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Using the Ward-Takahashi (W-T) identity and the Bethe-Salpeter (B-5) wave equa-
tion, we investigate the dynamical requirements imposed by electromagnetic gauge in-
variance on Compton scattering from relativistic composite systems. The importance
of off-shell rescattering in intermediate states, which is equivalent to final state inter-
actions in inclusive processes, is clarified in the context of current conservation. It is
shown that, if the nuclear force is nonlocal, there will be both two-photon interaction
currents and rescattering contributions to terms involving one-photon interaction cur-
rents. We derive the two-body W-T identity for the two-photon interactior cutrents,
and obtain explicit forms for the interaction current operators for three illusirative mod-
els of nuclear forces: (a) two-pion exchange forces with baryon resonances, (b) covariant
separable forces, and (c) charged one-pion exchange.



1. INTRODUCTION

Inclusive electron scattering from composite systems is an important subject
common to nuclear physics [1], high-energy particle physics [2], and condensed
matter physics [3]. Using this technique, the underlying dynamics of compos-
ite systems can be investigated in different energy regions, and we can study
the scaling laws important to each region, such as Bjorken scaling [4] in particle
physics, and y-scaling [5, 6] in nuclear physics. The structure functions of in-
clusive electron scattering are related to matrix elements of the commutator of
the electromagnetic current operator, and they can be expressed in terms of the
imaginary part of the virtnal Compton amplitude for scattering from the ground
state of the system. Thus Compton scattering is important both because of its

close connection to the physics of inclusive process, and also because observables
extracted from Compton scattering, such as the polarizability of hadrons [7, 8],

are a sensitive indication of hadron structure. In this paper we discuss how rela-
tivistic calculations of Compton scattering from few-body composite systems can
be done in a gauge invariant manner.

In high-energy particle theory, the current-current correlator appearing in the
inclusive amplitude is assumed to be gauge invariant from the beginning,

j d'ze'? < p|T[J*()7*(0)]lp >= [¢*¢" — 9" 4*]O(q),

and the essential quantity, (¥(g), is sometimes evaluated using current alge-
bra [9]. Alternatively, the coefficients (C,,) in the operator product expansion [10],
O(q) = - Cn g™, can be calculated perturbatively [11,12] for an asymptotically

n

free theory [13]. In these approaches it is not explained how to obtain a gauge
invariant result from the underlying few-body dynamics which describes the tar-
get system, and difficulties are encountered in calculating the electromagnetic
polarizability, or gauge invariant Compton amplitudes with composite models of
hadron structure [14], such as quark models. In general, it is a very difficult
task to evaluate the photo-hadronic four point functions because electromagnetic
gauge invariance is closely related to the dynamics of the strong interaction. The
solution requires, in principle, that we understand the structure of all composite
intermediate states which can be excited by the photon. For example, the photo-
production of pions from a nucleon involves contributions from many excited
states of the nucleon, depending upon the energy transferred to the intermediate
state. In order to conserve electromagnetic current, the dynamics describing the
final state interaction between the pion and nucleon should be consistent with
the one describing the intermediate excited states.

In nuclear physics a dynamical approach iz both feasible and necessary. For
example, many quantitative estimates show the importance of final staie inter-
actions {FSI) in inclusive processes both within a nonrelativistic [15-17] and a
relativistic [18, 19] framework. Issues of gauge invariance in Compton scattering
have been intensively studied within a nonrelativistic framework [20, 21], but few
systematic studies have been carried out in a relativistic framework [22]. Comp-
ton scattering from the deuteron has been recently studied in Ref. [23]. In this
paper we investigate, within the Bethe-Salpeter (B-S) formalism, the dynamical
requirements imposed by gauge invariance on the amplitudes of nuclear Compton
scattering and electrodisintegration.

- .Qur analysis can be regarded as an extension of the work reported in
Refs. [24:26]. In these references a general constraint on two-body electromag-
netic currents (inferaction currents) is derived and expressed directly in terms of
the nuclear interaction. This so called two-body Ward- Takahashi (W-T) identity
can be derived from the cne-body W-T identity [27] using current conservation
and two-body wave equations to relate the two-body nuclear force to the diver-
gence of the interaction current. The general result is independent of the details
of the nuclear force model once the dynamical degrees of freedom are specified.
Recently the interaction current operator implied by a covariant separable in-
teraction has been analytically derived [26] by using minimal substitution [28].
The result satisfies the two-body W-T identity, and confirms the existence of
an interaction current. The resulting interaction current contributions to elec-
tromagnetic form factors have been studied by evaluating their matrix elements
between bound state wave functions, and they are not negligible. In this paper
we take a similar approach and study, for Compton amplitudes, the dynami-
cal connections between the (a) impulse approximation, (b) off-shell rescattering
processes, and (c) interaction currents. In particular, we find that a new inter-
action current that involves two photons (the two-photon inferaction current) is
required in order to satisfy gauge invariance. The efficiency of our rather formal
approach, introduced by Gross and Riska [24], will be be a help in our analy-
sis of the dynamically complex four-point function describing relativistic nuélear
Compton scattering.

In general, interaction currents will be present whenever the nuclear interac-
tion is nonlocal, even if there are no charge exchange forces involved. Realistic
nucleon-nucleon (N N) interactions are nonlocal in the mid to shori-range regions,
and, as a result of this nonlocality, the NN interaction potential (or relativistic
kernel) depends on three of the four coordinates of the particles involved in the
interaction (see Fig. 1a). This nonlocality may originate from the fact that the
hadrons are spatially extended objects, leading to a short-range nuclear corre-



lation. The nonlocal NN force has been well approximated by introducing a
number of heavy mesons [29] whose Compton wave lengths are even shorter than
the size of nucleon, or by a superposition of local Yukawa functions for 12 dif-
ferent mass parameters [30). These local models give fairly a good description of
the phase shifts. For example, the local “0”-exchange is a good approximation
for the nonlocal force [31] generated by the two-pion exchange mechanism with
excited baryons (Fig. 1b). Another source of the nonlocality is the quark-gluon
exchange process, which generates a short-range NN repulsion, and this becomes
nonlocal if it is expressed as an effective NN interaction [32,33]. In spite of these
interesting, clearly physical mechanism, it is hard to distinguish local interactions
from nonlocal ones within the context of elastic NN scattering.

If the electromagnetic field is present, however, we may expecl a new mech-
anism to take place as a consequence of the nonlocality: within the nonlocal re-
gion, d = |z} — z)| ~ |2} — 73| in Fig. la, the photon field may interact with the
charged constituents participating in the nonlocal interaction, V(z}, z4; z,,z2).
For example, a photon may interact with a pion or an excited baryon in the two-
pion exchange potential (Fig. 1b), or couple to a quark in the quark exchange
process [34]. In this way, interaction currents (Figs. 2a and b} are induced by
nonlocal nuclear forces, and this happens even if the effective nuclear force does
not involve any charge exchange.

Much attention has been paid recently to two-photon processes, such as the
polanzability of the nucleon, including the effect of the pion cloud [35). The
dynamics of the xN system involves a nonlocality through the propagation of
A (and/or the Chew-Low type [36] iteration scheme) for the annihilation and
creation of pions. The method developed in this paper becomes extremely useful
in dealing with this topic, including photo-pion production from a nucleon.

This paper is organized as follows. We start in Sec. Il with a study of the
electrodisintegration of deuteron using the conventional mmpulse approximation
and final state interactions. The need for interaction currents when the forces are
nonlocal is demonstrated. In Sec. I1I we study the Compton amplitude including
the impulse and off-shell intermediate scattering processes. In Sec. IV the one-
photon interaction current and its rescattering processes are introduced, and we
show that the result is not gauge invariant unless two-photon interaction currents
are introduced. In Sec. V we derive the two-photon interaction current operators
from three simple models of NN force: (A) two-pion exchange interactions with
baryon resonances, (B) covariant separable interactions and (C) the one pion
exchange (OPE) interaction. By an extension of the results obtained by Gross
and Riska [24], it can be shown that the resulis we obtain for the two-photon
interaction currents are not unique, but this will not be discussed further in this

paper. We summarize this work in Sec. VI.

Throughout this paper (except for the interaction current derived from the
OPE in Sec. V) we consider charge non-exchange nuclear forces only, in order to
present the discussion in a simple and efficient form. We focus on the interaction
currents required by the nonlocality of the nuclear dynamics. We also restrict
ourselves to a nuclear two-body system, i.e., the deuteron, for simplicity. We
believe that these ideas can be extended to three-body systems described by
Faddeev equations, and to relativistic dynamics based on the Gross equation,
but these extensions will not be presented in this paper.

I1. ELECTRODISINTEGRATION

In this section we show that interaction currents are required if the forces
are nonlocal, even if there is no charge exchange. As a simple exercise, we in-
vestigate the dynamical structure of electrodisintegration process, and this leads
to the consideration of Compton scattering. Here, we assume that the relativis-
tic composite system (the deuteron) is described by the Bethe-Salpeter {B-5)
equation, and we use the matrix representation [37] for the two-fermion system.

