +/- 10 mm adjustment range
available for positioning the magnet. For this reason, a system based on the CLASH
program was developed.

While CLASH had proven effective for positioning a single pedestal where roll and
pitch could be set with inclinometers, it did not directly lend itself to stands containing
multiple levels of magnets. The construction of these stands prevented the control of their
orientation angles with inclinometers and necessitated the simultaneous positioning of
three registration points on the structure to control all six degrees of freedom. The other
seven points then fell into place based on machining tolerances. To address this
requirement, CEBASH was written based on a modified CLASH, providing for repeated
pointings on consecutive targets so that stands could be iteratively moved to their correct
positions.

4.2 Cebash / Recebash

The initial Step 1 alignment procedure utilized two theodolites centered over
control points with vertical and horizontal orientation from backsights on adjacent
monuments. As time progressed, the need for more flexibility in theodolite positioning
and a desire to increase efficiency and accuracy lead to the development of RECEBASH.
This program allowed for random setups of the theodolite pair whose locations were then
solved for by resection.

RECEBASH requires the entry of the approximate tunnel location of the days
work which allows the retrieval of both the ideal target coordinates and current horizontal
and vertical control information. The program locates the target coordinates in a file of
3000 points and then uses this information to find the three dimensional coordinates of the
adjacent control monuments. A minimum of five stations are required for the resections
providing checks and ensuring a geometrically strong solution. Afier establishing the
theodolite positions, three stand registration points which span the structure are observed
to obtain its current orientation. Movements in the local beam following coordinate



system are output to the computer screen and ideal vertical and horizontal angles are
displayed on the E2's. The stand is then iteratively moved to its ideal position as defined
by the three registration points. A final observation on these points as well as the
remaining registration points is made to record and check the results.

Due to manufacturing errors, some stands could not be positioned with all
reference points within the +/- 3 mm alignment goal. In these cases, the procedure would
be to average the differences and put the structure in its "best" location. Registration
points 4 mm or more away from their ideal position were designated for mechanical fixes
to be applied at the time of magnet installation. Further software development to
incorporate as-built information for the stands geometry is needed to eliminate the time
consuming process of splitting the difference in the field. As before the final location
information is saved on file to complete the construction records.

4.3 Results

Soon after step 1 alignment was started an independent check was carried out to
determine its effectiveness. In the check survey three rounds of angles were observed to
determine the horizontal location of each cartridge, and precise leveling determined the
elevation. The results of this survey were then compared with the as-found data generated
in the CEBASH program. These proved to be remarkably good and are summarized in
Table 1.

Table 1
Step 1 Alignment Verification (in mm)

DZ DX DY
MEAN 0.09 0.05 0.12
STD. DEV. 0.12 0.07 0.07

Typically seven to eight arc stands were aligned by a two to three man crew each
day in the east arc, whereas this number rose to nine or ten stands per day in the west arc.
The Step 1 procedure developed at CEBAF has proven to be a flexible and efficient
method of aligning multi-beam stands.

5. STEP 2 ALIGNMENT
S.1 Concepts

The purpose of this procedure was to determine the position of magnets through a
redundant observation plan reduced in a least squares adjustment. The differences
between the actual magnet fiducial coordinates and their ideals could then be found and
applied through adjustment systems monitored with electronic dial gages to move the
magnet to its ideal location.




Two survey methods were considered for achieving this goal. The first involved
the traditional division of horizontal and vertical surveys with off line data analysis to
calculate the necessary magnet motions. Although simulations provided acceptable
results, the process was considered too time consuming and rather cumbersome. The
second method, based on the three dimensional bundling systems commonly used in
industry, seemed to fit the problem nicely. The stacked beam lines provided a strong
model space both in the vertical and horizontal dimenstons while todays powerful compact
computers furnished the capacity for large customized programs. With some help from
SLAC, the Stanford Industrial Measurement System (SIMS) [6] was adapted to fit
CEBAF's needs. SIMS was nested within an operating shell of CEBAF design which
stepped the user through a customized observation and data analysis routine.

5.2 Design

As was previously mentioned, the control network was designed to accommodate
both optical tooling or theodolite based methods for magnet placement. Simulations and
actual tes: measurements proved that the zig-zag pattern of monuments provided a strong
basis (sigmas of 60 microns or less) for a bundling measurement of the five levels of
magnets. The beam line was then partitioned into logical units (sectors) of 7.5 degrees
with up to 25 magnets, to fit a measurement space spanned by three theodolites. Within
this model, the instruments could be positioned within one meter of their simulated
location to achieve satisfactory geometry and the desired error envelopes.

Each magnet was fitted with a fixture containing two fiducial marks similar to the
floor monuments. The fixtures registered on reference surfaces machined into the magnet
at the time of manufacture. As is commonly done, these surfaces were assumed to
represent the magnetic centerline and therefore the actual beam line. Each magnet was
dimensionally inspected upon arrival at CEBAF for conformance to design. Similarly, the
80 fixtures of three different designs were inspected on a coordinate measuring machine to
obtain precise offsets for each target which were then factored into the ideal coordinate
calculations.