A. Impulse amplitude and Final State Interaction
The B-5 equation for the scattering matrix (Fig. 3), M (&', k; P), is given by
Mopsy(K' ki p) = Vapsy (K, k; p)

. f %" P P
+i j Gy Verr k' £ p)San (K + 1) Movey (K", k;p) S (- 2) (21)

where k' = 3(p} — py) and k = 1(p; - p2) are the relative momentum of two
nucleons in the final and initial states, and p = p; + p is the total momentum.

Here, Sa.p(g) = [4 —m + ie};; is the propagator for the nucleon, and greek
characters are used for the Dirac indices. The solution has the form,

Tap(k'; 2)Ts4(k; )
PP - M}

Muﬂ;hv(kl, ‘-';P) = + Raﬂ;&‘y(k,:k;p)) (22)
where the first term represents a pole term due to the lowest bound state with the
mass Mp, and R(k', k; p) is regular at that energy. Inserting this expression into
Eq. (2.1) and taking the residue at the ground state pole; r“l—'::@, (p? — M3) x
Eq. (2.1), we get the wave equation (Fig. 4) for the bound state vertex, L(k; p).
Defining the B-S wave function by Woa(k;p) = [S(k + EYL(k; p)S(k — 2)) ag? Ve



have the wave equations for the bound state (¥) and the conjugate state (W)
wave functions,

[ d'¥ , '
wa,ﬂ(k; P) = "[Wsa'y(k + g)VT6;CA(k, k'; P)Sﬁﬂ(k_ g)‘plc(k Y P), (233)
FanF; p) =i [ 2 Bk 2)Sunk — P)Wogn (k. K Sk + By (23b
wol®5 7) = [ GoiFin (ks PDSack ~ Dasa(k, ¥ Sk + D). (23b)

We can express the amplitudes for electrodisintegration in terms of the solu-
tions for the bound state wave function and for the scattering amplitude. Here
we assign the 1st particle to be a proton with the charge e; = ¢, and the 2nd
one to be a neutron with e; = ¢,, = 0. The impulse (IMP) amplitude (Fig. 5a) is
given by

M5(IMP) = e, 7, W3 (k - £:p)S7) (k - p), (24)
where the free spinor functions, #,(k + ¢) for the proton and va(k — p) for the
neutron with the respective outgoing momenta k + ¢ and p— k, are dropped from
the final state. For simplicity, we use e,7* for the photon-proton vertex; it is
not essential in this work to use a realistic form of the off-shell one-body current,
A*(g) = Fi(q)y* + iFy(g)o** 4=, and to include the photon-neutron coupling.
(If we assume A*(g) satisfies the Ward-Takahashi identily, then y* — A¥(q) in
Eq. (2.6) below, and all of our results also apply when 7# — A#(q). We refer to
Ref. [24] for an explanation of how to define the off-shell one-body current [38)
so that the results of this paper can be extended to a realistic current operator.)
The amplitude with final state interaction (FSI), Fig. 5b, is given by

d*k ? .4 P, 9q
[ — “er ] S RS O YO AT QU
Maﬂ(FSl) = 3671(21)4 Maﬂ,rp& (k 9 } 21" 9 9 P q)

xSuc(k' + O ¥ea(k - 2 p),  (25)
where M{k', k ; p) is the solution of Eq. (2.1).

We test the gauge invariance of the IMP and FSI amplitudes by evaluating
the divergence of the clectromagnetic current for these contributions. By using
the one-body Ward-Takahashi (W-T) identity [27],

au = STk +q) - S7(k), (2.6)

we gel

U Mg (IMP) = ¢y {7k +9) = ST (R)} Woy (K — B:p) 5740k - p)

—e, [S‘l(k+ ) (k - g ; p) S-1(k —p)}aﬁ

iey [ Vs (k=2 K- p)wa (k-2 5) )

for the IMP amplitude. Here, the wave equation Eq. (2.3a) is used in the second
term, and the first term does not contribute when multiplied by the spinors of
the external, on-shell particles. Note that the divergence of the one-body current
is related to the two-body interaction, V(k', k ; p). Likewise, by using Eq. {2.1}
and Eq. (2.6) we can express the divergence of the FSI amplitude,

d*k P, 9 P,9q
M“ = 3 —_— Ad . . + = 4 —_—— + - +
Qu aﬁ(FSI) - tep / (21)4 aflind (k 9 2)k 9 9 y P Q)

x {S.sc(k’ + S (K + q) ¥y, (k’ - 5 ; P)

- Sull +OSZ W0 (¥ - 5 1 8) S5}k ~ St - )]

. dit’ P. ¢, P, 9 . P
'Cp/WMaﬁ;c,\(k—ﬁ"*'?‘,k—_+§=P+Q)"P,\((k“§,l’)

2
d't [ 4% P
| Ty | Gy Meos (4

+ o, F
1] ’ 2 l’__E .
xSsp(k + q)Vonier (k’ — 3 k 7 )

P
X Spy (K’ — p)W), (k” —5 P) .

g P,9.
2 2+2,p+q)

(2.8)

where we have used the bound state wave equation, Eq. (2.3a), at the underlined
part. The total momentum entering into the two-body interaction is p while
the one entering into the scattering matrix is p + g. We re-express the scattering
matrix in the first term of Eq. (2.8) in terms of the scattering equation, Eq. {2.1).
‘This gives the formula,

au [M#(IMP) + MH(FSI)), 5 = ie, f %Tap;d(u' : P, @) Waelk’ -g ; p)(2.9)

where Top.a(k, k' ; p,q ) is given by



Tapir(E, K5 pog ) _
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+i/g£;‘fMoﬂ;16 k— 5 + 2, F - §+% Pt ‘I) Ssp (kﬂ+‘1)

4
2’
[V(k" §+— k’-g %;p+q)—V(k"-g.k'—§;p)]

xSy (K - p).

This equation expresses the violation of current conservation in the IMP + FSI
amplitudes in terms of the nuclear potential and the off-shell scattering matrix.

We now distinguish two cases. If the interaction is local and energy-
independent, it depends on the momentum transfer only, and V(¥ k;p) =
V(¥ — k). In this case the contents in each square bracket in Eq. (2.10) vanish
identically, and the IMP+FSI amplitudes satisfy current conservation. This is
the fundamental reason why conventional approaches using local potentials work
for the electrodisintegration problem. If the interaction is nonlocal, however, cur-
rent conservation is not satisfied by these IMP4FSI processes. The violation of
current conservation depends on the nonlocality, and is related to the difference
between the nuclear potential with the photon momenturm (q) inserted before the
interaction, and after the interaction (see Fig. 6). These terms do not cancel for
nonlocal interactions, except for the g = 0 case. We must find a way to recover
current conservation.

€A
(2. 10)

B. Current conservation and Interaction Currents.

It has been shown [24-26] that there is usually a two-body electromagnetic
current associated with a two-body nuclear interaction (referred to as the in-
leraction current), and that even a charge-nonexchange interaction can gener-
ate an interaction current, J#(k’, k; [p, q]), if the interaction is nonlocal [26] (see
Fig. 2a}). This is because the electromagnetlc field can interact with the charged
constituents within the nonlocal interaction region. Here, k’(k) is the relative
four-momentum of the two nucleons in the final (initial) state, and p is defined to
be the total momentum before absorbing a photon with the momentum ¢. From a
study of elastic electromagnetic form factors using the bound state B-S equation
and the one-body W-T identity one obtains the following general expression for
the divergence of the interaction current

' . — ‘_2 . — ! 2 )
Qg sk, ko) =ep [V (& g ki) = VIEES 5 p+q)]aﬂns'
(2.11)

This two-body W-T identity is a necessary condition which any dynamical model
of the interaction current must satisfy. Now we add the interaction current and
the rescattering of interaction current to the amplitude of electrodisintegration, so
that all possible processes first order in the electromagnetic coupling are included.
The amplitude for the direct interaction current process {DIC), Fig. 5¢, is given
by

di¥’ PL1, P
o — u _P,
Maﬂ(DIC) =1 (27)} Jaﬁ;cA (k 2 i [p, 91) Wae ( 5 ) )
and the one for the rescattering of the interaction current (RIC), Fig. 5d, is given
by
d‘k' d‘k" q ¢ P g
[ I - - L 1.
K —

; [p. fﬂ)

2
xs.,,,w + ) (K -E44,

" # r .
x Say (K" = p) ¥y (k -2; p). (2.13)
By using Eq. (2.11} we observe that the divergence in the DIC and RIC ampli-
tudes cancels with the one in the IMP and FSI processes,

gu[M*(IMP) + M*(FSI) + M*(DIC) + M*(RIC)] = 0

The total amplitude, M*(IMP)+M*(FSI)+M*(DIC)+M*#(RIC), is gauge in-
variant.

The two-body W-T identity is a general constraint which must hold for any
model] of the nuclear force. It is a nrecessary condition which the interacticn
current must satisfy. It shows that interaction currents exist but does not tell us
how to find them. In Sec. V we will complete the discussion by deriving explicit
forms for the interaction current operator in three different models, and show
that the operators we obtain satisfy Fq. (2.11).

(2.14)

HI. COMPTON SCATTERING

In this section, we apply the procedures developed in the Sec. I1 to Compton
scattering. First we consider the impulse (IMP) amplitude and the intermediate



off-shell rescattering of nucleons after the absorption or emission of a photon. We
refer these latter processes as “final state interaction” (FSI) processes, since they
are similar to ones in electrodisintegration. The Compton amplitudes C**(IMP)
and C**(IMP) for the impulse (Fig. 7a) and crossed impulse (Fig. 7b) processes
are given by

dik —
CH(IMP) = ief,fﬁ\laa(ffﬁw)h“ﬁ"(k+Q)7"],91 Vs (Ki ; pi)S;5q (k= p),
(3.1a)
e (IMP) = ie] [ T an(Kyipp) b Sk = @y, Vo (Ki 5 p)Si(k =),
(3.1b)

where, Ky =k -8+ §, Ki = k-2 - 4 p_z(pf+p,)Q_2(q1+qz)and
q = g1 —qz2- Here p.(p_,r) and q1(g2) are the four rmomenta of deuteron and photon
in the initial(final) state, respectively. The amplitudes for the FSI (Fig. 8a) and
FSI (the crossed FSI process, Fig. 8b) are given by

d'k [ d'W
e ES) = —¢ | 53 | Gy [¥(K7ip Sk + Q)] 4
XMﬁa sy (1,8 p+ QY [S(K + Q)Y ¥(K'i; pi)], 5 (3.2a)
Vv qu’ 4
@D =~ [ o [ o y (K stk - 0,
XMﬂa;&-r(ty P Q) [S(k' - Q)-Y”W(K’i;pl')]-r& (32b)
wheret-—k-ﬂ-}-g-t'—k’ Qt—k-» Qt—k’—ﬂ—g-,and

Ki=k-£-1 Usmg the W-T |dent.:ty Y’ = {S“(k +Q)-S- l(k 1)} =
{S‘l(k + 1) S‘l(lc Q)} in the IMP and TMP amplitudes, we can express the
divergences in the following form

P P) = e} [ (_g‘;%waﬂ(x,;p,) s+ @54 @) -5 (k- )]
X'I'-y&(K: 1P|)Sa (k p)
= ieﬁ/ W‘I’aﬂ(Kf;pf) [Tn - 7-“'5(‘7 + Q)S_l (k - %)]p~,

xW¥ s (K ; pi) (3.3a)

and
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VTRAD . d4k o -
90, C** (TMP) = ie] / Gnyt Vor(Krspy) st (k+3) stk - Qny” - *,.
X‘FTJ(I{i ;p.')SJ_; (k - p).

Note that the y*-terms in the square brackets of Eq. (3.3a) and Eq. (3.3b) cancel
each other. Likewise, we express the divergence in the FSI and FSI amplitudes,

(3.3b)

d4 t
e (b51) =~ [ L [ EE 0250 4 Q) Mo 0. 830+.Q)
X [{1 _ S + Q)5 (y _ i)} (K p,.)] Lo B
and

(2m)* (ka)’* [E(Kf;P!) {S“(k' + %)S(k’ ~Q)- 1}] o

X Mpaoy (1,759 — Q) [S(K' — Q" ¥(K's;pi)],4

Omitting the 4* term in the IMP amplitude, which is canceled by a similar term
in the IMP amplitude, the sum of the divergence of the IMP and FSI amplitudea
is

q1,C** (FST) = —e?

(3.4b)

4
g1 [C* (IMP) + C** (FSI)] = ie} f (ST’;'* [¥(Kip " Stk + Q)]

L[5 (b= D) w (e~ 2 L) 51k —
{ [S ("’ 2)‘1'(" 2 4"’)Sl(’° ")La

b [ e Mg 15+ @) s (- 2 L35

(;4 )’4 Mﬂﬂl JT(t ¢ P+ Q)

<[5 + @571 = DRkt p)s I — pys - 7| 6}

4
=i} | % [ (ks )y S(k + Q)]

[ ¥ P 4, P ¢ ;P Q.
x {_‘/Wvﬁo;«h (k—ﬁ_Z'k - 5—2-11;) L 2% (k _E_Zspi)

. d*k’ ¢ Pq
+‘/(2 )4M.8067(t i,p+Q)‘I’ (k - E_Z:Pi)

11



dik H
(2n)t ) 2y
o P q ., 14
xVor sy (k — 5 Z,k —5~
d*k d*E
= B: W (21-)4 [_(Kf pf)‘T'“S(k + Q)] ap {G)},ﬂa 6y TJ(Ks:P!)

+ Mﬂa pA(t t ,p+ Q)S)cr(k' + Q)

%}Pi) S‘rp(k" ~ p)¥qs (k’ - g - 42;?5)}

where we have used the bound state wave equation (2.3a) at the underlined parts,
and

. _ r g P g
{9} a8y = Voaisy (k NI B - ";P-')

2 2 4
P,Qu_pr. 0
Mﬁa;d"r (k 2 2 + 2)p+ Q)

+:./£ )4 Mﬁﬁ.lﬂ(t t"=p+ Q)SM\'(H +Q)

#« P 0., P 9
xVarproy (K" = 8= 38 =2 = L:5.) 5,00 (4" — p), (3.5D)

where " = k" — £ + 521 Using the scattering equation (2.1} to replace the second
term in Eq. (3.5b), we get the following compact expression,

dik d'k!
2yt J (2n)*

x‘].—ﬂa;éc (k - g’:k’ - %;p_ 510"’ 5) ch(K’i;pi))

where T(k,k';p,q) was defined in Eq. (2.10).
crossed term is

a1, [C**(IMP) + C** (FST)]

_ d't [ W ’ . ]
c @)t (20 Yap (K ;i P1) Tpassy (k'*' oL &+ 2:P+ 5,—Q— 5)

x {S(E' — Q)" ®(K's; pi)l s - (3.6b)

The violation of current conservation is again expressed in terms of
T(&,k;p,q) defined by Eq. (2.10). If the interaction is local and independent
of energy, the Compton amplitudes C** (IMP)4-C*¥ (FSI) + C** (IMP) +C** (FSI)
are gauge invariant because 7 vanishes identically. We emphasize that C#*(IMP)
and C**(TMP) are correlated through the 7# terms, which cancel only when both
terms are present, and hence all of the diagrams in Figs. 7 and 8 are needed.

01,[C** (IMP)+ C**(FSI)] = —e} [#(Kyip)7* Sk + Q)] 5
(3.6a)

Likewise, the divergence of the

12

(3.5a)

If the interaction is nonlocal, the sum of all of these processes is not gauge in-
variant, except for a special case with the momentum of the photons is zero
(T =0 for @ = g = 0). This is the principal conclusion of this section. In the
next section, we introduce the additional currents, associated with the nonlocal
dynamics, which are needed to conserved current.

IV. TWO-PHOTON WARD-TAKAHASHI IDENTITY

In Sec. I, we discussed the role that the interaction current, with rescattering,
plays in the electrodisintegration process. If the interaction is nonlocal these
additional terms are necessary to give a gauge invariant amplitude. In this section
we include the same terms in the Compton scattering case.

A. Impulse and Interaction Currents

We now include all possible processes to order e,? which arise from the lowest
order impulse (~ e;) and interaction (~ e,) currents. Many diagrams are gen-
erated through different combinations of these basic elements, with and without
rescattering by M. It is very efficient to use a unified current obtained by adding
the impulse current, iepy*, and the interaction current J§ = J¥( ¥, k; [p, q]):

Taspo k' P = I + 05, (4.1)
where
ac4 for r
TP = iyl S2i (k - 5) (27)%6 (k E— E) _

This current is illustrated in Fig. 9. The extra factors in J{' convert this one
body operator into a itwo-body form, so that both currents in Eq. (4.1) have a
standard two-body structure. The neutron current, J%, is zero in the examples
discussed in this paper. We can systematically generate all the processes of order
€2 by evaluating the four types of diagrams shown in Fig. 10:

CH (WXY Z) = C* (W) + C* (X) 4 C**(Y) + C*(2). (4.2)

These diagrams are obtained by replacing the one-body current operators with
the unified current, J#, in the IMP, FSI and their crossed diagrams, Eqs. (3.1a)
and (b) and Egs. {3.2a) and (b). Note that each of these diagrams generates four
separate diagrams through the choice of J{' or J4 for the coupling with the first
and second photon. We distinguish them by the subscripts “1” (for J}') and “3”
(for J§). For example, the diagram in Fig. 7b is denoted as C*(Xy;) and the
one of Fig. 8a as C**(Y);).
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B. Current conservation

We will now show that the Compton amplitude given by Eq. (4.2) is not
gauge invariant, even though it includes, to order ey, all possible combinations
of (1) impulse, (2) FSI, (3) interaction currents and (4) rescattering of the inter-
action currents.