53 Software

With the locations of the magnet references defined and the design of an
observation scheme set, the intention was to create a robust software system to control the
complete process of surveying and aligning the magnets in the field. To make the package
as friendly as possible, it was assumed that the user would be inexperienced in adjustment
procedures, computers and modern accelerator alignment techniques. Additionally,
checking routines to look for common errors such as improper element or control point
names as well as pointing errors, were included. This led to the development of the Step 2
Arc Alignment system (S2AA).

The program starts by asking the user for a single magnet name in the sector of
interest. This leads to the creation of a series of menus and lists where the operator



selects the necessary magnet and control point names and designates fixture locations and
serial numbers. This information is combined with current fixture calibration reports and
DIMAD {7} beam line layout data to produce ideal target coordinates for use throughout
the program. To assure that current data is utilized, a system of master disks controlled
by the data manager was setup. These disks are updated by the data manager and must be
present to initialize the program.

After the measurement campaign has been set up, a series of files are created to
record the results and ensure that previous data is not over-written. The crew then
collects the observations using the CAPTURE routine from SIMS. Upon completion of
the measurements, a check of the observed angles is made by comparing them to ideal
values derived from preliminary estimates of the theodolites positions. If the field data
does not match an angular tolerance based on the distance from the target to the
theodolite, the database is searched to see if the observation might match a different
target. If a match is found, the operator is given the choice of swapping the target names.
If no match is found, the data can be rejected and processing continued. A final
manipulation of the hcrizontal angles then takes place so that the bundle adjustment can be
carried out in the overall machine coordinate system.

The SIMS bundling routine is then used to obtain actual target coordinates which
are compared to their ideals. Based on these results and the geometric configuration of
the adjustment systems, S2AA calculates the necessary dial gage motions to move the
magnet to its proper position. A printout is produced to guide the adjustments and
provide a paper record of the final dial gage readings.

A second survey is then performed to check the results. At this point the fixtures
are shuffied to remove placement errors which could have occurred in the first survey. If
one or two of the magnets are then found to be out of tolerance they are moved and
reobserved. S2AA provides a method where the reobservations of these magnets can then
be "patched" into the raw observation file to eliminate the reobservation of undisturbed
magnets and maintain the setups robust geometry. Finally, a subset of data files and
results are transferred to the office for archiving and progress tracking.

5.4  Results

Three tests have been carried out which indicate the type of accuracy achievable
with the S2AA system. The first of these involved the measurement of five quadrupoles
and four sextupoles with both the S2AA method and optical tooling. On each magnet two
targets were observed. The average differences in the X and Y coordinates were
0.060 mm with a standard deviations of 0.040 mm or less. Insufficient data was available
for the Z coordinate.

The second test was carried out in order to verify the repeatability of the target
fixtures. In this test a single S2AA setup was made on a sector consisting of nine
quadrupoles. After one set of measurements had been taken, the fixtures were removed



and replaced on the adjacent magnet such that another set of measurements could be
made. In this way the fixtures were rotated around the stacks up to five times. As such this
test gives an indication of the accuracy of only part of the survey procedure. In general,
the repeatability of the fixtures in X and Y was better than in Z. The standard deviation for
X and Y repeatability was of the order of 0.020 mm whereas for Z it was 0.040 mm.

The third test involved a complete remeasurement of seven sectors of magnets.
The measurements took place approximately two months apart and utilized the S2AA
method. This test gives a good indication of the repeatability of the system as a whole.
The mean of the absolute differences for upstream and downstream Z, X, and Y targets
for all seven sectors are summarized in Table 2. These results again indicate a precision in
Z of roughly half that in X and Y. This is neither surprising given the design of the fixtures
and the survey system, nor of any concern given the much lower alignment tolerances in
the Z direction (5 mm). The overall magnitude of the differences is very satisfying when
judged against the desired survey precision.

Table 2
Repeatabiiity of S2AA Surveys (in mm)
|

Zu Xu | Yu Zd Xd Yd
Mean 0.071 0.040 0.035 0.089 0.046 0.042
Std Dev 0.254 0.112 0.098 0.293 0.126 0.135

The normal rate of production for a three man crew is approximately one sector
per shift. This met our original time estimates for Step 2 alignment in the arcs. This
software package has been successfully adapted for use in other areas of the accelerator
and further improvements are envisioned to expand its use throughout the machine.

6. CONCLUSION

Tests of the beam line up to the 135 degree point of the east arc partially prove the
validity of the alignment methods discussed in this paper. Over 350 multiple level stands
have been successfully aligned with mechanical fabrication errors identified for remedial
action. Almost all of the primary magnetic elements have been aligned to the
commissioning tolerance of +/- 0.50 mm over 50 meters, with the east arc and north linac
test proving that the components are well within this error band. While the methods
described here are not revolutionary in nature, they do prove that careful application of
current technology can produce a successful alignment of a large multi-pass electron
accelerator for nuclear physics.
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