First, we prove that

g1 {C" (W) + C* (Wha) + C** (Y1) 4 C** (V1a)}
+q1e {C* (X11) + € (X13) + C* (Z11) + C** (Z43)}

= iep / % [®(Kyip)r" Sk + Q)] , [S7'(k + Q¥(K: ;)5 (k- P},

f (a7 157k = PIFK, 1)) (k= Q)] ISk~ QU ¥(Kiipols,
(4.3)

so0 that these eight amplitudes, shown in Fig. 11, are separately gauge invariant (at
least with regard to the index v). The proof is somewhat similar to the one leading
up to Eq. (2.14), and is presented in Appendix A. Briefly, the first four terms in
Eq. (4.3), C**(W11) +C** (Wha) +C#*¥(Y11) +C** (Y13), have the same structure as
the ones in electrodisintegration, M#(IMP)+ M#(FSI)+ M#(DIC) + M*(RIC),
given in Sec. II. The difference is that the free spinor functions in the final state
are replaced by the bound state wave function along with the emission of a photon
(g2), so that the only reason the divergence is not zero is because the final nucleons
are off-shell. However, the divergence of these four terms is precisely canceled by
the four crossed (g1 « ¢2) amplitudes, C**{ X1, )+C** (X13)4+C** (Z11)+C* (Z1a).

Among the remaining eight amplitudes (shown in Fig. 12), we first investigate
C*(Way), C¥¥(Waz), C**(Ya1) and C"¥(Ya3). These four amplitudes are given by

dik dik’
@i | @y Was(Kyipp)

XiJ g0 s (K;,k' + -:p+Q, 42])

x[S(k' + @)y ‘I'(K'-';Pi)].,,g, (4.4a)
B[R [
@i | @ (21)4 oo(Kyipy)

Xil Bt (K; K -2 dipra —‘12}) Sylk" +Q)

CH (Way) = ie,

C* (Wag) = i

2

14

xid¥ epirg (’f" - g + % Kiip— g_;‘h]) Sps (k" — p)Y®er (K] pi)

(4.4b)

dtk dir’ dik’ -
@) ) @) ) @n)f

X i b (Kf' L % r+Q, "'92]) Sye(k + Q)

XiMeping (‘«‘" N S Q) Sps (k" ~ p)

C‘uv(Yal) = iep ‘F&ﬂ(K_f Pf)

2 2 2 2
x[S(k + Q)y'W(K]; 1 73] (44¢)

and
o A% [ AW [ [ dF =
e (=i [ G [ Gy eyt YoolKyipy)

itfusy (K1 E- 24 Lb+0.-0)) 5.+ @)

Xiqu;op (k - =+ Q k" 2 + ‘QQ_|P+ Q) Séﬁ(i - P}Su(k“ + Q)

X33, 13 (kﬂ 2 Klr [p- 1‘]1}) r-cr(k” = P)¥en(Kis pi). (44d)

We evaluate the divergence of these amplitudes with respect to ¢;. Separating
out common overall factors,

v [C""(Wm) +CMP(W33) + C"W(Ym) + C””(Ya;-;)]
dik o -
=16 (21'.)4 (2,‘,)4 ﬁ.ﬂ(Kf P])

xJﬂa;JT (Kfak" -5+ —2': [P+ Q) "'qzl) {WY}TJ ’ (45)

we obtain
{W Y}
= i[(l - S(K' +Q)S (¥’ - ; ) Ki "")]
((;41";4 ‘)’((k" + Q)Mepf’? (k" gt g L 2 + %,P'*‘ Q) Pﬁ(k' =)
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(- st + @57k - ) wikiim)]

(Fk" Iy o q ' f 4 q q
(2 )43‘}'((k +Q) [Veplaﬁ (k —5—-4-"; _5__,1) 2)
Q

- #_ P % P
cp;A¢(k .2"' 2:k 2+

X =

Pt Q) Sps(k” — p)Wer(Ki; pi)
+ 9

&K [ &k y )
(2x)tJ (2 )45'1':(" + QMepop | £ — 5 2 _22_'_ %,;p+Q)
q

.
XSl P)SyrE+ Q) [Vourg (B L~ w285 1)
Q

—Vinan (I - g + 5,’#’ - §+ %;p-f Q)I Seo(k — pY¥ar(Kis pi). (4.6)

Here Eq (2.11) was used again. Using the wave equation for the scattering matrix,
Eq. (2.1), the underlined parts of the above equation cancel and (4.6) reduces to

WY,

= Wy (K:p) — i (SO + QST - D)) Woa(Kiii)
m

the 4th term becomes

{4th term} =S (K" + Q)[STHk" — DIW(R” — T~ ip)ST R —p)| Spslk” —p)
=iSy (K" + QIS (" — D)as(k” — £ - Tim),

and cancels the 2nd term. Likewise, the 5th term cancels with the 3rd term.
Only the 1st term remains to contribute to Eq. (4.5), so we conclude that

q1u[C*Y (Wa1) + C""(Wazi) + C#*¥(Ya1) + C**(Yaa)]

d“k'
X ity (K;,k' -9t —5; p+Q, —Q2]) W5 (Ki;pi)- (4.8)
The remaining four amplitudes in Fig. 12, C#(X3,), C**(Xss), C*¥(Z31) and

C#¥(Za3), are listed in Appendix B. The divergence of these amplitudes can be
obtained in a similar way, and the result is

0 [0 (Xa1) +C#(Xa3) + C#(Z) + C* (Z39))
o -
=o [ 55 | Gy Bosthsimn)

d4k’ i I N ot
Ws're(k' + Q)M p4n (‘k - g+%:k - §+%§P+Q) Sps(k" —p) » Q .
xJh,. (k— c— = Kli[p~- =, ¢ )‘I’ (K{;pi). (49
<[(56 + @5 - ) v oy \E =g~ g Rislm gy manl J¥eliip).— (49)
Ak y , q P From Eq. (4.3), Eq. (4.8) and Eq. (4.9) the divergence of the total amplitude
‘ja;r-)zs-re(k + Q)Verna (k" - 5 - Z.k' ~3 3P~ -)‘I’¢A(K.,P.)Sp6(k —p) given by the W 4+ X +Y + Z processes is

&% [ dk , LSO (WXY Z) = g1, [CH (W) +C*(X) + C*(Y) + C* (2
-———(2')4 —(2“)4314&' + Q)Mm;ap (k” g + g, - % + g';P‘F Q) SM(‘T" -p) o ( )=a { dgk ) qug ) (¥) 2l

~ O q q q , ~ = W (2 ) aﬂ(Kf pf)Iﬂﬂu Oy TJ(Knpl) (410)

xSpr(k + Q)Vrsng (i ~5- k- 5 P 5) Yo (K pi)Sxolk ~p),  (4.7)
where
where K’ = k" - & — %, K] =& — £ — 4 and p— £ = p;. The other kinematical

variables, K;, K; , p, @ a.nd g are the same as in Sec. HI. Using the bound state
equation,
d¥’ " 9 ., P 1 1 7
(s Vooe (= 5 = G = 5= Gip = P¥aKEm)
I PRVIVINE VR SN IRy
s - e = E - Lip)sT (- )]
16

I gosoy = €pd o5 (k —5ty 1E- + 5P+ Q. 92])

p Q r q q
—epJ hra: e (k— 5 .2.,y_ L - Z;h’_ -2-,—q2]) .

Note that [# does not vanish in general, and the violation of current conservation
is now expressed in terms of the one-photon interaction current. We conclude
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that the contributions from the impulse, interaction current and scatlering ma-
trix given by Eq. (4.2) are not enough to satisfy gauge nvariance in Compton
scattering. This failure is due to the nonlocality of the nuclear dynamics. A new,
two-photon interaction current is needed to restore gauge invariance.

C. Two-Photon Interaction Currents and the W-T identity

In Refs. [24, 26] the need for an interaction current was demonstrated in the
foliowing way. First, the matrix element of the impulse {one-body) current for
an exclusive processes, such as the charge form factor of a composite system, was
derived. Then it was shown that the divergence of the impulse current was not
zero, but was related to the two-body force. This relation can be regarded as
a constraint on the interaction currents; they must be constructed so that their
divergence cancels the divergence of the impulse current. Finally, an explicit
form of the interaction current operator was derived, and the result was shown
to satisfy the constraints. Physically, interaction currents (as shown in Fig. 2a)
exist because a photon can interact with charged constituents which are present
within the nonlocal region d = |z —z'y| ~ |£3—2'5] over which the force extends.

We now extend this idea to cases involving two photons, F ig. 2b, where both
of the photons couple to the charged constituents of the system. The nonlocality
will lead to a new two-body current, a {wo-pholon interaction current

T (K1, Kislpi, a1, 92)) -

The variable p; = p; + p» is the total four momentum of the two nucleons before
absorbing (or emitting) the photons, and K; (K;) [sometimes denoted sitnply by
K’ (K)] is the relative momentum of the final (initial) state. The total amplitude
for Compton scattering is then given by .

™ (Total) = C* (W) + C*(X) + C*(Y) + C*(Z) + C**(J3y), (4.11)

where

&k [ d% -

C*(Jp) =~ Y Wwaﬂ(K!;Pj)Jg;;h(K],Ki;[Pi,Q'l;flz])‘I’-y&(Ki;Pi)-

(4.12)

In order for the total amplitude to be gauge invariant, q,,C*" (Total)= 0, we
require that the two-photon interaciion current satisfy the following two-body
W-T identity,

18

- Iga;ﬁ‘)‘ = QIVJ‘;';;,g.T(K’; K:[Piu a1, 92])

=€p [J[';a;é-y (K’ - %. K [p;, —Q2]) — Jfuby (K', K+ %1; pi + ¢1, —q:])] . (413

In conclusion, if the nuclear forces are nonlocal, the impulse current, one-
photon interaction current, and scattering matrix contributions to Compton scat-
tering are not enough to satisfy gauge invariance. A two-photon inferaclion cur-
rent 1s needed to restore gauge invariance, and its divergence must salisfy the
two-body W-T identity, Eq. (4.13). In the next section we will derive the explicit
form of the two-photon interaction current for several cases.

V. TWO-PHOTON INTERACTION CURRENT

In this section we find the explicit form for the two photon interaction currents
for three simple models of the NN force: (a) a two-pion exchange model with
baryon resonances, (b) a covariant separable potentia! model, and {c) the charged
one-pion exchange force. The results for the current operators will be shown to
satisfy the two-body W-T identity, Eq. (4.13). We use the method of Feynman
diagrams for models (a) and (c), and the method of minimal substitution [26,28]
for model (b).

A. Two-Pion Exchange Model.

One of the most familiar nonlocal NN forces is the (correlated) two-pion
exchange interaction [31] with intermediate excited baryons (A and N *), illus-
trated in Fig. 1b. This mechanism is a possible explanation for the intermediate
range attraction approximated by the “o” exchange used in the one-boson ex-
change model [29]. The nonlocality of this interaction is caused by the propaga-
tion of the intermediate baryon resonances. The A is particularly important, as
demonstrated by its role in inclusive electron scattering just above the quasi-free
region [1]. :

In general, the two-photon interaction current associated with this nonlocal
mechanism is described by 22 diagrams (including the coupling of two-photons to
each pion and two-photon contact terms). Here we wiil simplify the discussion by
considering only the exchange of neutral pions between the neutron and proton,
giving a simple model which still includes the essence of the nonlocality caused
by the propagation of the baryon resonances. (Hereafter we will use the symbol
“N*” to denote both the A and all other baryon resonances which might appear
in the intermediate states.)

The nonlocal potential, Fig. 13, is given by
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dk4 p K'+ K .
ay

K+ K
wlrs (B 288 L i)y
2= "% 58

A(k+K';K)A(k—K’;K), (5.1)

where A(k) = [k* — p® + i¢] ™' is the propagator of the neutral pion with mass
p and Ty, is the xNN* vertex. Here, K’ = 1(p} — p3), K = 1(p1 — p2), and
P = p1 +p2 = p} + p, are the relative momentum of the iwo nucleons in the final
state, in the initial state, and the total momentum, respectively. The propagator
of the baryon resonance is represented by S.(p); we will not need its explicit
form. The W-T identity for the YN* vertex, A%. (see Fig. 14a), is given by

S (). (5.2)

The one-photon interaction current is given by evaluating the Feynman diagram
in Fig. 14b to get

I (K" K [P gDap 4+
dk* +tg K +K
= [r,s. (" Ty —o—=+1- k) (en-Aj-)

Ay =S e+ @) -

27 2 2
f
xS, (" K +K—i—k)rc]
2 2 a -
K'+K K —K
[r.s.(" ; +%+k)l‘¢] A(k+ : —%)
Bé
K -K
xA(k- > +%), (5.3)

Note that p = p; + p; and p+ ¢ = p} +ph , where g is defined to be the absorbed
momentuim. The charge of the baryon resonance is denoted by eny+ (ey- = 1 in

this model).
We now examine the two-body W-T identity for this one-photon interaction

current. Using Eq. (5.2) with the appropriate kinematical variables, g,Aj. =
ST B+ HH 4 2 - ) - STNE + KK~ § k), we get
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Qudne (K' K2 a)ap.sy
g/2]+ K

v [ e (15 (5+ 5 ) P]

x [r,,s. (g—[—-—:%/-?—]—t—lf-+k) n;L45

x A (k+—[K’_q2/21_K)A(k-——-———————["‘""gﬂ}_lf)
(g%[ns. ([”;”]+K'+[§”/2l—k) rc]

) [F*S. ([p;d - [I;-HI/Q] +k) Fd]pa

XA(HW)A(,C_ K'—[K+q/21)

2
= eye [VN' (K' - %’K;p)aﬂ;d'r — V- (K',K + %;P'*' Q)aﬂ;h] (54)

This is the desired result, satisfying the two-body W-T identity, Eq. (2.11).

The two-photon interaction current can be derived by evaluating the diagrams
in Fig. 15. Note that processes in which one of the photons couples to an external
leg and the other couples to a baryon resonance should not be considered a two-
photon interaction current because all such diagrams are already included in
the amplitudes for the impulse x one-photon interaction current, 1.e. C**(W,3),
CH(Wa;), C* (X3 ) and C*¥(X3;). The result for the two-photon interaction
current is therefore

Jh (K’; K; [P: a, q2])aﬂ 5y
dk? K' - u “
- [ e () A -5 )

K’ K
S SO
)

X [PQS. (g )

p+u K’+K u (p K'+K u
[I‘S( 3 4 — k) rH 3 1 k)T, GT(5.5)
where
K'+K
= o) (B4 E k) v
2 2 4
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K'+ K u

2 4

+eneaz)s. (24 k= ga) (en- ),

and % = ¢q; — ¢2. The first and second terms in £** correspond to the direct
(Fig. 15a) and the crossed (Fig. 15b) processes, respectively. The divergence of
the current operator, q1, Jy<(K’, K; [p, ¢1,42]), can be simply obtained by using
Eq. (5.2). Omitting the common factors we have

K'+K u

aun I (direc) ~ 1,5, (242 4 K +5 - k) ew )

r K+K u
xS, (2+ 3 —4—-k) l"c]

K'+ K
- [ras. (”;" + o+ g —k) (en+A%.)

% S, (g+K’;_K—§—k+q1) I‘c], (5.6a)
and
g1 J = (crossed) ~ [I‘,.S. (g + K'; K_ ~:~ — k- qg) (ens ARL)
S, (g+£;—£—;—k)l‘c]
- [r.,S. (p;“ + K’;K +5- k) (en+A%.)
S (§+K';K —;—»k) rc]. (5.6b)

Note that the first term in Eq. (5.6a) cancels the second term in Eq. {5.6b).
Finally, we get

quwdne (K' K;[p,q1,42])
K'-[K+q:/2] 4 K'-[K+q/7
= —eN./(Q—T)—‘l—A(k+——2—+-f)A(k—-—-2*I»~

N [r.,s. ([pzm] k- K’+[f;+ /2 %2) Fd]

y [r,,s. ([P'f‘fh]—fh _p K AEY/] @

2]
4

2 ) 4)(‘”"'“‘)
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+

xS, ([p-;qll k4

K'+ [I;+ 01/2) %) I‘c]

+e~-f(g—$;A (k+ LY "‘2/2] ) A (k "q‘/2]
[ns,. (2 PP L _""2/2]+K '“) 1“,,]
x [ras. (‘i’-%ﬂ S LS 7L RS “"‘2/2]”( - %) (en-A%.)
xS (g-—k+———-—[K’_q‘2/2]+K+i—’) Fc]
= ene [J". (K' - "2—‘,K;[p, —q,]) - JE. (K’,K+ %;[p+ ‘Ily-"ﬂl)] .

This is the desired result satisfying the two-body W-T identity for the two-photon
interaction current, Eq. (4.13).

B. Interaction Currents for a Covariant Separable Potential

As the second example of a nonlocal force we consider a covariant separable
potential. With a separable kernel the B-S equation has analytic solutions for
both scattering amplitudes and bound state wave functions, and such a model
has been used for both two-nucleon systems [39] and three nucleon systems [40].
Such a model therefore provides an explicitly soluble scheme for Compton scat-
tering. The covariant separable interaction has also been successfully applied to
the description of the structure of mesons as quark-antiquark (¢f) composite sys-
tems [41]. The model gives an analytical solution for the dynamical quark mass
generated by the spontaneous breaking of chiral symmetry. Here ¢§ < meson
duality {42] seems to support a factorizable form of the interaction, particularly
for electromagnetic observables including vector meson processes. The physics of
hadron resonances, such as the xN — A — #N process, may also be efficiently
described with an effective interaction of separable form.

In this section we give the explicit form for the one-photon and two-photen
interaction currents associated with separable interactions. The derivation of the
one-photon interaction current is given in Ref. [26]. The derivation of the two
photon interaction current is fairly lengthy and will be published in a separate
paper [43].

We will use a simple rank one model for the covariant separable interaction:

vaﬁ;ﬁ‘r(K':K;p) = Fﬂﬂ(K’)F}-r

(K), (5.8)

23

i)
4

(5.7



where the vertices are given by Fag(K') = f(K'?)Qap and Fl (K) = f1(K*)Q}
The form factors f(K'?) and f'(K 2) depend on the relative momentum of the two
nucleons in the final state, K’ = 1(p| —p}), and the initial state, K = 3(p1 —p2),
where p/ (1) and p}(p2) are the respective four-momentum of the 1st particle with
charge £; and the 2nd particle with charge e3. The 4x4 matrix Q.5 operating on
the nucleon spinots is assumed to be independent of any momenta. The dagger
attached to the form factor means that the Hermitian conjugate is to be taken if
a quantum mechanical operator is inserted as the argument. In coordinate space
(Fig. 16), the separable interaction is given by

Vopiy (21, 75 21, 22) = Bap(), 22)Al sy (21, 22), (5.9)
where
dipid*p, P — P ? Pl iPa
Aaﬁ(x'l,z;):./.[ (211r)32f [ 1 3 2] Qaﬂe lef o'Pax]
and

dip,d* - 2 — —i
Ah(.n I3) = /j I;lr)sl)z ([pl 2P2] )QLﬁe Pizy o "2z,

are the Founer transforms of the vertex functions, Fop(K’) and F, st-,(K ). Note
that the momentum variables in the form factors can be replaced by the derivative
operators, f ([B582)?) — f(—[25%]?). We now introduce the photon field,
A*(z,), through minimal substitution, 3% — 8} = 8* +ie, A*(z,) , where e,,, 7,
and 8% are the charge, coordinate and derivative operator of the nth particle.
The line over the derivative operator will indicate minimal substitution of the
quantized photon field given by

diq - ;
Au(z) = / (2“;5; {a(g)e™*" + aL(q)e*’"’"’} \ (5-10)
where aL(q) and a,(g) are the creation and annihilation operators of a photon

with momentum ¢ and the polarization €,. The presence of the photon field
modifies the vertices,

dipid? & -]’ ipl . iphs
“ﬁ(xlsz2) - Aaﬂ(%.’-’-’z) j/ 21'_)8?2 (-— [%] Qqpe Pief P 3,

(5.11a)
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—_ dpd*
Aﬁ'y(xl)x2) - Ah(‘”l;xz) j] (glﬂ_)apz

2
(_ [61 3 62] ) Qppe”"Pre e P,

(5.11b)

and each form factor involves the photon field operator. The matrix elemnent of
the one- photon absorption (Fig. 17) at the vertex is given by (O|A(z], z'2)|aL(q)).
The presence of the photon field modifies the potential, and the variation is given
by

SV(zy, zh; 21, £2) = A(Z), 25)ANzy, z3) — A(z), 23)Al (21, 22)
= (e}, 25) {Bl(z1, 23) - Al(er, 22) }
+{B0,25) - Ash, 25) } Al(z1,22).

This change of action also defines the one-photon interaction current, J#, and
the two-photon interaction current, J*¥, through the coupling of photon field:
SV =AJF + A A+ . (5.13)

The one-photon interaction current with momentum transfer ¢ can be derived
from

(5.12)

Ju(2h, oo 21, 22, [g]) = —(27)*(016V|al(9))}, (5.14)
and
(Ol6Vlal (@) = (O {AGT, 25) - A2, 25) } lal(@NHOIA (21, 22)|0)
+OIA(#, 2)|ONO| {BT(z1, 23) - Al(z1,22)} |al(a))

The two terms in Eq. (5.14) are illustrated in Fig. 18; the details of the derivation
can be found in Ref. [26]. For a system with one proton(e; = ¢p) and one neutron
(e = e, = 0), the one-photon interaction current obtained from the separable
potential is given by

sk sl = { (B [ £, 8) - v, )
[4K + g} / ,
TG BE+q) [V(K K+ 5)—V(K .K)]}. (5.15)

We point out that the current operator itself is expressed in terms of the separable
potential, and it is clear that the operator satisfies the two-body W-T identity,
Eq. (2.11). The two-photon interaction current is obtained from,
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Jun (2], 22 71, 29 {01, ¢2]) = (27)*{a,(g2)16V]al (1)), (5.16)

where ¢1(g2) and ¢,(c,) are the absorbed (emitted) momentum and polarization
of the incoming (outgoing) photon. The matrix element has four terms,

{au(g2)| 6Vlal(g1))
= (au(@2)[A(;, 7HIONO| {AT(z1 29) — Al(z1,22) } lal (@)}

HOIAGT, Z3)0)au(g)l {AT (21, 27) — Al(z1,22) } ol (a1))
HOIA(, z3)la}(q1))au(g)l {AT(o1,25) - Al(21,22) }10)
Hau ()l {80, 25) - A%, #5) } el (g))OIA (21, 22)10), (5.17)

where the first, second, third and fourth terms are illustrated by the diagrams in
Fig. 19a,b,c and Fig. 19d. The result for the two-photon interaction current is

I (K K a1, @) = OF 1+ O 1 & 4 5"
where

O =e [Vik' + 2 K+ v+ 2

2’
By _ ! N [y ' py 1] @1 — qZ By
0} —e,,[V(K,K-I-E)G,, +V(K,K——)G FV(K' K + )G*

-V(K', K)G],

and 0% = O'¥(q, — qu), OF = 03"%(q1 = ¢2). The kinematical factors (G#)
are defined by

4K’ + @] [4K + ¢1]"
([4K" + q2) - @2} (UK + @] - 1)’
w _ MK + 201 — 2] [4K + 1}
Y (4K + 201 — g2} - @) (4K + @] - 1)
[4K —2¢3 + i]*[4K — ¢o]*

Gy =

1

G = ,
([4K - 292+ q1] - 01} (4K — q2] - g2)
G'"' 1
(2K + q1 - ¢2)? — (2K)?
x [2g:w + [4K - 292+ 1] [4K — g2]*  [4K +2q1 — o] [4K + q}*
(MK — 292+ q1] - 1) ([4K + 2q1 - 2] - q2) '
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K)+V(K' K) - V(K" K + q—‘) G,

1
(2K +q1— @2)? - (2K)?
[4K — 292 + 1] 4K — q2]*
(4K — g2] - q2)

Ly
G,

[4K + 2q1 Q2]”{4K + ql]
(4K +q1] - q1)

x [2¢* +

Here O 04", 0" and 6;‘" correspond to the four processes in Fig. 19a,b,c,
and Fig. 19d, respectively. Finally, we evaluate the divergence of this two-photon
interaction current

g J" (K', K; a1, q2])

= a T m o G K~ -V B K}
ToTs +[:f(—J;z2)q;:(q22g(+q )2 { (k' K +1 qz) V(K"K + q‘)}
*e (2Kf{f;;; qﬂ(';m)z v+ 2.5+ D-vie .k + D)}
R [4!:2)2?](%)2 v k-8 -vie -2 k- )}

=e {Jn (K' - ?, K;lp, —qz}) J* (K’ K + Lt g, qz])} (5.19)

This is just the two-body W-T identity, Eq. (4.13).

C. Two-Photon Interaction Current for the One-Pion Exchange Process

Finally, we derive the two-photon interaction current for the one-pion ex-
change (OPE) mechanism. Only the charge exchange potential shown in Fig. 20a
can contribute to the interaction current, and in order to keep the presentation
simple, and to insure that it is consistent with our assumption that e, = 0, we
work directly with the charge changing snp-coupling (we do not use the isospin
formalism), given by

6= g4 %Y ¥x +per m, (5.20)
where 7 annihilates an incoming x~ particle (or creates #*), ¥, annihilates an
incoming proton, and ¥, creates an outgomg neutron. From the i1sospin theory
we know that g, = v/2¢,nn, where g 2 _nn/47% = 13.5 is the familiar neutral
pion coupling constant, but we will not need this result here.

The OPE charge exchange potential obtained from (5.20) is
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Voars(K', K;p) = —g3 75,755 A(K + K'). (5.21)
where K = 1(p1—p2), K' = }(p\ —p}) and p = (p1 +p2). Note that this potential
is not a function of the proton momentum transfer, K’ — K, and in this sense
it is a nonlocal potential which can be described by the formalism developed in
this paper.

The one photon interaction current generaied by this OPE charge exchange
is shown in Fig. 20b, and is

Thans K K o, a) = 205 6075075 A (K + K = 3) (K+K'PA (K4 K+ 4
(5.22)

o

where the electromagnetic coupling of the negatively charged pion gives a Feyn-
man factor of

ek k) = iep (k' + E)*, (5.23)

where & and &’ are the four momenta of the pion before and after the interaction.
The famous Z-graphs must not be added as a separate contribution because, in
the relativistic formalism, the nucleon propagators include the negative energy
components which genetate the Z-graph, and hence these contributions are au-
tomatically included in the nucleon current terms. Note that the one photon
interaction current (5.22) satisfies the correct W-T identity (2.11),

wWI*(K K;lpal)=—giep 1° ®7° [A (K + K’ - g) -a (K+K’+ z—,)]

=eép [V(K'—g,K;P)—V(K'.K+g;p+q)]. (5.24)

2

Next, the two-photon interaction current can be derived from the diagram
shown in Fig. 21. The result is given by

JH(K' K p1,pa: [P a1, 92)) = N {A(ks)[ka + ka)* A(kz)[k2 + k1] A(k)
+A(ks)[ka + k)" A(KL)[k + E1]*A(k1)
+ Alks)(—2¢"")A(k1)}, (5.25)

where N = —g3e24°®7°, and the new momenta are k, = pp — P ks =ph—p,
k2 = pa —pi +qi, and k) = p» — p} — q2. The Ist, 2nd and the 3rd terms of
Eq. (5.25) correspond to the direct (Fig. 21a), crossed (Fig. 21b), and contact
(Fig. 21c) terms, familiar processes in the Compton scattering from a free pion.
The two-photon contact term contributes a Feynman factor of
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Pox (K k) = Qig“'”ef, , (5.26)

for the yynx-coupling. We assume that the pion is point-like, so that the vertices
given by Eqgs. (5.23) and (5.26) do not have form factors. By using the W-T
identity for the yr vertex,

Quiie (k' k) = iey[ATI (k) — AT (K)], (5:27)
we can evaluate the divergence of the two-photon interaction current:

g J* (K' K;p1,p2;[p, 41, 42])
= N {A(ka)lks + ko]* A(k2)[A ™ (k2) — A7 (k1)]A (k)
+A(k3)[AT (k) — AT (EY)A(KY) (k] + ka]* A(ky)
—2A(k3)[ks — ky + g2]* Ak}
= N {A(k1 — ¢2)[2k1 — ga]*A(k1) — A(ka)|2k3 + go]” Alks + g2)} (5.28)

Each term in the curry bracket can be expressed in terms of the one-photon
interaction current. We obtain

a1, " (K, K;p1, pas [p, @1, €2])
—e, [J" (K' _ %1- K;:[p, —qz]) 7 (K', K+ %‘u; [P+, —qz])](5-29)

in precise agreement with Eq. (4.13). We note that contributions from the direct,
crossed and contact terms are all crucial to get the result, just as they are for
Compton scattering from a free pion. In the derivation, we assumed that the
pion is point-like, and the use of the W-T identity Eq. (5.27) was crucial. If we
had form factors F,.(¢) and F,,x(q) for the y7 and yy7 vertices, we could still
obtain a gauge invariant result if we defined new off-shell currents with the form
factors confined to the transverse parts of the current. A complete discussion of
how to carry this out for one-photon interactions can be found in Ref. [24]. The
method can be extended to the treatment of two-photon interaction currents.

VI. SUMMARY AND DISCUSSION

There are four principal results in this paper.

(1) We derived a condition which the impuise (IMP) and final state inter-
action (FSI) processes must satisfy if current is to be conserved. (We use the
terminology “FSI” to denote both final state interactions in electrodisintegration
and also rescattering process in Compton scattering). If the forces are nonlocal,
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the conventional amplitudes including IMP and FSI processes do not conserve

current. In both electrodisintegration and Compton scattering this violation is

expressed in terms of the quantity T(k', k;p, ¢). [See Eq. (2.10) and Eqs. (3.6a)
v(iF-2+ ik

and (b)]. This quantity depends on
P 9 _ r P _ P

and these two terms correspond to momentum insertion by the photon before
and after the nuclear interaction, as shown in Fig. 6. These two processes cancel
for local interactions, but not for nonlocal ones.

(2) In addition to IMP and FSI processes, we introduced one-photon inter-
action currents associated with nonlocal forces. These interaction currents are
generated by the coupling of photon(s) to the charged constituents in the nonlocal
region (d = |z} — z.] ~ |z — z2]) of the interaction V(x},z};z,,22). The con-
tribution from the interaction currents (Fig. 5¢c) and interactions currents with
rescattering (Fig. 5d), restore gauge invariance in electrodisintegration. The re-
placement of the impulse current by the combined current J#, Eq. (4.1), includes
all of these contributions systematically.

(3) We used this combined current to analyze the reaction mechanism for
Compton scattering from the deuteron. The total amplitude generated from this
current, corresponding to the 16 diagrams shown in Fig. 10, is not gauge invariant.
Gauge invariance can be restored if we introduce a new two-photon interaction
current (Fig. 2b) which satisfies a {wo-body W-T identity. This identity for the
two- photon interaction current is given in Eq. (4.13).

(4) We derived the explicit form of the two-photon intetaction currents from
three simple models of nonlocal forces. In the first model the nonlocality arises
from two-pion exchange process with excited baryons in the intermediate state.
The interaction current arises from the coupling of the photon to the excited
baryons. In the second model the nonlocality arises from a covariant separable
potential and the interaction current is derived by minimal substitution of the
photon field into the form factors of the separable potential. In a third example
the nonlocality arises from one pion charge exchange and the interaction current
is derived from the diagrams which describe Compton scattering from the vir-
tual, off-shell exchanged pion. The interaction currents derived from all three of
these models satisfy the two-body W-T identities for the one-photon interaction
current, Eq. (2.11), and for the two-photon interaction current, Eq. (4.13).

Throughout this paper we focused on the effect of the nonlocality in nuclear
dynamics and assumed the nuclear force to be of a charge non-exchange type
(except for the OPE current). Inclusion of charge exchange interactions is ex-
tremely important in calculating realistic amplitudes for Compton scattering and
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electrodisintegration. In future work we will extend these techniques to a general
treatment of charge exchange interactions.
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APPENDIX A

Here we prove Eq. (4.3). The amplitudes in Fig. 11 are given by

, d ~
c (W) =ie} [ GsanlKyip)) [P S(E + Q' Ty ¥s(Kuip)SE2 9. (ALD)
dik dik’

CWia)=iep | ot | Ty K" Stk + Q)4
xtJﬁah (k——+% k’_§+ e+ 2 m}) VoK' p), (A.2)
4 d4 '
CW(Y“)“’E (; ’;4/(2 ’;4 [¥(Ky;p)7"S(k + Q)] B
XiMﬂa;lh‘ (k - 5 + _g'! k- 5 + %.P‘I' Q) [S(kl,I + Q)?vw(K’i;pi)]'yG ’
(A.3)
. d*k dk' &’
C""(Yts):'ep/@; [¥(Ksp )y S+ Q)] ,, W/(g_,ji

2 2,@

XtMpaae (k — '2-) + 2 P+ Q) Séc(k" + Q)Spi\(k" - P)

2
_p,Q P_9, 4 -
xig® . (y N . §|q1}) Ws(Kip).  (Ad)

e xn) =it [ %mm;m) [ Sk - @)v*l,, ¥re(Ke p)SEA(E —p), (AS)

dk’
C*(X3) =iep (2#)4_/(2?r)4 [_K! pr Y Sk - Q)]Oﬁ
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xt'],gnrd‘y ( - E - Ej—lk’ - 2 Y - %1 —Q2]) ‘I,‘Tﬁ{Kli;pi), (AG)
&'k d“k’
C*(Zy) = f(2 X / @)’ [®(K;;pp)y" Sk ~ Q)]ms
XiMpa;sy (k ~5~ %,k' -5~ %;p - Q) [S( — @y ¥(K'iipi)l, 5 »
(A7)
d*k d [ d
e (Zis)=iey [ sz i)Y' Sk =,y [ T [ Gorst
ibpoas (k=5 - 20 = B = 2,15 Q) S0t - @S+ - )
)“Jep &y (k" _ !2’_ _ %’kl _ 12_7 _ %; p- ;_, _92]) WTJ(K:;pi). {A.8)

The divergence in the first four amplitudes is given by
g1y [C* (Wr1) + C** (Y1) + C**(Wha) 4+ C** (Y 13)]
. ) -
= ‘ep] @t (%K 0 7 S(k + Q)] PR (O] P
where

{0} 54
e (-3,

[ d'¥ P _Q P, Q
+"-'P](27)4Mﬂa;61 (k“'2‘+§ §+E,;P+Q)

2)) WEG)|

Vys{Ki; pi)S;, (k — p)

x (1~ 5 + Qs (¥ -

[ d ) ’
+1 (2x)t ‘1111-];&;61 (k g + %,k g —-[p- ,qI]) Vo (K )
d4k' d"ku p Q ) p Q
e ey e (£ 54 508 - 5+ Sor Q)

xSpc(k” + Q)Sps(k” — p)

) p Q P g ,
xigrudfy 5, (*-"— gt -5 -3ilp- %,fn]) U s( K7 pi)

32

- . . _ ] . .
= €55y (& + QVs(Kis pi) S, (k — p) — €, 55, (k — 5)‘1'115(5-':?:')55;(’6 - p)

dik' | . P
+ep / (2m)* {'Mﬂu.ﬂ'r (k 9 +

~iMpaisy (k Iy de-By %HQ) s + @57 (¥ - 3) w(K,,p.)]ﬁ}

#s f Gy

%,k' - g + % ;p+Q) Vs (K;; pi)

dk’

r 9 P
Voasy (E—E2 -2 pr 2
2t [ s “( 2 1 2

—Vsai6y (k - g +

d'k" p Q ., P
W!Mﬁa;m (k—-2-+'2-.k 5+

xSpe (K" + Q).S';,-‘,l £ —p)

: e 4 q q
X1 [‘/[p;ﬂ‘r (k”_g— %,k —-—2'—— Z“p_ 5)

Qu_»,@Q

— ] FL x.
“’-‘”’( 5t 2+2"+Q)
The overlined terms cancel by the wave equation for the bound state,

s (k-3) w (k _P_ %;p,-) 57 (k - p)

2
(32 S (- ).

The underlined terms also cancel. The doubly-underlined terms cancel if we use
the scattering equation

Q;P + Q)J Vs (Ki;pi)

%;p+Q)

diE’
(@)

+ep

W5 (Ks; pi).

4 0 P
4 _P
4’ 2

Mpa;sy (k—g+%,k'—g+%;p+0)
- PRy r, 9
- aﬂ,d-y(k 2+2;k 2+2,p+Q)
. d*k” r, Q . r, € 1t "
+1/WM[30;0¢ (k—§+ 2,k 35 E,p+Q) Sae(k” + Q)50 (K" — p)

xV(,,-,h(k” 2"‘%‘7’ 2+%,,P+Q)
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Only the first term remains, so that

Q1 [C" (Wir) + € (Y11) + C* (Wi3) + C** (Y 13)]

d*k
= ie? f a [¥(Kyipr 7 S(k+ Q)] Spt(k + Q)W (Kis pi) S Mk — p) (A9)

Similarily, the divergence of the X;; + Z1; + X3 + 213 processes is given by

Q1 [C¥(X11) + C*(Z11) + € (X13) + C* (Z13)]

4 1.7

=iep (% {©}op [SKK' + )i 10:¢55-9) PN

where
{O)ap = —epSay (K — p)Wos(K}ipp)S;) (K - Q)
K}ipp)Ss (K +

2)

+epS;'r!(k' — P)¥,s(

Qe [C* (X1} + C*¥(Z11) + C* (X 13) + C*(Z13)]

dk = : -
=i} [ 5 Gy S & — P)¥aa(Kjp)Si K —

Klipi)lga
(A.10)

Q) [S(K + Q1" ¥(

Eq. (A.9) and Eq. (A.10) were used to complete the proof of Eq. (4.3) in Sec. IV

APPENDIX B

We now derive Eq. (4.9). The four amplitudes are

LYW
et =ie [ 552 [ e B0 ste - ),
Q k’— G 4 [p q (h]) V. 5(K'i;pi),

x"]gaﬁ‘)r (k—é-—i

(B.1)

dk at’ dik"’
cuu(z3l)—‘ep (2 )4 (21)4 (2 )4 [_(Kf P!)'Y S(k Q)]"g

k| : P Q P
Byt {‘I’TJ(K};PJ)'Mh;aﬂ (’f -3 F-3 ,p Q)
: rp Q@ . p» @Q ) . "
XiMgase (k———* -5 apt Q) Se(k" = Q)Sps(k —p)
- [Fkp sk + sk - Q)] iMsyap (k‘ g_g,y P Q;p_Q)} 272 T2 2
X8 gy (k" g Q,k g R N PR Vos(K'ispi),
-:'ef—ﬁ (Kpipg) [Vinas (k- 5+ L0~ 21 L Q) 2 20 2 4 2
T 7S TR AL Ch M W I i R S 4 (B.2)
p Q P Q o . d*k / dix’ ] dik _
~Véy.ap (k 9~ E’k' 97 E.P - Q)" C*(Xas) = ’/ (2r)A (2r)8 (2“.)4 aﬁ(K! P!)
dik L Xid Yoy (k . k" [p Q, qll) Sye(k" — Q)S,5(k" —p)
YoV +1%,5(Ky;ps) '
(2n) J (2n)* Q
r ’ q q ' .
P 4w PO X4 o ("" -5 -5-pilp- -,—qzl) ¥ys(Kism), - (B3)
x[%,;,,,(k gtk 2+Z'p+2) i 2 2 2 4 2
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~Vivios (k—g—%k” -3 9 ip- Q)] oy —i [ LE [ A jd‘k"j L
Q Q = @i ) Gy ] Gy 2 YoolKris)
H_ H_ : . H__ x I_E___ _ ~ -
xSpc(k" — Q)Sp0 (K" — PYiM pap (k 5=y K =5 - 3ip Q) XiTY oine (k - IEJ + %,k _E_ 5; p—Q, ql]) See(F — Q)Spn(k - p)
As in the derivation of Eq. {(A.9), the underlined terms cancel, leaving the first : ~ p Q s P _Q p o
term only. We have XiMcgiop | K —~ R k T 9T 9P~ Q) Sea(k” — Q)Sna (k" — p)
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x”f;;.sy (k" _p_Q ko g _ %‘,[P— %. _q2]) ¥, (KLps). (B.A) to get the following expression,

2 27
. d*k p_Q, P 9 q
To evaluate the divergence of these amplitudes, we separate out a common factor, {x Z}éw €p (2r )4 {O}uﬁ Uﬂﬂ &y (k 2 E’k 9 1’[’) Ty —al ),
1 1’3 ¥ . d"k
Q1 [C* (X a1) + C*"(Xa3) + C*(Z31) + C** (Z33)] = iep / @t {XZ}y, Was (K75 ) where
. I .. o—1 g
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Use the two-body W-T identity for the interaction current,
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(a) (b) (c)

FIG. 1. (a) A general nonlocal potential in coordinate epace. {b) Diagram for the
nonlocal NN interaction including excited baryons. The dashed line is a pion with the
correlations (the dark circle), the shaded line is an excited baryon, and the solid line is a
nucleon. (¢} NN interaction through the guark exchange process, where the fat solid line

is a nucleon, viewed as a 3-quark system, and the spiral line is a gluon,

!

(a) (b)

FIG. 2. Diagrams jor (a) the one-photon interaction currept and (b) the two-photon

interaction current. The wavy line 1s a photon and the solid line it a nucleon.
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FIG. 3. Representation of Lhe Bethe-Salpeter Equation for the stattering matrix,

M(K' kip), with an interaction kernel V(K kip). The matrix representation for a two-

nucleon system [35] is used.

= |V

FIG. 4. The Bethe-Satpeter Equation for the bound state vertex, T'(k; p), represented

by the open circle.
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FIG. 5. Diagrams for the electrodisintegration of the deuteron, where the solid line is

a nucleon, the wavy line is a photon with momentum g, and the open circle is the deuteron

vertex fanction: (a) impulse approximation (IMP); (b) final state interaction (FSI), where FIG. 6. Diagrammatic representation of Eq. {2.10), where the crossed circle refers l-.o

. . . . i i t b toRn.
A in the scattering matrix; (c} direct interaction current (D). where the rectangnlar insertion of momentum ¢ by the photor



(a) (b)

FIG.7. Diagrams for Compton scattering from the deuteron: {a) impuise amplitude,

¢ (IMP), and (b) the crossed impulse amplitude, * (TMF).

(a) (b)

FIG.8. Diagrams for Compton scattermg involving the scattering matrix M: (a} final

state interaction, C*(FSI), and (b) the crossed FSL process. C»(F3]).
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FIG.9. The unified current J*, Eq. (4.1}, is represented by the rectangular box with

an open circle. The other rectangular box with a solid circle is the interaction current. J5.

(In this work the neutron current. Js. is zero.}

FIG. 10. The four types of amplitudes (W), C*( X}, C*(Y) and C**(Z} in Eq.

(4.2). The rectangular box is the unified corrent, J*.
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FIG. 1l. The eight amplitudes in Eq. (4.3), where the incoming (outgoing) photon

has momentum ¢;(g3) and polarization ¢, (¢,).
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F1G. 12. The eight woplitudes in Eq. (4.4}, Eq. (4.8) and Eq. (4.9). The two photons
are labelsd as in Fig. 11.
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(a) (b)

FIG. 13. A model for the nonlocal potential Va(K’. K; p). with intermediate baryon FIG. 14. 8 nternctions Jovolving b (a) 7N "
. 14. Electromagnetic intersctions ng baryon resonances: (a) YN* coupling

tesonances (shaded lines). The dashed line is a neutsal pion.
and (b) the one-photon interaction current generated by the presence of the yN* coupling

inside of the noniocal potential.



FIG. 15. Diagrams for the two-photon interaction current associated with the nonlocal

potential: (a} direct process and (b) crossed process.

x; X,
x; X,

FIG. 16. A rank-1 separable potential V(z', 2'3; 11, 73), where the shaded circle rep-

resents the vertex A(r'), ;) and the conjugate vertex Al{z,, z3).
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FIG.17. T ihilati
he matrix element for one-photon arnihilation at the vertex Alr'y, 7).

FIG. 18. Terms which make up the one-photon interaction current,/*, associnted with

the seprable potential V{z'y, 2'3; 21, 22)-



FIG. 19. Terms which make up the two-photon interaction current, J**, associated

with the separable potential.
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FIG. 20. (a) The OPE charge exchange NN interaction. Note that it is an exchange
interaction and hence is nonlocal in the proton momentum transfer g, — py. (b) The OPE

interaction current, where momentum conservation gy + p; + ¢ = g, + pj is understood.
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FIG. 21. Diagrams for the two-photon interaction current derived from the one-pion

exchange mechaniem: (a) the direct process, {b) the crossed process and {c) the contact

term-



